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Abstract

Steel pipelines that transfer hydrocarbons may be exposed to several corrosive
elements. In order to ensure the structural integrity of the pipeline against corrosion,
double-walled pipes are produced, containing a thick-walled low-carbon steel (“outer
pipe”) providing strength, and a thin layer (“liner pipe”) from a corrosion resistant
alloy (CRA) material, which is fitted inside the outer pipe, resulting in a cost effective
solution instead of producing pipelines from stainless steel or nickel alloy.

First, the structural response of double-walled pipes, also called “lined pipes”, under
monotonic bending is investigated. In the first stage, two types of lined pipes are
examined, with and without mechanical bonding between liner and outer pipe referred
to as tight-fit pipe (TFP) and snug-fit pipe (SFP), respectively. It is shown that, upon
applying monotonic bending, the liner pipe gradually detaches from the outer pipe,
forming a uniform wrinkling at the compression zone leading to localized buckling
with further increase of the curvature. Subsequently, the bending response of lined
pipes under low or moderate levels of internal pressure is investigated, showcasing
its beneficial effect on the bending performance of lined pipes. Furthermore, the
influence of initial geometric imperfections on liner pipe buckling is examined, showing
the imperfection sensitivity of internally pressurized and non-pressurized bi-metallic
(double-walled) pipes.

Additionally, the effects of manufacturing process on the structural performance
of mechanically lined pipes are investigated. Alternative manufacturing processes are
considered, associated with either purely hydraulic or thermo-hydraulic expansion of
the pipes. A three-dimensional model is developed, which simulates the manufacturing
process in the first stage of the analysis, and subsequently, proceeds in the bending
analysis of the lined pipe. This integrated two-stage approach constitutes an important
contribution of this research to existing knowledge. Thermo-hydraulically expanded
lined pipes are examined, with special emphasis on the case of partially heated liners,
and reverse plastic loading in the liner pipe wall has been detected during depressur-
ization. Furthermore, the numerical results show that the thermo-mechanical process
results in higher mechanical bonding between the two pipes compared with the purely
mechanical process, and that this bonding is significantly influenced by the liner pipe



temperature level. It is also concluded that the value of initial gap between the two
pipes before fabrication has a rather small effect on the value of liner buckling curvature.
Numerical results on imperfection sensitivity are reported for different manufacturing
processes, and the beneficial effect of internal pressure on liner bending response is
verified.

Furthermore, the structural performance of a lined pipe under cyclic bending is inves-
tigated, motivated by offshore reeling installation. Five bending cycles are considered,
representing the two installation cycles and three additional cycles of a failure/repair
scenario. The loading cycles impose a bending curvature range corresponding to the
strains developed during a typical reeling installation process. Different loading patterns
are considered and their effect on liner performance is investigated. The results show
that the application of reverse (negative) curvature during the loading cycles, represent-
ing the straightener, has a significant influence on the wrinkle size of the liner developed
at the two critical generators and its rate of increase, compared with cyclic bending
patterns with non-negative curvature. Numerical results on imperfection sensitivity
are obtained, considering two types of imperfection of the liner pipe. In addition, the
structural performance of liners with different thickness is examined, and the results
show that there exists a minimum value of wall thickness, above which the liner does
not exhibit local buckling at the end of the cyclic loading history. The beneficial effect
of internal pressure on liner cyclic response is also verified, especially for thin-walled
liners, preventing the development of wrinkles. The effect of manufacturing process is
also examined, showing the superior structural performance of partially heated lined
pipes, with respect to fully heated lined pipes, and to lined pipes manufactured by purely
mechanical process.

Moreover, a three-dimensional numerical model of a mechanically bonded lined
pipe is also developed, simulating its structural response during the reeling instal-
lation method. An installation failure/repair scenario is considered with five wind-
ing/unwinding cycles, accounting for the straightening process. The cyclic deformation
of a lined pipe is presented, monitoring ovalization, local curvature and liner detachment
from the outer pipe during reeling. The influence of pipe contact with the reel and the
effects of back tension on the structural response of the lined pipe are examined. The
results indicate a residual curvature of the pipeline at the end of unspooling. Applying
different levels of back tension, the local curvature on the pipe decreases, affecting the
detachment of the liner pipe from the outer pipe. Numerical results on imperfection
sensitivity demonstrate the significant influence of geometric imperfections on liner
buckling. Comparison of the present results with those from a pure bending model
shows that a lower liner detachment rate is predicted by the present model. Furthermore,
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the reeling performance of thicker liners is examined, showing the gradual reduction
of liner detachment with increasing wall thickness. Finally, the reeling process in the
presence of moderate levels of internal pressure is simulated, verifying its beneficial
effect on structural performance, preventing local buckling.
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Chapter 1

Introduction

Onshore and offshore pipelines constitute a common and reliable means of trans-
porting a variety of fluids, such as hydrocarbons, chemicals or water. Over the last
decades, the interest in offshore pipelines transporting hydrocarbons has increased
significantly, continuously creating new challenges for pipeline installations exceeding
the two thousand meters of water depth.

1.1 S-lay and J-lay installation methods

Two common offshore installation methods are S-lay and J-lay, referring to the
shape of the pipeline from sea level to the seabed during installation, as shown in
Figure 1.1. In the case of S-lay method, the line pipe segments are stored on the vessel,
welded, inspected and coated offshore, and installed gradually, while the vessel moves.
The pipeline is held by the tensioners and it is bent over the stinger before enters the
sea water. In general, the pipeline is installed empty, considering a relatively small
angle at which the pipeline leaves the stinger, reducing the required applied tension
and the corresponding cross-sectional ovality of the pipe (Dyau and Kyriakides, 1992;
Kyriakides et al., 1994). Under these loading conditions, the pipeline is deformed
elastically during the installation. For deep-water applications, the applied tension
increases, while a much longer stinger is required to reduce the horizontal tensile force.
The combination of high tension and stinger curvature deforms plastically the pipeline,
while it is bent on the stinger. (Yun et al., 2004). Therefore, S-lay is more suitable
installation method in swallow and intermediate depth water up to one thousand meters
(Kyriakides and Corona, 2007)and pipes with diameters up to thirty inches.
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Figure 1.1 Schematic representation of (a) S-lay and (b) J-lay pipeline installation and
associated loading conditions.

The J-lay is more suitable installation method for deeper water. In J-lay, the pipeline
leaves the vessel from a nearly vertical position, as shown in Figure 1.1b. During this
method, pre-welded pipe segments are raised into the tower, where they are welded
to the free end of the pipeline, the welds are inspected, coated and then lowered the
vessel gradually moves. Initially, the pipeline is under axial tension, while once the
pipeline leaves the vessel, external pressure gradually increases with increasing the
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water depth. Approaching the seabed, the pipeline is subjected to combined loading
under tension, bending and external pressure. Therefore, the pipe reaches its maximum
deformation at sagbend. This method is capable of installing pipelines in water depths
that exceed three thousand meters, due to the shorter suspended pipeline length resulting
in reduced required lay tension. Both methods are presented in more detail in the book
by Kyriakides and Corona (2007).

1.2 Bending of pipelines

During the deep-water installation with S-lay or J-lay, the pipeline is subjected to
severe bending, so that significant stresses and strains are developed in the pipeline
wall, associated with cross-sectional ovalisation. At the sagbend region, near the seabed,
where the bending load is combined with tension and external pressure, the pipeline
may buckle or “collapse”, as commonly mentioned (Kyriakides and Corona, 2007).
Significant research has been conducted and several tools have been developed to
describe the mechanical behaviour of single-walled pipes under combined loading
conditions.

Bending of a thin-walled cylinder results in cross-sectional ovalisation, which also
leads to loss of bending stiffness in the form of limit point instability, as shown in Figure
1.2. This phenomenon is called “ovalisation instability”. Brazier (1927) investigated
the non-linear bending response of initially straight thin-walled pipes, resulting in a
trigonometric solution for the cross-sectional displacement and a quadratic expression
for the ovalisation, with respect the applied curvature. More specifically, the ultimate
bending moment and the corresponding curvature were expressed as:

MBr = 0.987
ERt2

√
1−ν2

and kBr = 0.471
t

R2
√

1−ν2
(1.1)

where E is the Young’s modulus, t is the wall thickness, R is the radius of the cylinder,
and ν is the Poisson’s ratio. Aside to ovalisation of initially straight tubes, von Kar-
man (1911) investigated the ovalisation of elastic initially curved tubes, considering
inextensional cross-section and negleting non-linear terms. A linear relationship was
provided between the cross-sectional ovalisation and the applied curvature, as a function
of geometric parameters. Additional work has been conducted by several researchers
(Gross, 1953; Gross and Ford, 1953; Pardue and Vigness, 1951), developing design for-
mulae for flexibility and stress concentrations and accounting for the effect of pressure.
Furthermore, Reissner (1959) investigated ovalisation instability of initially straight and
initially curved pipes, using non-linear ring kinematics and accounting for the effect of
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pressure, while Reissner (1961) examined the ovalisation instability of initially straight
pipes, considering two independent variables; the rotation of the cross-section reference
line and a stress function. Additionally, a non-linear formulation for the ovalisation
instability of tubes under bending has been investigated by Axelrad (1961, 1962), based
on an non-linear flexible shell theory. Initially straight and initially bent tubes were
considered, accounting also the effect of pressure. More recently, Karamanos (2002)
presented a detailed numerical study, investigating instabilities of long thin-walled elas-
tic tubes. Both initially straight and initially bent tubes were analysed under in-plane
bending, while it has been shown that the interaction between ovalisation instability and
bifurcation instability depends on the value and the sign of the initial tube curvature.
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Curvature

ovalisation
limit	point

bifurcation
point

secondary
equilibrium

path
cross-sectional
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wrinkles	at	the
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Figure 1.2 Schematic representation of ovalisation and bifurcation instability.

Bifurcation instability of tubes subjected to bending is a phenomenon more pro-
nounced in long cylinders, free of boundary conditions. During bending, axial stresses
increase at the compression side. At a certain stage of deformation, bifurcation in-
stability (buckling) occurs forming longitudinal short-wave “wrinkles”, as shown in
Figure 1.2; this usually happens before reaching the limit point, which corresponds to
ovalisation instability. Therefore, two different formulations can be employed to analyse
those two instabilities. Considering a cross-sectional ovalisation analysis, which can be
also assumed as a generalised plane strain problem, buckling phenomena are excluded,
leading to a maximum moment due to ovalisation. On the other hand, assuming three-
dimensional analysis, a secondary equilibrium path is followed, before the limit point is
reached in the ovalisation equilibrium path.
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Bifurcation instability was investigated in an early stage by Brazier (1927). Seide
and Weingarten (1961) attempted to predict the bending buckling of thin-walled elastic
cylinders, concluding that the buckling moment of a cylinder under bending corresponds
to a nominal stress similar to the buckling stress of a cylinder with the same radius under
uniform compression. However, the formulation did not account for cross-sectional
ovalisation of the tube on the post-buckling state. Therefore, this analysis can be used
for short tubes with restrained ends, while it predicts unrealistic buckling moments
for long tubes free to ovalise. Following the previous formulation, Axelrad (1965)
introduced the so-called “local buckling hypothesis”, considering the effects of the
ovalised pre-buckling configuration of the tube. Axelrad (1965) assumed that buckling
is determined by stress and strain inside the zone of the initial buckle. According to
this assumption, buckling will occur when the maximum compressive stress reaches the
uniform compressive critical value for a circular tube of radius equal to the local radius
of the ovalised shell at the critical point. This point usually corresponds to the most
extreme fiber of the compressive zone of the tube. Furthermore, Stephens et al. (1975)
examined bifurcation instabilities of initially straight tubes, considering a non-linear
shell analysis. Bifurcation moments were reported assuming a pre-buckling ovalisation
of the tube, while the effect of pressure and the boundary conditions were also examined.
It was shown that in case of bending of unpressurised long tubes, buckling occurs before
the limi point is reached. This was also observed by Fabian (1977), investigating the
buckling behaviour of elastic thin-walled initially straight tubes under the combination
of bending and external pressure.

The bending response of relatively thick-walled elasto-plastic steel tubes, motivated
by offshore pipeline applications, has been reported by Kyriakides and Shaw (1982),
using analytical cross-sectional models based on an inextensional non-linear theory
(Brush and Almroth, 1975), while the effect of external pressure has been also investi-
gated. Subsequently, Shaw and Kyriakides (1985) and Corona and Kyriakides (1988)
proposed an improved formulation, relaxing the inextensionality condition and allowing
for large changes of hoop curvature. A numerical verification of those analytical results
has been reported by Karamanos and Tassoulas (1991). It has been shown though that
such a cross-sectional analysis may not lead to representative bending results of steel
tubes, considering diameter-over-thickness ratio (D/t) higher than about forty five. In
this case, the tube exhibits wall wrinkles leading to local buckling, before reaching the
ovalisation limit moment, as shown in the work by Ju and Kyriakides (1992). Therefore,
a three-dimensional analysis is required to model this structural response. Additional
experimental and numerical work has been conducted by (Karamanos and Tassoulas,
1996a,b; Netto and Estefen, 1994), examining the structural response of tubes under
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monotonic bending and external pressure, while (Limam et al., 2010) examined the
effect of internal pressure accounting for operational conditions. Furthermore, exper-
imental and analytical study of the response of pipelines under combined external
pressure, bending and tension loads has been presented by Kyriakides et al. (1989),
accounting for loads during the offshore installation, as shown in Figure 1.1. These
tools can be used to ensure structural stability of thick-walled pipes and are summarised
in the book by Kyriakides and Corona (2007).

More specifically, Kyriakides and Corona (2007) presented in detail the mechanics
of inelastic bending of thick-walled steel tubes and the associated limit states. Shaw
and Kyriakides (1985) expressed the formulation of inelastic pure bending, adopting
more general kinematics than the one presented by Ades (1957) and Gellin (1980).
Furthermore, Kyriakides and Corona (2007) extended further the formulation including
more general initial geometric imperfections and wall thickness variations, while factors
that also influence the limit state, such as yield anisotropy and residual stress fields,
were also presented. Considering the combined loading conditions, that the pipeline is
subjected during the deep-water installation, Kyriakides and Corona (2007) presented
in detail the mechanics of inelastic bending of steel tubes in the presence of external
pressure or under axial tension and the associated limit states. Several of the limit
states, included in the aforementioned book by Kyriakides and Corona (2007), are
also addressed in offshore pipeline design standards, such as API RP 1111 (1999); BS
8010-2:2004 (2004); DNV-OS-F101 (2013); ISO 13623 (2000), providing simplified
design formulae.

More recently, extensive numerical work has been conducted on the structural sta-
bility of thin-walled elastic cylinders. Rotter et al. (2014) presented detailed numerical
results on the effect of cylinder length on the non-linear elastic buckling under bending
loading, considering both clamped ends. Furthermore, Fajuyitan and Sadowski (2018)
examined the effect of geometric imperfections, accounting for linear buckling eigen-
mode, cross-sectional ovalisation and local defect due to welding, while Xu et al. (2017)
presented numerical results on the bending response of cylinders with elliptical cross-
sectional shape. Sadowski and Rotter (2013) investigated the non-linear plastic buckling
behaviour of thick-walled tubes under bending, using different numerical modelling
approaches. Several diameter over thickness ratios have been examined using either
solid continuum finite elements or shell finite elements, showing the computational
efficiency and the reasonable results considering shell elements. Wang et al. (2018)
examined the influence of cross-sectional ovalisation under bending in the inelastic
range, showing negligible influence on moment resistance decrease of thick-walled
tubes. Furthermore, a detailed experimental and numerical work, presenting the four-
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point bending response of spiral-welded steel tubes, has been reported by van Es et al.

(2016); Vasilikis et al. (2016). Tubes with several diameter over thickness ratios have
been considered, while the influence of material properties, geometric imperfections
and residual stress on local buckling has been reported. In a subsequent paper, Pa-
padaki et al. (2018) investigated the influence of internal pressure during bending of
spiral-welded steel pipes, while the stress-strain state of a spiral-welded pipe has been
applied as initial condition on the pressurised numerical model, and Chatzopoulou et al.

(2019) simulated the spiral-forming process accurately, and examined the influence of
the pipeline fabrication process on the bending response under internal and external
pressure.

1.3 Reeling installation process

The main deficiency of these two methods (S-lay and J-lay) refers to welding process.
More specifically, welding and inspection should be performed on the lay barge. On the
other hand, “reeling” installation method has been recognized as an efficient method
for installing steel pipelines of diameter up to sixteen inches (Kyriakides and Corona,
2007). The major advantages of this method are the high production and laying rates,
and the high quality of welding and inspection conditions which are conducted onshore.
Reeling also consists an efficient installation method for swallow and deep waters.

However, in this method, the pipeline is subjected to two severe plastic bending
cycles, as shown schematically in Figure 1.3a, while the bending strains are in well
into the plastic range (∼ 2%). First, the pipe line girth welds are performed onshore,
forming a several kilometers long pipeline, followed by winding onto a large drum on
the reeling vessel ( 0 → 1 ). Once the installation location is reached, the pipeline is
unwound ( 1 → 2 ) as the vessel moves, with the corresponding configuration of the
Figure 1.3b. Subsequently, the pipe is bent around the aligner ( 2 → 3 ), followed by
pipe straightening and its reverse bending to eliminate the residual curvature due to
plastic bending on the reel and aligner ( 3 → 4 ). In the final stage of reeling, the pipe is
straightened, leaves the vessel and enters the water ( 4 → 5 ). However, in case where a
serious defect is detected, the installation process is stopped so that the pipe is repaired.
In this case, the pipe line is spooled and unspooled again passing through the aligner,
reel and the straightener adding three bending cycles until the pipeline leaves the vessel.
The installation speed of this process (up to two knots) and the onshore fabrication of
the long pipeline segment provides significant time and cost reduction, compared with
S-lay or J-lay method.
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Figure 1.3 Schematic representation of (a) moment-curvature diagram during the reeling
process, (b) a reeling pipeline vessel, showing the location of different stages of bending.

The influence of cyclic plastic deformation during reeling on the collapse pressure of
single-walled pipes has been investigated in previous theoretical and experimental works
(Estefen, 1999; Nagata and Tsuru, 2016; Pasqualino and Neves, 2010; Pasqualino et al.,
2004), and identified the importance of reeling-induced ovalisation of the cross-section
on the ultimate strength of the pipe. Martinez and Brown (2005) and Karjadi et al. (2015)
examined the change of pipe properties due to reeling-induced plastic deformations,
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through experimental tests and numerical analyses, and reported a dependence of
the value of calculated ovalisation of the pipe, on the plasticity model considered.
Furthermore, Brown et al. (2004) presented a method calculating the minimum reelable
wall thickness of a pipe, considering also the mismatch of adjacent pipe ends, causing
significant localised deformation, while the effect of reel on the different limit states
(burst, collapse, fracture) of pipeline design has been examined by Manouchehri et al.

(2008).
In addition, the effect of reeling installation on pipe material properties, such as

microhardness and toughness, has also been investigated by Meiwes et al. (2014a,b);
Shitamoto and Hisamune (2013); Shitamoto et al. (2014), using full-scale and small-
scale experiments, while Tsuru et al. (2016) presented experimental tests supported by
numerical simulations. Marines-Garcia et al. (2016) also examined the sour strength
of pipes after small scale and full scale reeling compared with as-received pipes. Sub-
sequently, fatigue qualification tests have been presented by Gray et al. (2009), while
the fatigue performance, due to the presence of welding defects, and the fatigue crack
growth rate behaviour of welded pipes in air and sour environment, have been examined
by Netto et al. (2008a,b) and Thodla et al. (2015a,b), respectively.

Furthermore, the reeling influence on pressure collapse of a pipe has been reported
in a recent work by Liu and Kyriakides (2016), while the effect of geometric and
material properties of the pipe and reeling parameters on the reeling performance of
a pipeline have been examined by Liu et al. (2015) and Liu and Kyriakides (2017).
More specifically, Liu et al. (2015) investigated the structural response of pipelines
exhibiting Lüders banding during reeling; this is a material instability associated with
unpinning of dislocations from nitrogen and carbon atmospheres (Cottrell and Bilby,
1949; Hall, 1970), continuing the work conducted by Hallai and Kyriakides (2011a,b)
on the monotonic bending of steel tubes. Moreover, small-scale experiments (Focke
et al., 2006; Kyriakides, 2017) and recent numerical simulation works (Chatzopoulou
et al., 2016a; Liu et al., 2017) have reported the evolution of mechanical properties and
cross-sectional ovalisation during reeling and compared the collapse pressure of reeled
with unreeled pipelines.

1.4 Double-walled (bi-metallic) pipes

In many cases, hydrocarbon mixtures are conveyed in high pressure, temperature
and may also contain several corrosive ingredients, such as hydrogen sulphide (H2S)
or hydrogen chloride (HCl), carbon dioxide (CO2) and water (H2O), which result
in pipeline corrosion, causing failure with significant environmental and economical
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impact. In order to ensure the structural integrity of the pipeline against corrosion,
bi-metallic pipes are produced, containing a thick-walled low-alloy carbon steel (“outer
pipe”) providing strength, and a thin layer (“liner pipe”) from a corrosion resistant alloy
(CRA) material, which is fitted inside the outer pipe, resulting in a cost effective solution
instead of producing pipelines from stainless steel or nickel alloy. A bi-metallic pipe
could be either metallurgically bonded (also called “clad pipe”), as described by several
manufacturers (Chakravarti, 2004; Osborn and Worringer, 1999; Satoh et al., 1996;
Schulz et al., 1999) patenting alternative methods to produce clad pipes, or mechanically
bonded (referred to as “lined pipe”), where the liner pipe is in hoop compression due to
confinement by the outer pipe (also called “gripping force” between both pipes). In this
work, the research is conducted considering lined pipes which is shown in Figure 1.4,
while in the following paragraphs different manufacturing processes of lined pipes are
presented.

Figure 1.4 Visualization of a lined pipe.

1.4.1 Mechanically lined pipes

Lined pipes can be fabricated by a purely mechanical manufacturing process
(Yoshida et al., 1981), or by a thermo-mechanical process, called “TFP” (tight-fit
pipe), as explained in detail by De Koning et al. (2004). The former method results in
hoop compression of the liner and mechanical bonding of the two pipes, whereas in the
latter method, bonding of the lined bi-metallic pipe depends on the amount of expansion
of the two pipes. Experimental work, investigating the corrosion resistance and sustain-
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ability between metallurgically and mechanically bonded pipes in sour environment,
was conducted by Chen and Petersen (1991) indicating deterioration of the corrosion
performance of the metallurgically bonded pipes due to heat treatment. Additional
experimental results are published on the corrosive performance of thermo-hydraulically
expanded lined pipes, for different liner pipe materials, in a period of exposure (Kane
et al., 1991).

The manufacturing process of hydraulically expanded lined pipes has also been
simulated analytically (Dezhi et al., 2014; Guo et al., 2017; Liu et al., 2004; Wang
et al., 2005; Xuesheng et al., 2004). In these works, the problem was solved as two-
dimensional, assuming for simplicity (a) hydraulic expansion of both pipes up to a
final elastic deformation in the outer pipe, (b) elastic perfect-plastic liner material, and
(c) a relatively small-initial radial gap of both pipes in order to achieve mechanical
bonding after the depressurization. These analyses result in analytical expressions of
the contact pressure of both pipes after the manufacturing process, with respect to the
applied internal pressure. However, in such a manufacturing process, a residual radial
gap has been reported by industrial suppliers in the lined pipe after the depressurization,
in contrast with previous publications (Sriskandarajah et al., 2013a,b) referring to
mechanical bonding of elastically expanded lined pipes. In addition, the effect of
different temperature level of the lined pipe, due to the operational conditions, on
contact pressure of lined steel pipes was investigated by Zeng et al. (2014). Furthermore,
analytical expressions for the diameter change and the hoop stress in the liner, at the end
of each step of the thermo-hydraulic manufacturing process, have been presented by
Focke et al. (2004) assuming plane strain conditions with bi-linear stress-strain response
of the liner pipe, and have been compared with numerical results.

1.4.2 Structural response of lined pipes

Extensive experimental work has been conducted by Focke (2007) presenting the
initiation of detachment of the liner pipe from the outer pipe, leading to liner wrinkling
and cross-section ovalisation of the pipe under monotonically increasing bending
conditions, while the outer pipe is still structurally stable. These wrinkles are an
impediment to the internal flow, might block pipeline pigging equipment, and could
lead to fatigue cracks because of local stress concentrations under repeated loading
(Dama et al., 2007). Numerical results on liner wrinkling under axial compression
have been reported by Hilberink et al. (2010a,b), while Hilberink et al. (2011) and
Hilberink (2011) investigated the influence of friction and mechanical bonding of lined
pipes, comparing also the results with experimental data from four-point bending tests.
Furthermore, Montague et al. (2010) and Wilmot and Montague (2011) presented
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experiments on bending of heated lined pipes, while a detailed numerical study on the
mechanical behaviour of a lined pipe under monotonic bending has been presented
by Vasilikis (2012); Vasilikis and Karamanos (2012, 2013). This study identified two
sequential bifurcation stages associated with liner wrinkling, and examined the effect of
several geometric and material parameters. In those publications, the manufacturing
process is considered by applying an initial compressive hoop stress on the model to
simulate with a simpler manner the residual stresses induced by the manufacturing
process and result on the final mechanical bonding. This assumption does takes into
account the effects of the manufacturing process on the material properties and the
corresponding severe plastic deformation of the liner pipe in an indirect manner, which
is addressed in detail in the present work.

Further numerical analyses on monotonic bending of lined pipes have been reported
by Yuan and Kyriakides (2014a, 2015), accounting for weld discontinuities on the
structural integrity. In those works, the manufacturing process was simulated using
a separate axisymmetric model, while the obtained stress-strain state of each pipe is
averaged through its thickness and is inserted as initial condition in the bending finite
element model. In addition, Tkaczyk and Pepin (2014) proposed analytical expressions
for calculating the minimum wall thickness of the liner pipe to prevent local buckling. A
practical method of delaying liner wrinkling and buckling is the application of relatively
high levels internal pressure during reeling, proposed in a series of relevant patents
(Endal et al., 2012; Howard and Hoss, 2016; Mair et al., 2013). The internal pressure
corresponds to 30 bar (3 MPa), which is approximately equal to 50% of the plastic
pressure of the liner pipe.

The beneficial effect of internal pressure on monotonic bending has also been
noticed in the works by Yuan and Kyriakides (2014a, 2015). The bending response
of a lined pipe in the presence of internal pressure was investigated systematically in
the present work, and the results indicated that low or moderate levels of pressure, up
to 10% of the plastic pressure of the liner pipe, are capable of preventing liner pipe
detachment from the outer pipe and the formation of local buckling. More recently,
Yuan and Kyriakides (2020) reported numerical results on the gradual spooling process
of a lined pipe on a curved rigid surface, and the effect of different manufacturing
processes (purely mechanical and thermo-mechanical) on monotonic bending response
of a lined pipe is examined in the current research.

The above studies focused on monotonic bending of lined pipes. On the other
hand, the cyclic response of lined pipes has received much less attention. Cyclic
experiments on lined pipes have been reported by Tkaczyk et al. (2011), and presented
the progressive liner detachment from the outer pipe over the cycles. In addition,
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Sriskandarajah et al. (2013b); Toguyeni and Banse (2012); Toguyeni et al. (2013)
presented experimental results on the cyclic response of a lined pipe in the presence
of high levels of relatively internal pressure (50% of the plastic pressure of the liner
pipe), presenting its beneficial effect on liner wrinkling. However, despite the above
works a thorough investigation on the cyclic performance of a lined pipe, monitoring
the development and evolution of liner wrinkling at each cycle, including the influence
of geometric, material and loading parameters, and the effect of moderate levels of
internal pressure, is an open research issue.

1.5 Cyclic bending of tubes

Previous publications have demonstrated that cyclic loading of a single-wall pipe,
within the safe range determined by monotonic loading conditions, causes the accu-
mulation of plastic deformation, and this may result in local buckling failure. More
specifically, Shaw and Kyriakides (1985) presented a formulation of a long tube cycled
in pure bending into the plastic range, predicting the growth of ovalisation over the
cycles, employing different non-linear hardening plasticity models. Pan et al. (1998)
presented an apparatus for measuring experimentally the cross-sectional ovality and
curvature of tubes, under cyclic bending tests. Experimental results have been presented
by Corona and Kyriakides (1991), showing the effect of cyclic plastic bending on cross-
sectional ovalisation accumulation of tubes, leading to local buckling. Different cyclic
loading histories have been examined, such as curvature symmetric bending, bending
about a mean curvature value, and moment-controlled bending about a moment mean
value, while the strong influence of external pressure on increasing the accumulation of
ovalisation has also been shown. More recently, Elchalakani et al. (2004) performed
cyclic inelastic experimental tests of cold-formed circular hollow sections (CHS), simu-
lating different amplitude earthquake-type oscillations, establishing slenderness design
limits. Experimental and numerical work, investigating axial cyclic compression in the
plastic range of tubes, has been conducted by Jiao and Kyriakides (2009, 2010), showing
axisymmetric wrinkling of the tube, leading to limit load instability and collapse, while
axial cyclic compression of tubed under internal pressure has been investigated by Jiao
and Kyriakides (2011a,b)

Finally, Chang and Pan (2009); Sadowski et al. (2020); Varelis and Karamanos
(2014) presented experimental and numerical results on the degradation and buckling
of circular tubes under cyclic plastic bending, while Zeinoddini et al. (2016) proposed a
closed-form analytical solution for strain ratcheting of tubes subjected to cyclic inelastic
bending. It has also been shown that, under cyclic loading conditions, small geometric
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imperfections in the pipe wall may grow, leading to local buckling after a number
of loading cycles (Jiao and Kyriakides, 2009; Varelis and Karamanos, 2014). It is
expected that such a behaviour may also occur in the case of lined pipes under cyclic
bending, and that the existence of small imperfections in the liner may have a significant
role on cyclic structural performance. For this reason, a pure cyclic bending model is
developed in the present work, in order to conduct a more detailed investigation, and a
more complex numerical model of reeling installation is considered for more accurate
predictions.

1.6 Offshore applications of single-walled and double-
walled pipelines

In the present section, several offshore applications of single-walled and double
walled pipelines are presented, considering the works discussed in the previous sections
on monotonic and cyclic bending of circular tubes. Medgaz is a single-walled pipeline
project, which transfers natural gas from Algeria to Spain. It was discussed since
1980s and it was completed in 2009 crossing the Mediterranean Sea. The pipeline has
been installed in water depths exceeding two thousand meters, while its offshore part
is two hundred kilometers length. Another pipeline from the same decade is Trans-

Mediterranean, joining Tunisia to Sicily and then to mainland Italy. Blue stream is also
single-walled pipeline, which was constructed in 2003. The pipeline was installed at
similar water depth, such as Medgaz; it has length more than seven hundred kilometers,
and it was the deepest offshore pipeline at time of construction. In addition, the pipeline
was installed with the J-lay method, considering the water depth. More recent offshore
pipelines projects are the South Stream and Galsi pipelines. South Stream was designed
for 2250 water depth with length equal to 1480 kilometers, which was considered the
most demanding offshore project to date. Furthermore, Galsi pipeline was designed
for higher water depth, reaching 2850 meters, pushing further the limit and reaching
ultra-deep water depths. A more detailed description of the aforementioned projects
has been reported by Kyriakides and Corona (2007), including additional offshore
applications of single-walled pipelines, such as Mardi Gras, Independence Trail and
Jansz & Gorgon projects.

Furthermore, several offshore applications, where the pipeline was installed using
the reeling method, are Na Kika (Kopp et al., 2004), Marlin (Lecomte et al., 2002),
Devils Tower (Menier, 2003), Matterhorn (Kavanagh et al., 2004) and K2 (Campbell
et al., 2006). Finally, a technologically important project, considering double-walled
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pipes, is the Guará-Lula NE project in Brazil (Mair, 2012). Mechanically bonded lined
pipe steel catenary risers were installed in ultra-deep waters by the reel-lay method.

1.7 Motivation & objectives

During the last years, significant research has been published about the mechanical
behaviour of bi-material lined pipes under monotonic bending conditions. Detachment
between liner and outer pipe was observed at the compressed side of the structure during
bending. Increasing the applied curvature, a first uniform wrinkling of the liner was
observed, which occurs at a critical curvature; the liner detaches abruptly after that
critical value. Subsequently, increasing further the curvature, a second type of wrinkling
occurs, which results in local buckling of the liner. It should be noted that the liner
pipe buckles locally in low curvature levels, while the thick-walled outer pipe is still
structurally stable. Therefore, local buckling of the liner pipe is considered as a limit
state and it is assumed as the performance limit. The presence of a local buckle in
the liner pipe may be a threat for structural integrity. Under continuation of pipeline
operation, fatigue cracks may appear because of local concentrations of stresses under
operational thermo-mechanical loads, leading to corrosion of the outer pipe, resulting in
reducing its burst capacity and increasing the possibility of an accident with significant
environmental and financial impact. In addition, several studies examined the structural
response of a lined pipe in the presence of high levels of internal pressure, showing
its beneficial role. On the other hand, a thorough study on the bending response of
lined pipes, under relatively low levels of internal pressure, is an open issue, as an
attempt to create a cost effective and safe structure. Furthermore, a lot of studies have
presented analytical or numerical results about the manufacturing process of lined
pipes, considering several assumptions. For this reason, a complete numerical analy-
sis, considering different manufacturing processes provided by industrial suppliers, is
necessary, adopting the appropriate material definition, in order to examine how the
fabrication process affects the mechanical bonding and the monotonic or cyclic bending
response of lined pipes. Finally, single-walled pipeline behaviour during reeling has
been extensively investigated. However, the structural response of lined pipes under
reeling (cyclic loading) conditions is still an open issue.

The objectives of this doctoral work are listed below:

• Simulate the monotonic bending of lined pipes, under low levels of internal
pressure (compared with high pressure levels used in the industry), developing
numerical models verified with previously published numerical and experimental
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results. A liner performance criterion should be established to examine the
influence of internal pressure on liner buckling, and the results are compared with
the response of non-pressurized lined pipes.

• Simulate different fabrication processes of lined pipes, and investigate their
influence on the mechanical bonding of the pipes and liner buckling response
under bending.

• Analyse lined pipes under reverse and cyclic loading, accounting for the Bauschinger
effect and the plastic strain accumulation on liner wrinkling, and investigate the
influence of different parameters, such as different bending strain values, liner
pipe wall thickness, and the application of moderate internal pressure level on
liner pipe buckling response.

• Develop a full-scale three-dimensional reeling model to investigate the response
of a lined pipe in reeling conditions (i.e. contact with reel, back tension force),
accounting for internal pressure, liner wall thickness, initial geometric imperfec-
tions, to result in reelable lined pipes.

1.8 Outline of thesis

This thesis is divided into five chapters, in addition to the current introductory
chapter, while a brief description of each chapter is outlined below:

• Chapter 2: Brief review of metal plasticity models
A brief description of metal plasticity theory fundamentals and the corresponding
constitutive models are discussed. The mathematical formulation of an associative
plasticity model, considering a von Mises yield surface and different hardening
rules, such as isotropic, kinematic and combined, is presented.

• Chapter 3: Bending of internally pressurized steel lined pipes
A three-dimensional model is developed simulating the structural response of
non-pressurized snug-fit and tight- fit lined pipes, under monotonically increasing
bending. A “failure” or “buckling” criterion is also defined. Ovalisation and
buckling analyses are performed, examining the effect of moderate levels of
internal pressure during bending, on the liner detachment, in order to prevent
local buckling. The bending response is compared with the non-pressurized case
using the buckling criterion.
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• Chapter 4: Influence of manufacturing process on lined pipe monotonic bending
Different lined pipe fabrication methods are analysed, including purely hydraulic
and thermo-hydraulic manufacturing processes, presenting their influence on the
mechanical bonding between the outer and the liner pipe. The effect of different
manufacturing processes on liner pipe buckling under monotonic bending is
investigated, presenting the significance of the plastic deformation in the liner
pipe on the structural response.

• Chapter 5: Cyclic bending of steel lined pipes
The mechanical behaviour of mechanically bonded lined pipes is examined under
cyclic loading, applying bending conditions motivated by reeling. Using a nu-
merical model, accounting for the manufacturing process in the first part of the
analysis and the cyclic performance in the second part, the structural response
and the evolution of the liner pipe detachment is monitored. The influence of
various parameters, such as different applied curvature ranges, initial imperfec-
tions, application of internal pressure and alternative fabrication processes, is
investigated.

• Chapter 6: Reeling of lined pipes and its influence on liner buckling
A large-scale three-dimensional numerical model is developed, simulating the
structural response of lined pipes during spooling-unspooling on a rigid surface
(reel), under the application of back tension force. The effect of contact with the
reel, and the application of back tension on cross-sectional ovality and liner pipe
buckling is investigated. The influence of pipeline straightening, performed by a
three point bending, on liner pipe buckling is examined. A sensitivity analysis of
several parameters of the numerical model, such as different reel sizes, geometric
imperfections, back tension levels, application of internal pressure, and liner pipe
wall thickness values, is investigated.

• Chapter 7: Summary, conclusions and recommendations
In the final chapter, a summary of the research conducted in this work and key find-
ings highlighting the novelty are presented, while some additional perspectives
for future work are discussed.
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Chapter 2

Brief review of metal plasticity models

2.1 Chapter outline

The present chapter describes briefly the fundamentals of metal plasticity theory
and the corresponding constitutive models to be employed in the following chapters.
The elasto-plastic response of a material can be described by an initial yield condition,
specifying the state of stress for which plastic flow occurs, a flow rule to connect
the plastic strain increment with the stress and stress increment, and a hardening rule
specifying the change of the yield condition in the course of plastic flow. The chapter
presents the mathematical formulation of an associative model, considering also a
von Mises yield surface. The isotropic, kinematic and combined hardening rules are
discussed, identifying their description in the three-dimensional stress space. For an in
depth treatment of plasticity theory for metals and the relevant constitutive models, the
reader is referred to the following textbooks Chen and Han (1988); Khan and Huang
(1995); Lubliner (2008); Voyiadjis and Yaghoobi (2019). Furthermore, the book by
de Souza Neto et al. (2011) constitutes an important tool for fundamental and advanced
knowledge. Initially, the book presents tensor analysis, continuum mechanics of solids,
and the finite element method in solid mechanics, providing basic knowledge to the
reader. The book also includes fundamentals of plasticity theory, advanced plasticity
models and their computational implementation, while it expands further to large strain
theory. Finally, the review article in metal plasticity reported by Chaboche (2008)
could be useful, presenting in detail constitutive equations of cyclic plasticity and
viscoplasticity. These models were also summarised in the book by Lemaitre and
Chaboche (1994).
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Chapter 2 2.2 Strain additive decomposition

2.2 Strain additive decomposition

The elasto-plastic behaviour of a metal component during a uniaxial experiment is
presented schematically in Figure 2.1. Initially, the material deforms elastically and
linearly for the stress up to the initiation of yield at σy (point A), while the stress-strain
curve slope of this linear part is equal to the elastic modulus E. Increasing further the
stress, the slope of the stress-strain curve changes to the elasto-plastic tangent modulus
ET (point B), which is often a much smaller value (ET ≪ E).

N
om

in
al
	s
tr
es
s	
(σ
)

Nominal	strain	(ε)

E

σy A
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Figure 2.1 Elasto-plastic behaviour of metal component during uniaxial experiment.

During the unloading process (from point B to C), the material follows a path with
slope equal to the elastic modulus E. Once the load is removed, the material does not
return to its initial state and a residual deformation or plastic strain (ε p) is observed.
The total strain, as shown in Figure 2.1, can be additively decomposed to the elastic
part and the plastic part, as follows:

ε = ε
e + ε

p (2.1)

Assuming the linear elastic relation between the stress and strain (Hooke’s law) for
the uniaxial experiment in Figure 2.1, the following expression is obtained:

σ = Eε
e = E (ε − ε

p) (2.2)
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Chapter 2 2.3 Yield criterion

The additive decomposition of the total strain can be generalised to the three-
dimensional state of strain as follows:

εi j = ε
e
i j + ε

p
i j (2.3)

where εi j, εe
i j and ε

p
i j are the Cartesian components of the total, elastic and plastic strain

tensors, respectively, while the equation 2.3 can be described in a rate form, as follows:

ε̇i j = ε̇
e
i j + ε̇

p
i j (2.4)

Furthermore, the uniaxial elastic relationship of the stress and strain, expressed by
equation 2.2, can be described in the general three-dimensional case by the following
expression where the Einstein convention is followed for repeated indices:

σi j =Ci jklε
e
kl =Ci jkl

(
εkl − ε

p
kl

)
(2.5)

where Ci jkl is the fourth order elasticity tensor components, which for the case of
isotropic elastic material are given by the following expression:

Ci jkl = G
(
δikδ jl +δilδ jk

)
+

(
K − 2

3
G
)

δi jδkl (2.6)

and K, G are the bulk and shear modulus, while δi j is the Kronecker delta.

2.3 Yield criterion

A yield criterion is necessary to determine the stress state of a material at which
plasticity initiates. A yield function F can be described by the following expression:

F = F
(
σi j, l1, l2, ..., lm

)
(2.7)

where σi j is the Cauchy stress tensor and l1, l2, ..., lm are m material constants. The
relationship F

(
σi j, l1, l2, ..., lm

)
= 0 defines a yield surface or criterion in the stress

space. The shape of the surface is usually convex and defines a subspace of stress states
where the material behaves elastically, meaning that F

(
σi j, l1, l2, ..., lm

)
< 0. Once the

stress state reaches the yield surface, then the material behaves inelastically and the
yield surface can translate in the stress space or change its shape, or both.

In case of isotropic materials, the yield surface can be described as a function of
the invariants of the stress tensor, such as F (I1, I2, I3), while the invariants I1, I2, I3 are
independent of the coordinate axis rotation.
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I1 = σkk (2.8)

I2 =
1
2
(
I2
1 −σi jσ ji

)
(2.9)

I3 =
1
3
(
3I1I2 − I2

1 +σi jσ jkσki
)

(2.10)

Additionally, it has been demonstrated experimentally that the plastic deformation,
in the case of metallic materials, is independent of hydrostatic pressure σkk/3 and
depends only on the deviatoric stress tensor. Therefore, the yield surface for isotropic
metals can be described by the invariants of the deviatoric stress tensor, as follows:

F = F (J2,J3) = 0 (2.11)

where,

J2 =
1
2

si js ji (2.12)

J3 =
1
3

si js jkski (2.13)

and si j = σi j − (I1/3)δi j is the deviatoric stress tensor with δi j the Kronecker delta.
Furthermore, a robust, simple and widely used yield surface, such as in the present
study in Chapters 3, 4, 5 and 6, is the von Mises (1928) yield criterion, described
mathematically by the following expression:

F (J2,σy) =
√

3J2 −σy = 0 (2.14)

where σy is the uniaxial yield stress. The von Mises yield surface is shown in principal
three-dimensional stress space in Figure 2.2a. However, in case of a plane stress problem
(i.e. σ3 = 0), the von Mises yield surface becomes an ellipse, as shown in Figure 2.2b.
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Figure 2.2 Schematic representation of the von Mises yield surface (a) in the three-
dimensional principal stress space and (b) in a plane stress problem (i.e. σ3 = 0).

2.4 Plastic flow rule

Assuming a function of plastic potential Ω, then the plastic strain increment can be
written by the following expression:

ε̇
p
i j = λ̇

∂Ω

∂σi j
(2.15)

- 22 -



Chapter 2 2.5 Hardening rules

Equation 2.15 indicates that the plastic strain increment is parallel to the gradient
to the yield surface

(
∂Ω/∂σi j

)
in the stress space, while λ̇ is a positive scalar factor

of proportionality, which is also called plastic multiplier and can be determined by the
consistency condition (Ḟ = 0). Furthermore, the plastic potential function Ω is convex,
non-negative and zero at the origin, while equation 2.15 indicates that the plastic strain
increment tensor is normal to the surface Ω = 0.

In case the plastic potential function Ω coincides the yield surface F , then the model
is called “associated”. Associated plasticity models describe successfully the plastic
deformation in metals and it is also adopted in the plasticity models used in the present
study in Chapters 3, 4, 5 and 6. However, soils and granular materials exhibit a non-
linear volume change during hardening, which can not be represented with associated
plasticity models, therefore a non-associated flow rule is needed (Runesson and Mroz,
1989; Simo, 1987).

Consequently, the plastic strain increment tensor components in equation 2.15 can
be described by the following expression, considering the associated flow rule:

ε̇
p
i j = λ̇

∂F
∂σi j

(2.16)

The above equation 2.16 indicates that the direction of the plastic strain increment
tensor is normal to the yield surface (F = 0). This is also called as the normality
hypothesis of plasticity and it is shown that it ensures the uniqueness of the solution of
the boundary-value problem for an elasto-plastic material (Chen and Han, 1988).

2.5 Hardening rules

Upon reaching the yield stress of a material, further increase of stress is necessary
when additional plastic deformation occurs, as shown in Figure 2.1 beyond point A. In
case the material is unloaded in the inelastic range, it follows a linear path with slope
equal to the Young’s modulus E, resulting in a residual deformation. If the material
is loaded again, then it follows the same linear path and it yields at the highest stress
attained before the unloading begun. Due to the higher yield stress during the reloading,
the material is considered “hardened” by the plastic deformation.

Hardening of a material can be translated as a change in the geometry and location
of its yield surface in the three-dimensional stress space. In the following sections 2.5.2,
2.5.3 and 2.5.4, three widely-used hardening rules are presented in more detail.
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2.5.1 Loading criteria

The yield surface can be defined as a function of the stress tensor σi j, the plastic
strain tensor ε

p
i j and a hardening parameter k as shown in the following expression:

F
(

σi j,ε
p
i j,k

)
= 0 (2.17)

where hardening parameter k is a function of the plastic strain tensor ε
p
i j and will de

discussed further in the following sections. At this point, a unit tensor
(
Ni j

)
, which is

normal to the yield surface, should be defined to establish the loading and unloading
conditions. The vector (Ni j is described by the following expression:

Ni j =
∂F/∂σi j√

∂F
∂σi j

∂F
∂σi j

(2.18)

A fundamental assumption of the elasto-plastic theory is that the stress function F

should always be either (a) lower than zero, which means that the stress point is inside
the yield surface and the material is elastic (F < 0), or (b) equal to zero, which means
that the stress point is on the yield surface and the material deforms plastically (F = 0).
However, if the stress point returns inside the yield surface, then the plastic deformation
of the material stops and the deformation becomes elastic. It is important to note that
the yield function can not obtain values greater than zero (F > 0); this scenario violates
the “consistency” condition (Ḟ = 0). The different loading cases could be described
mathematically as follows:

• F = 0 and Ni jσ̇i j > 0 corresponds to plastic loading.

• F = 0 and Ni jσ̇i j < 0 corresponds to elastic unloading.

• F = 0 and Ni jσ̇i j = 0 describes a loading condition, which is neither loading nor
unloading, and it is called neutral loading.

• F < 0 corresponds to elastic behaviour of the material for every σ̇i j.

• F > 0 is not valid. If the material deforms plastically
(
F = 0, Ni jσ̇i j > 0

)
, then

its properties change accordingly to obtain F = 0 at the new stress point.

2.5.2 Isotropic hardening

The case of isotropic hardening corresponds to the simplest hardening model,
where the yield surface expands with plastic deformation of the material, as shown
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schematically in Figure 2.3, without any distortion or translation of the surface in the
stress space. For that case, the elastic domain expands uniformly in all directions during
plastic flow, leading to increase of radius of the yield surface in three-dimensional space.
Therefore, the yield criterion can be described by the following expression:

F
(
σi j,k

)
=

1
2

σi jσi j −
k2 (εp)

3
= 0 (2.19)

where εp is the accumulated plastic strain or the von Mises effective plastic strain, which
controls the hardening of the material and the corresponding expansion of the yield
surface (k (εp)), and is described by the following expression:

ε̇p =

√
2
3

ε̇
p
i jε̇

p
i j (2.20)
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Figure 2.3 Schematic representation of the π-plane and stress-strain curve of a material
during uniaxial cyclic loading, considering isotropic hardening.

2.5.3 Kinematic hardening

The kinematic hardening rule, described in the present section, represents a rigid
body translation of the yield surface in stress space by shifting its reference point
from the origin to another stress point, as shown in Figure 2.4. In some materials, the
increase of yield stress and plastic deformation in the direction of applied load, leads
to decrease of the yield stress on the opposite direction during reverse plastic loading.
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This behaviour is commonly called “Bauschinger effect” and it can not be modelled
using isotropic hardening, where the yield surface expands with plastic loading in both
directions, as shown in Figure 2.3. In this case, the yield criterion can be described by
the following expression:

F
(
σi j,αi j,k

)
=

1
2
(
σi j −αi j

)(
σi j −αi j

)
− k2

3
= 0 (2.21)

where k is a constant material parameter and αi j is the back stress tensor which defines
the centre of yield surface during plastic deformation, as shown in Figure 2.4.
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Linear	kinematic
hardening

Non-linear	kinematic
hardening

Figure 2.4 Schematic representation of the π-plane and stress-strain curve of a material
during uniaxial cyclic loading, considering linear and non-linear kinematic hardening.

At this point, a relation between the back stress tensor αi j and the plastic strain
tensor ε

p
i j needs to be defined. A simple kinematic hardening rule has been introduced

by Melan (1938), which is in fairly good agreement with the Bauschinger effect of
those materials that present linear work-hardening. A similar proposal is reported by
Ishlinskii (1954), considering a linear relation between the back stress αi j and the
plastic strain tensor ε

p
i j, and generalized by Prager (1955, 1956) establishing the term

“kinematic hardening”, while the linear expression is defined as:

α̇i j = cε̇
p
i j (2.22)

where c is material constant. Over the years, several kinematic hardening models have
been proposed (Backhaus, 1968; Lehmann, 1972), while Ziegler (1959) identified that
the loading surface may be distorted in case where some stress components are zero.
Therefore, the following modification of Prager’s kinematic hardening rule has been
proposed:
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α̇i j = µ̇
(
σi j −αi j

)
(2.23)

where µ̇ is a parameter that depends on the equivalent plastic strain by the following
expression:

µ̇ = β ε̇p (2.24)

and β is a material constant.
The aforementioned kinematic hardening models may not be able to describe

efficiently the cyclic response of metals, and therefore, various more advanced models
have been developed. One of the most widely used model has been proposed by
Chaboche (1986); Lemaitre and Chaboche (1994), which is an extension of the classical
non-linear kinematic hardening rule introduced by Armstrong and Frederick (1966) ,
and is given by the following expression:

α̇i j =
M

∑
q=1

α̇
q
i j, α̇

q
i j =

(
2
3

Cq
ε̇

p
i j − γ

q
α

q
i jε̇p

)
(2.25)

where M is the number of back stresses considered, C is the hardening moduli and γ

determines the rate of decrease of hardening with increasing plastic deformation.

2.5.4 Combined hardening

Besides the hardening rules described in the previous sections, a more general
hardening rule can be assumed, which is a combination of isotropic and kinematic
hardening rules. In this case, the yield surface is free to expand and translate in the
stress space during plastic deformation. Therefore, the yield criterion, assuming a
combined hardening rule, can be described by the following expression:

F
(
σi j,αi j,k

)
=

1
2
(
σi j −αi j

)(
σi j −αi j

)
−

k2 (εp)

3
= 0 (2.26)

In the above equation 2.26, the translation of the yield surface is governed by the
back stress tensor αi j expressed by an equation similar to 2.25, while the expansion of
the surface by the term k (εp), which is defined by the following expression:

k (εp) = σy +Q
(

1− e−bεp
)

(2.27)

where Q and b are material parameters, defining the change of the yield surface size as
the equivalent plastic strain accumulates. Therefore, both the Bauschinger effect and
the cyclic hardening or softening of the material can be described, assuming combined
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hardening rule. Defining appropriately the Q material parameter value, cyclic hardening
or softening can be achieved, describing adequately the cyclic response of stainless
steel (Chaboche et al., 1979) and low carbon steel (Chai and Laird, 1987) materials,
respectively. A brief comment and additional references on cyclic hardening or softening
of metals is also provided in the following section 2.6. It should be also noted that,
other combined hardening rules can be assumed, such as accounting for distortion of
the yield surface (Voyiadjis and Foroozesh, 1990), but their implementation is out of
the scope of the present thesis.

2.6 Models for cyclic plasticity

Several cyclic plasticity constitutive models have been developed to simulate prop-
erly the mechanical behaviour of metallic components of structural and mechanical
systems, subjected to severe cyclic loading conditions in the inelastic range. The earth-
quake response of structural steel components (Mahin et al., 1980), the seismic or
shutdown conditions of piping systems (Ravikiran et al., 2015), and the severe cyclic
plastic deformation of pipelines during offshore reeling installation (Manouchehri,
2012; Martinez and Brown, 2005) are typical examples of these loading conditions. The
cyclic deformation into the inelastic range of the metal material could lead to excessive
plastic strain accumulation, which might lead to damage of the microstructure of the
material, crack initiation and potential failure of the structure.

2.6.1 Features of cyclic plasticity

The mechanical behaviour of metals under uniaxial cyclic loading has been exam-
ined extensively (Landgraf, 1970; Morrow, 1965), and their behaviour can be cate-
gorised into different groups based on several unique features, as follows. Depending
on several factors of the material, such as the initial conditions, cyclic hardening or
softening of the material has been shown. The phenomenon of cyclic hardening, which
characterises stainless steel materials, and cyclic softening, which appears on low car-
bon steels, can be demonstrated in symmetric strain-controlled cyclic loading. In both
cases, the hysteresis loop stabilises after a number of cycles. Furthermore, in case the
strain cycles have an offset, then the hysteresis loop shifts its mean stress and tends to
stabilise at zero mean stress, while this phenomenon is called cyclic relaxation. Further-
more, when a metallic component is subjected to non-symmetric stress-controlled cyclic
loading, then progressive increase of strain occurs, which is referred to as “ratcheting”.
This phenomenon is discussed in more detail in section 2.6.2.
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Structural components made of low carbon steel materials are characterised by
the presence of a plastic plateau, upon first yielding of the material. During reverse
reverse plastic loading, the Bauschinger (1881) effect is present. This is an important
feature of metallic materials, both stainless steel and carbon steel materials, which
leads to plastic deformation of the material at a lower stress level than the initial
yield. Based on the aforementioned features of metals in the inelastic region, it is
necessary to develop reliable constitutive models to predict the structural response of
steel components. An important work, accounting for the plastic plateau of metals upon
first yielding and the Bauschinger effect during reverse plastic loading, has been reported
by Ucak and Tsopelas (2011, 2012). Furthermore, Hu et al. (2018) proposed a plasticity
model which is capable to describe the plastic plateau, the material cyclic softening or
hardening, and the Bauschinger effect. This constitutive model was also calibrated with
experimental tests (Hu et al., 2016). In these cyclic plasticity models, the hardening
modulus is defined indirectly, through the consistency condition, leading to coupling of
the hardening modulus with the kinematic hardening rule. Therefore, these models are
referred to as “coupled models”. A different approach could be adopted to describe the
cyclic plasticity of metals, using the so-called “uncoupled models”. In this category,
the definition of plastic modulus is defined directly through an appropriate function,
so that the plastic modulus is influenced indirectly by the kinematic hardening rule.
This is described in detail by Tseng and Lee (1983), accounting for the aforementioned
features of metals under cyclic plastic loading.

2.6.2 Ratcheting of metals

When a metallic component is loaded under unsymmetrical stress-controlled cyclic
loading, then a positive mean stress occurs.Therefore, the hysteresis loop never closes,
leading to “creeping” of strain or ratcheting in the direction of the mean stress. Figure
2.5 presents schematically the stress-strain curve for an unsymmetrical stress-controlled
loading and the corresponding increase of the maximum strain of each cycle. Therefore,
the material softens with each cycle, leading to failure in a relatively small number of
applied cycles.

Over the last decades, extensive experimental testing has been conducted (Chai and
Laird, 1987; Lebey and Roche, 1979; Pilo et al., 1979) on ratcheting under uniaxial
or biaxial loading. For the biaxial loading case, two experiment types have been
investigated. The first consists of symmetrical strain-controlled torsional cyclic loading
of a thin-walled circular tube under a constant axial load. The interaction between the
constant stresses and the cyclic shear stresses leads to ratcheting of the tube on the axial
direction. The second type of experiment consists of a symmetrical strain-controlled
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torsional cyclic loading of a thin-walled circular tube under a constant internal pressure.
In this case, the interaction of axial and hoop stresses lead to ratcheting of the tube on
the circumferential direction increasing the tube diameter.

To model this mechanical behaviour, various constitutive models has been reported,
predicting the ratcheting of materials, under stress-controlled cycles. Dafalias (1981);
Ohno and Wang (1993a,b) proposed two surfaces models, considering a yield surface
and a bounding surface, while Hassan (1994); Hassan et al. (1992); Hassan and Kyri-
akides (1992) modified the bounding surface, allowing for translation in the ratcheting
direction. Moreover, constitutive models, considering the non-linear kinematic hard-
ening rule proposed by Armstrong and Frederick (1966), have also been developed
(Chaboche and Nouailhas, 1989a,b; Chaboche and Rousselier, 1983a,b) predicting both
uniaxial and biaxial ratcheting.

σ

t

σ

ε

ε

Number	of	cycles

Mean
Stress

Maximum	strain
evolution

Minimum	strain
evolution

Figure 2.5 Schematic representation of ratcheting; unsymmetrical stress-controlled
cyclic loading, leading to increasing maximum strain per cycle.
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Chapter 3

Bending of internally pressurized steel
lined pipes

3.1 Chapter outline

The work in the present chapter is motivated by reeling of lined pipes, and focuses on
the structural behaviour of lined pipes subjected to monotonic bending in the presence
of low and moderate levels of internal pressure. Advanced finite element tools are
used to simulate thin-walled liner deformation, including wrinkling and post-buckling
behaviour. Numerical results are presented for the “tight-fit” pipe (TFP), which account
for the hoop compressive pre-stress due to the manufacturing process, and the “snug-fit”
pipe (SFP), where no bonding pressure exists (zero compression on the liner). In this
chapter, the manufacturing process is considered by applying an initial compressive
hoop stress on the model to simulate with a simpler manner the residual stresses
induced by the manufacturing process and result on the final mechanical bonding.
This assumption does takes into account the effects of the manufacturing process on
the material properties and the corresponding plastic deformation in the liner pipe.
The results are presented for several levels of internal pressure and compared with
corresponding results from non-pressurized pipes. An ovalisation analysis is conducted
investigating the influence of internal pressure on lined pipe cross-section, while a
three-dimensional analysis examined liner wrinkling and post-buckling behaviour for
different internal pressure levels. In addition, a parametric study on the effect of initial
wrinkles on the liner is conducted on both types of bonding and for pressurized and
non-pressurized lined pipes, in an attempt to investigate the imperfection sensitivity of
those bi-material pipes.
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3.2 Material properties and numerical modelling

3.2.1 Lined pipe geometry and material properties

A lined pipe, typical for offshore applications, is considered, similar to a lined pipe
examined by Focke (2007). It consists of a thick-walled outer pipe, made from X65 steel
material and a stainless steel 316L liner pipe. The outside diameter (Do) and thickness
(to) of the outer pipe are 325 mm (12.79 in) and 14.3 mm (0.56 in) respectively, while
the liner diameter (Dl) and thickness (tl) are 296.4 mm (11.67 in) and 3 mm (0.12 in)
respectively. The stress-strain curve of the outer pipe material, obtained from a uniaxial
tensile test (Focke, 2007), is shown in Figure 3.1, with Young modulus Eo = 210,000
MPa, Poisson’s ratio ν = 0.3 and yield stress σy,o = 566 MPa. The corresponding
stress-strain curve of the liner pipe material is also shown in Figure 3.1, with parameters
El = 193,000 MPa, ν = 0.3, proportional limit σpr,l = 250 MPa at 0.13% and yield
stress σy,l = 298 MPa corresponding to 0.2% residual plastic strain. The stress-strain
curves and the corresponding values used in the present study are chosen to validate
the numerical model with previous studies (Vasilikis, 2012; Vasilikis and Karamanos,
2012).

Furthermore, the tensile response of the 316L stainless steel material of the liner
pipe is represented through a power-law relationship to permit the reader to reproduce
the stress-strain curve. A commonly used relationship is the three-parameter Ramberg
and Osgood (1943) expression

ε =
σ

E

[
1+

3
7

(
σ

σy

)(n−1)
]

(3.1)

where E is the slope of the linearly elastic part of the curve, σy is the stress value at the
intersection of the stress-strain curve and a line through the origin with slope equal to
0.7E, while the value n can be obtained from the slope of the linear part of the plot of
log(ε −σ/E) versus log(σ). The stress-strain fit procedure is explained in more detail
in the book by Kyriakides and Corona (2007), while the fit parameters of the liner pipe
for the present study are E = 193,000 MPa, σy = 240 MPa and n = 8.5.

The stress-strain curve of carbon steel materials is characterized by three distinct
regions. The first corresponds to a linear elastic until a yield point is reached. Then, a
plastic plateau is reached, where Lüders bands (Callister and Rethwisch, 2018; Hall,
1970) of plastic deformation develop, propagating through the specimen. Once the
Lüders strain εn is reached, the carbon steel hardens; the stress rises with increasing the
strain, up to a maximum value (ultimate tensile stress: σUT S), followed by necking of
the specimen and fracture.
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Figure 3.1 Stress-strain curves of outer and liner pipe (Focke, 2007).

Regarding the experimental curve of the X65 carbon steel material of the outer
pipe (Focke, 2007), a curve fitting methodology is followed, as presented by Sadowski
et al. (2015, 2017). First, the material deforms elastically up to the point where the
plastic plateau begins at strain equal to εy,o = σy,o/Eo. In the following, a very low
rigidity plastic plateau is shown until stress and strain values σy,o,n and εo,n, respectively.
The tangent modulus of the plastic plateau can be calculated by Eo,h,p = (σy,o,n −
σy,o)/(εy,o,n − εy,o), and the dimensionless length is defined by no = (εo,n − εy,o)/εy,o.
Finally, the hardening region of the carbon steel material is determined by least-squares
curve fitting and it is given by the following 6th order polynomial

σ =
6

∑
i=0

bi (ε − εo,n)
i (3.2)

where b0 = σy,o,n corresponds to the stress value at the end of the plastic plateau and
b1 = Eo,h,s is the initial tangent modulus of the true strain hardening after εo,n. Table 3.1
presents the fitting coefficients of expression 3.2 for the X65 carbon steel material at
the hardening region, and the material parameters assuming an inclined plastic plateau.
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Both hardening tangent moduli are presented in a normalised form by the nominal
Young’s modulus of the outer pipe (Eo), so that ho,p = Eo,h,p/Eo and ho,s = Eo,h,s/Eo.

Table 3.1 Fitting parameters and material properties of the outer pipe X65 carbon steel.

X65 - Outer Pipe

b0 574.8
b1 1542.5
b2 −3.631 104

b3 4.8699 105

b4 −4.4687 105

b5 −4.0644 107

b6 2.0827 108

σy,o (MPa) 566
σUT S,o (MPa) 614

no 6.42
ho,p (%) 0.25
ho,s (%) 0.74

3.2.2 Finite Element Modelling

The mechanical behaviour of lined pipes subjected to bending is analysed numeri-
cally using non-linear finite element tools. The numerical simulations were conducted
using general-purpose finite element software ABAQUS (Hibbitt et al., 2016). The
analysis considers non-linear geometry in the description of the liner and the outer pipe,
whereas, the materials of the liner and the outer pipe are both considered elastic-plastic
through a J2 (von Mises, 1928) flow plasticity model with isotropic hardening, cali-
brated through uniaxial stress-strain curves from coupon tests, reported in previous
publications (Focke, 2007; Vasilikis, 2012; Vasilikis and Karamanos, 2012).

The finite element model is three-dimensional, considering a lined pipe segment of
appropriate length L. Based on symmetry of geometry and deformation with respect to
the plane of bending, a symmetric model with respect to the y-z-plane is considered,
as shown in Figure 3.2, analysing half of the pipe cross-section. In addition, x-y-plane
symmetry of the model is assumed in the z = 0 plane allowing only for in-plane motion
on the corresponding nodes. In the z = L plane, a reference node is introduced. In this
node, the rotation is applied (as shown in Figure 3.2), and the node is appropriately
coupled with the corresponding nodes of the lined pipe cross-section, so that these
nodes may slide on the rotated plane, allowing the lined pipe cross-section to ovalise
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freely during bending, representing a segment from an infinite pipeline. The reference
node at z = L is simply supported, so that it is free to move in the z-direction and rotate
about the x-axis.

The liner pipe is modelled with four-node reduced-integration shell elements (S4R),
whereas the outer pipe is modelled using twenty-node reduced-integration brick (solid)
elements (C3D20R). Sadowski and Rotter (2013) reported a detailed study presenting
the response of cylindrical tubes using shell elements with diameter over thickness
ratio (D/t) equal to 100, which is similar to the liner pipe in the present study. On the
other hand, in previous publications (Hilberink, 2011; Hilberink et al., 2010a, 2011;
Vasilikis and Karamanos, 2012; Yuan and Kyriakides, 2014a, 2020) brick elements
were used to model the thick-walled outer pipe with a diameter over thickness ratio
around twenty. This type of elements is preferred over shell elements; in the latter a
contact pair that uses finite-sliding formulation, does not account for shell thickness
and offset. Furthermore, results from this type of elements are in good agreement
with experimental results reported by Focke (2007) and Hilberink (2011), as shown
by Vasilikis (2012); Vasilikis and Karamanos (2012) and in section 3.3. The half
cross-section of the outer pipe contains fifty elements, as shown in Figure 3.2, while
one hundred elements are employed around the half-circumference of the liner (as
shown in Figure 3.2). This number of elements was found adequate in order to achieve
convergence and accuracy of the numerical results based on previous results (Vasilikis,
2012; Vasilikis and Karamanos, 2012; Yuan, 2015; Yuan and Kyriakides, 2014a).

A surface-to-surface interaction of the two pipes is also considered, with finite-
sliding contact formulation, allowing for arbitrary separation, sliding and rotation
between the surfaces. The effect of friction on separation and wrinkling of the liner pipe
during bending has been investigated extensively by Hilberink (2011); Tkaczyk et al.

(2011); Vasilikis (2012); Yuan (2015), and the numerical results have shown negligible
influence on the response. Furthermore, zero friction between both pipes is considered
in the present study, after a discussion with Kyriakides (2018), which is also assumed in
previous works (Vasilikis and Karamanos, 2012, 2013; Yuan and Kyriakides, 2014a,b,
2015, 2020), providing very good results.
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z=0

z=L

liner

outer

Figure 3.2 Three-dimensional finite element model of the lined pipe.

The length of the lined pipe model and the number of elements in each pipe depends
on the type of simulation to be performed. In the case of ovalisation analysis, which
is presented in section 3.4.1, a small length of the lined pipe shown in Figure 3.2 is
assumed, equal to 3% of the outer diameter of the outer pipe. The model consists
of four and two elements of liner and outer pipe respectively, in the longitudinal
direction. Considering this small length segment, wall wrinkling phenomena are
excluded, focusing on cross-section ovalisation and liner detachment. At this stage one
may argue that the problem could also be modelled as a generalised plain strain case.
However, assuming the present type of model, i.e. a very small length pseudo-three-
dimensional model, the kinematic conditions required for an ovalisation analysis are
satisfied. Furthermore, this type of modelling is chosen for convenience, because it is
directly related to the three-dimensional model, which is used for the three-dimensional
bending analysis, adjusting only the length of the model.

On the other hand, in order to simulate liner wrinkling, during bending loading,
and the corresponding imperfection sensitivity, a longer model is necessary, which
is presented in section 3.4.2. Introducing the dimensionless length parameter χ =

(L− z)/
√

Dm,ltl (where Dm,l = Dl − tl is the liner pipe mean diameter and z ranges
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from zero to L, shown in Figure 3.2), which represents the number of buckling waves
of an elastic tube under uniform compression, the normalised lined pipe length is equal
to χ = 10. Initially, a two half-wavelength long model has been considered, following
the approach presented by Vasilikis (2012); Vasilikis and Karamanos (2012). The
half-wavelength of the liner pipe is not known a priori, therefore a series of analyses
are necessary, as presented by Vasilikis and Karamanos (2012), so that the actual half-
wavelength is the one corresponding to earliest bifurcation. This methodology has also
been used by Houliara and Karamanos (2006, 2010) in analysing long elastic tubes.
However, using this approach one may not account for buckle localization properly.
Therefore, a longer lined pipe segment is assumed in the present study, while the
numerical model is validated with experimental data, as shown later in section 3.3.

The number of elements in the model is mainly dictated by the need to describe
accurately the buckling pattern of the liner pipe. Following the mesh density presented
by Vasilikis (2012); Vasilikis and Karamanos (2012); Yuan (2015); Yuan and Kyriakides
(2014a), the liner pipe model consists of eighteen elements at each half-wavelength
λc in z-direction, where λc = π

√
Rm,ltl/[12(1−ν2)]1/4 (Rm,l = Rl − tl/2 is the mean

radius and tl is the wall thickness of the liner pipe) is the half-wavelength of a circular
cylindrical shell under uniform compression, assuming elastic material (Timoshenko
and Gere, 1961). Using fewer elements per half-wavelength λc, it is shown that liner
wrinkling and its evolution with the applied curvature, may not be very accurate. Using
eighteen elements per λc or more, converged results are obtained, while the influence of
coarser liner meshes on liner detachment is presented in section 3.3.2 . For the outer
pipe, a coarser mesh is used consisting of six elements every half-wavelength λc in
z-direction, because its deformation is not associated with local buckling patterns. The
choice of the numerical model parameters results in good agreement with test data from
the physical experiments conducted at Delft University of Technology and presented by
Focke (2007) and Hilberink (2011), as shown in section 3.3. Furthermore, numerical
analyses considering five, seven and nine integration points through the liner pipe wall
thickness are conducted showing identical response. Therefore, five integration points
are considered in the following analyses.

The mechanical bonding of the lined pipe is considered following the terminology
used by Focke (2007). In the case of TF Pipes, an initial compressive hoop stress
of magnitude 200 MPa (67.1% of the liner yield stress) is applied on the liner pipe,
followed by an unloading step, resulting in residual compressive hoop stress σres for
the liner pipe equal to 166 MPa. This is a simple and efficient procedure to account for
the manufacturing process, also used by Vasilikis and Karamanos (2012). However, it
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does not account for the effects of manufacturing on the material properties of the liner,
which is examined in a more accurate manner later in Chapter 4.

Finally, internal pressure Pin is applied, up to 10% of the liner pipe yield pressure
(Py,l = 2σy,ltl/Dm,l , where Dm,l is the mean diameter of the liner pipe), and the pressure
load parameter p = Pin/Py,l is introduced. In this case, the maximum internal pressure
level corresponds to 6 bar. A tensile force (Fp) is also applied on the reference node
in the z = L plane, which equals to the applied internal pressure times the internal
cross-section of the liner (Fp = Pinπ(Dl −2tl)2/4) in order to simulate the force at the
two capped ends due to the pressure. This force will be referred to as “capped-end
force”, and remains constant during bending, following the orientation of reference
node at z = L (follower force).

3.3 Validation of the numerical model with experimen-
tal data

Experimental work has been conducted by Focke (2007) and Hilberink (2011),
showing the gradual separation of the liner from the outer pipe under monotonic pure
bending, which leads to liner wrinkling and eventually to local buckling 3.3. In the
present section, numerical results for a TF Pipe are compared with corresponding
experimental data and additional numerical presented by Vasilikis (2012). Furthermore,
it is important to underline that modal buckling analysis may not be possible in the
present problem due to its high non-linearity, mainly because of the contact between the
two pipes, and the confinement that the outer pipe offers to the inner pipe. Therefore,
the liner pipe separation from the outer pipe and the corresponding wave-length are
compared with existing experimental and numerical data for validation of the present
model.

The geometric and material properties of a TF Pipe, presented in section 3.2.1,
are similar with the lined pipes OR-2, GR-1, GR-2 and WT-2 tested by Focke (2007),
P01KA tested by Hilberink (2011) and Lined Pipe A examined by Vasilikis (2012). The
residual liner hoop compression σres, due to manufacturing process, has been measured
equal to 178 MPa for OR-2 lined pipe, 199 MPa for GR-1 and GR-2 pipes, 185 MPa

for the P01KA lined pipe, and 166 MPa for the Lined Pipe A, which is comparable
with the tested specimens and it is also considered in the present study. Moreover, the
residual compression of the liner pipe for the WT-1 and WT-2 pipes has been measured
equal to 53 MPa.
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B B
A

A: main buckle
B: minor buckle

χ=0χ=10

Figure 3.3 Liner pipe buckling shape at χ = 0 location forming a main buckle (A) and
four adjacent minor buckles (B) of liner pipe.

3.3.1 Wrinkle half-wavelength

The experimental wave-length of wrinkle (Lw), reported by Focke (2007); Hilberink
(2011) and corresponding numerical result by Vasilikis (2012), is presented in Table 3.2,
normalised by the value

√
Dm,ltl (Ju and Kyriakides, 1992; Kyriakides and Ju, 1992).

The experimental wave-length Lw corresponds to the secondary buckling mode where a
main buckle (A) is formed with four adjacent minor buckles (B), shown in Figure 3.3.
Furthermore, the wave-length reported by the numerical analysis of Vasilikis (2012)
and the one presented in the current study corresponds to the wrinkling wave-length of
the first bifurcation mode. The half-wavelength of the numerical model presented in
section 3.2.2 is in fairly good agreement with previous studies. The results also indicate
that the level of hoop compression of the liner pipe, due to manufacturing process, does
not affect the significantly the buckling wavelength. This observation is also mentioned
by Hilberink (2011); Vasilikis (2012).
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Table 3.2 Wavelength values of the present study compared with previous experimental
and numerical results (Focke, 2007; Hilberink, 2011; Vasilikis, 2012).

Normalised length of wrinkle (Lw/
√

Dm,ltl)

OR-2 (Focke, 2007) 2.45
GR-1 (Focke, 2007) 3.03
GR-2 (Focke, 2007) 2.71
WT-1 (Focke, 2007) 2.92
WT-2 (Focke, 2007) 2.74

P01KA (Hilberink, 2011) 2.33
Lined Pipe A (Vasilikis, 2012) 2.90

Present Study 2.85

3.3.2 Evolution of liner pipe wrinkle height

Figure 3.4 presents the wrinkle height (hw) of liner pipe in the case of snug-fit pipe,
normalised by the liner thickness tl , for different element sizes on the longitudinal
direction. The evolution of wrinkle is monitored at the most compressed generator of
the pipe, where the liner wrinkles and buckles locally as shown in Figure 3.3, with
respect to normalised curvature (κ = kr/ko; kr = φ/L, where φ is the rotation applied on
the reference node at z = L; ko = to/D2

m,o). It is shown that coarser liner mesh densities
affect the liner detachment, leading to stiffer bending response, while using eighteen
elements or more per λc similar results are obtained.

Figure 3.5 presents the wrinkle height of the liner pipe in case of TF Pipe, with
respect to normalised curvature κ , compared with experimental data. Appropriate initial
imperfection wrinkles are considered, so that after the unloading step, the residual
wrinkle height before bending corresponds to the range of initial wrinkling measure-
ments reported in specimen locations OR-2 W4, OR-2 W5, GR-2 W4, and GR-2 W5
(Focke, 2007). Figure 3.5 shows very good agreement between the evolution of the liner
pipe wrinkle height obtained from the present numerical model and the experimental
measurements.
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Figure 3.4 Normalised value of liner detachment of SF Pipe, considering different finite
element sizes on the longitudinal direction, with respect to applied curvature.

8.1% 7.1%

1.0%,	3.6%,
5.6%,	6.2%

Figure 3.5 Normalised value of liner detachment of TF Pipe, for different values of
initial imperfection, compared with experimental results (Focke, 2007; Hilberink, 2011).
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3.4 Numerical results

In the following results, the curvature κ = kr/ko, where kr = φ/L and φ is the
rotation applied on the reference node at z = L, is normalised by the curvature-like
parameter ko = to/D2

m,o (Corona and Kyriakides, 1988) (where Dm,o is the mean diam-
eter of the outer pipe), so that κ = k/kl; the bending moment of the lined pipe M is
normalised by Mo = σy,otoD2

m,o, so that m = MTotal/Mo; the detachment (∆) of the liner
pipe from the outer pipe is normalised by the liner thickness tl at the most compressed
generator of the pipe, as shown in Figure 3.6a. Furthermore, the ovalisation (ζl) of
the liner pipe cross-section is defined as ζl = (Dm,l,h −Dm,l,v)/Dm,l , where Dm,l,h and
Dm,l,v is the deformed horizontal and vertical mean diameter of the liner, while Dm,l

is the initial mean diameter of the liner pipe. The local hoop curvature (1/Rθ0), hoop
stress (σθ0) and axial stress (σx0) in the liner pipe are also computed at θ = 0 (as shown
in Figure 3.6b), where maximum compression occurs. The value of local curvature
at θ = 0 is associated with local buckling resistance of the cylinder. Finally, the local
hoop curvature of the liner due to ovalisation is normalised by 1/Rl and the longitudinal
and hoop stresses on the liner are normalised by the yield stress of the liner σy,l .
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θ

θ	=	0

Δ

(a)

ovalized
shape
of liner

initial
shape
of liner

Rθ0

Rl

(b)

Figure 3.6 (a) Liner detachment and cross-section ovalisation. (b) Schematic represen-
tation of liner ovalisation and local radius of hoop curvature at the most compressed
location (θ = 0).
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3.4.1 Ovalisation analysis

An ovalisation analysis is conducted first, in order to understand some key features
of lined pipe mechanical behaviour during bending in the presence of different levels
of internal pressure, using the numerical model shown in Figure 3.2 and explained in
detail in section 3.2.2. The detachment of the liner pipe from the outer pipe (Figure
3.6a) is presented in Figure 3.7, for TF Pipes (Figure 3.7a) and SF Pipes (Figure 3.7b),
at the most compressed location of the cross-section (θ = 0) for different levels of
internal pressure ranging from p = 1% to p = 10%. An important observation refers to
the reduction of detachment size (amplitude) as the internal pressure increases. More
specifically, in the case of p = 10%, the detachment is practically zero, even for high
values of applied curvature (κ = 4). A rapid increase of liner pipe detachment is
also observed at normalised curvature value around κ = 3. This is beyond the limit
point, where the bending moment of the liner pipe reaches its maximum value (an
issue presented in a later paragraph of the present section), indicating excessive cross-
sectional ovalisation of the liner pipe. The limit point of the liner corresponds to
normalised curvature value around κ = 2.5.

The evolution of ovalisation in SF and TF Pipes under bending for various levels of
pressure is shown in Figure 3.8. The ovalisation of the cross-section is slightly reduced
with increasing internal pressure for high values of curvature. Furthermore, the results
show that there is no difference between the response of SF Pipes and TF Pipes, which
has also been observed by Vasilikis and Karamanos (2012) for non-pressurized lined
pipes. In addition, Figure 3.9 shows the influence of different pressure levels on local
hoop curvature of the liner pipe at the most compressed location of the cross-section
θ = 0 (Figure 3.6b). The results indicate that as the pressure level increases, the liner is
more round. Furthermore, no difference is observed between SF and TF Pipes in terms
of detachment and local hoop curvature.

Figure 3.10 shows the influence of internal pressure on the evolution of average
axial stress across the thickness at θ = 0 on both SF and TF Pipe. This average stress
is computed using Simpson integration (default ABAQUS integration scheme through
shell elements thickness) over the wall thickness of the liner pipe. The abrupt drop of
stress after a value of κ equal to about 3, is due to the severe cross-sectional ovalisation
of lined pipe. Figures 3.11a and 3.11b also show the evolution of moment of the lined
pipe and liner pipe for several levels of internal pressure, respectively. The results
show that the applied moment decreases at normalised curvature κ values of about 3,
which is also attributed to cross-sectional ovalisation, which is interrelated with the
corresponding decrease of axial stress of the liner pipe at θ = 0, shown in Figure 3.10.
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Figure 3.7 Detachment of liner from outer pipe for different levels of internal pressure
(TF Pipe and SF Pipe); ovalisation analysis.
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TFP
Ovalization	analysis

Increasing	p
(0%,	3%,	5%,	10%)

(a)

SFP
Ovalization	analysis

Increasing	p
(0%,	3%,	5%,	10%)

(b)

Figure 3.8 Increase of ovalisation of liner cross-section in terms of applied curvature
for different levels of internal pressure for a (a) TF Pipe and (b) SF Pipe; ovalisation
analysis.
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TFP
Ovalization	analysis

Increasing	p
(0%,	3%,	5%,	10%)

(a)

SFP
Ovalization	analysis

Increasing	p
(0%,	3%,	5%,	10%)

(b)

Figure 3.9 Evolution of local hoop curvature of liner at θ = 0 in terms of applied
curvature for different levels of internal pressure for a (a) TF Pipe and (b) SF Pipe;
ovalisation analysis.
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Furthermore, Figure 3.12 presents the distribution of axial stress across the wall
thickness of the liner for different values of normalised curvature. For small values
of κ the distribution is quasi-constant (as shown in Figure 3.12), despite the fact
that the liner material is already in the inelastic region, whereas the distribution for
larger values of κ is influenced by excessive cross-sectional ovalisation and local hoop
bending. More specifically, hoop bending introduces hoop stresses that interact with
longitudinal stresses due to inelastic material response through the von Mises (1928)
yield criterion, which is presented schematically in Figure 2.2b and described by the
following expression:

σy =
√

σ2
x −σxσθ +σ2

θ
(3.3)

for a plane stress problem, such as in this case for the liner pipe.
Figure 3.13 depicts the variation of average axial stress through liner thickness

with respect to the distance from the neutral axis around the cross-section (y/Rl), for
different values of curvature. For high values of curvature, this is a variation reminiscent
of the corresponding variation of stress observed in curved pipes (elbows), as described
in detail by Karamanos (2016). Figure 3.14 presents the hoop stress at θ = 0 of liner
during bending for the TF Pipe. In those diagrams, the hoop stresses are compressive,
but are shown positive for the sake of convenience. In this case, the liner is pre-stressed,
due to the manufacturing process and initial hoop stress is 55% of yield stress. Upon
applying curvature, the hoop compression of the liner pipe decreases, reaching a local
low value around κ = 0.7, which corresponds to initiation of liner detachment, as
shown in Figure 3.7a. Increasing further the applied curvature, the liner pipe tends to
ovalise more than the outer pipe. Therefore, the outer pipe confines the increase of the
horizontal diameter of the liner pipe, resulting in gradual increase of hoop compression.

In addition, there is no difference observed on the detachment and local hoop
curvature between the response of SF and TF Pipes at θ = 0, when increasing the level
of internal pressure, even for high values of curvature, as indicated in Figures 3.15 and
3.16. The values of liner detachment of TFP and SFP in Figures 3.7a and 3.7b are
larger than those of Figure 3.15 by two orders of magnitude, indicating the important
influence of internal pressure on liner detachment. Furthermore, the normalised local
hoop curvature Rl/Rθ0 increases by approximately 160%, for p = 10% (Figure 3.16)
compared with non-pressurized pipes, for high values of curvature. In the case of non-
pressurized pipes the local hoop curvature becomes zero at a curvature value around
κ = 3.5, as shown in Figures 3.9 and 3.16, indicating that the liner has become flat at
θ = 0 location; beyond that stage, the local hoop curvature becomes negative, indicating
that “inversion” of the liner pipe wall has occurred.
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TFP
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Increasing	p
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(b)

Figure 3.10 Evolution of average axial stress across the thickness of liner at θ = 0 in
terms of applied curvature for different levels of internal pressure for a (a) TF Pipe and
(b) SF Pipe; ovalisation analysis.
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Figure 3.11 Bending moment for the entire lined pipe (TFP) and for the liner only, in
terms of applied curvature for different levels of internal pressure; ovalisation analysis.
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Figure 3.12 Variation of axial stress across the wall thickness at the most compressed
location (θ = 0) for different values of normalised curvature (κ); ovalisation analysis.
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Figure 3.13 Continues in the next page.
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Figure 3.13 Variation of average axial stress around the cross-section of the liner pipe
for different values of curvature (κ); ovalisation analysis.
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Figure 3.14 Variation of hoop stress in the liner pipe at θ = 0, for different levels of
internal pressure obtained from ovalisation analysis (hoop stresses are compressive).

p=10%
Ovalization	analysis

Figure 3.15 Comparison of liner detachment in SF and TF Pipes for p = 10%; ovalisa-
tion analysis.
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Figure 3.16 Comparison of normalised local hoop curvature at θ = 0 between SF and
TF Pipes, for p = 0% and p = 10%; ovalisation analysis.

3.4.2 Buckling analysis

The mechanical behaviour of internally-pressurized steel lined pipes in terms of
local buckling is investigated using the three-dimensional model shown in Figure 3.2,
and the corresponding analysis will be referred to as “buckling analysis”. The results in
this section refer to imperfection-free liners, whereas the effect of initial imperfections
on pressurized bending response is examined in the following section 3.4.3. Figures
3.17a to 3.17d show the gradual detachment of the liner with increasing curvature along
the pipe at θ = 0 (the most compressed location of the cross-section) for SF and TF
Pipes respectively, for zero and 10% level of internal pressure. In those figures, the
vertical axis depicts the normalised detachment (∆), and the normalised length (χ) spans
along the pipe, as shown in Figure 3.3. In Figures 3.17a to 3.17d, the normalised length
is also shown in the symmetric part (χ =−10 to χ = 0) mirroring the numerical results
for visualization purpose.

- 55 -



Chapter 3 3.4 Numerical results

Normalized Length (χ)

Normalized Curvature (κ)

0

1

2

3

N
or

m
al

iz
ed

 D
et

ac
hm

en
t (

Δ
)

4

1.577

5

1.427

1.265

1.151

101.064
5

0
0.951 -5

-10

lhw=1.425

(a) Snug-fit pipe; p = 0%.
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(b) Snug-fit pipe; p = 10%.

Figure 3.17 Continues in the next page.
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(c) Tight-fit pipe; p = 0%.
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(d) Tight-fit pipe; p = 0%.

Figure 3.17 Normalised detachment at θ = 0 along SF and TF lined pipe under zero
pressure and pressure equal to 10% of Py,l .
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It is observed that, soon after bending loading is applied, the liner ovalises more
and detaches from the outer pipe. Furthermore, a quasi-uniform wrinkling is formed
along the pipe due to the outer pipe confinement at the compression side, as shown in
Figure 3.18a. This detachment and uniform wrinkling has been identified by Vasilikis
and Karamanos (2012) as a first bifurcation for the non-pressurized case, and is also
apparent herein for the presence of low levels of internal pressure up to p = 10%. A
second bifurcation shown in Figure 3.19 occurs at higher curvatures, also observed
by Vasilikis and Karamanos (2012), leading to local buckling of the thin-walled liner
pipe in the plastic range of the liner material into a diamond-type mode (Corona et al.,
2006; Ju and Kyriakides, 1991, 1992; Kyriakides and Ju, 1992; Tvergaard, 1983). As
the level of internal pressure increases, detachment of liner pipe occurs at a later stage,
which is beneficial for the pipe, enabling the pipe to deform at higher values of applied
curvature without exhibiting local buckling. In Figures 3.17b and 3.17d (referring to
SF and TF Pipes respectively) much higher curvature values are noticed, compared
with the corresponding values observed in the absence of internal pressure (Figures
3.17a, 3.17c). The results show that increasing the internal pressure, the uniformly
wrinkled configuration (shown in Figure 3.18a) tends to vanish, in a way that local
buckling occurs rather abruptly at a very localized pattern (Figure 3.18b). The deformed
configuration for all cases of internal pressure of TF Pipe are presented in Figure 3.19
at normalised curvature κ = 3, showing clearly the influence of pressure on the local
buckling shape. Increasing the level of pressure, a reduction of the height of the main
buckle (A) and of the four adjacent minor buckles (B) (presented in Figure 3.3) is
observed, as shown in Figures 3.19, while the normalised detachment of the liner pipe
from the outer pipe at normalised curvature κ = 3 for SF and TF Pipe is presented in
Table 3.3 in more detail.
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(a)

(b)

Figure 3.18 (a) Uniform wrinkling of liner pipe (low pressure levels), (b) localized
buckling pattern of liner pipe (higher pressure levels).
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equivalent
plastic	strain

Pin=0%Py,l Pin=1%Py,l

Pin=2%Py,l Pin=3%Py,l

Pin=4%Py,l Pin=5%Py,l

Pin=10%Py,l

Figure 3.19 Liner buckled configuration for a TF Pipe, showing the distribution of
equivalent plastic strain at normalised curvature κ = 3, for different levels of internal
pressure.

- 60 -



Chapter 3 3.4 Numerical results

Table 3.3 Normalised detachment (SF and TF Pipe) at main buckle (A) (χ = 0) and
curvature κ = 3 for different pressure levels.

Internal
Pressure Level

(p%)

Normalised
Detachment
of SFP (∆%)

Normalised
Detachment
of TFP (∆%)

0 853 751
1 824 761
2 731 710
3 640 633
4 542 538
5 444 439
10 43 36

At this point it is necessary to establish a definition of the “critical” curvature, which
corresponds to failure of the structure beyond that value, so by referring to that value a
quantitative comparison of different cases is possible. In case of zero internal pressure,
the results in Figure 3.20 show that liner detachment initially increases slowly, forming
a structurally stable uniform wrinkling. Beyond a specific value of curvature, the liner
detachment increases rapidly, leading to diamond-type buckling mode of the liner pipe,
an observation also reported in previous publications for thin-walled cylindrical shells
(Kyriakides and Ju, 1992; Tvergaard, 1983). In particular, there is a value of curvature,
at which the gradient of detachment (d∆/dκ) reaches its maximum value, as shown in
Figure 3.20, corresponding also to the elastic-plastic bifurcation of the liner pipe (Gellin,
1980; Kyriakides and Shaw, 1982; Shaw and Kyriakides, 1985). This critical curvature
definition is also in accordance with the results presented in Chapter 4, where the abrupt
detachment of the liner pipe occurs at the same curvature that the bending moment of
the liner drops sharply, indicating bifurcation instability of the pipe. Therefore, for the
purpose of our study, this value of κ is considered as the critical (buckling) curvature
of the liner, denoted as κcr, so that beyond this curvature the liner pipe is considered
structurally unstable.
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κcr

Figure 3.20 Variation of normalised detachment and gradient of detachment of SF Pipe
without internal pressure at χ = 0, in terms of normalised curvature.

Furthermore, the normalised half-wavelength (lhw = Lhw/
√

Dm,ltl) for non-pressur-
ized SF and TF Pipes is equal to 1.425, as shown in Figures 3.17a and 3.17c, which is in
good agreement with previous publications (Vasilikis, 2012; Vasilikis and Karamanos,
2012). These values are higher than the normalised half-wavelength of a single pipe ex-
hibiting axisymmetric buckling, under axial compression and assuming elastic material
behaviour (Timoshenko and Gere, 1961), which is equal to 1.222. This difference is
attributed to both the lateral confinement of the liner pipe from the outer pipe and the
inelastic behaviour of the liner material. In the case of 10% internal pressure level, the
half-wavelength (lhw) of the localized buckling pattern measured at the corresponding
critical curvature value (κcr) is slightly increased, compared to the non-pressurized case,
and it is equal to 1.5 and 1.45 for SF and TF Pipe, respectively (Figures 3.17b, 3.17d).
This observation is in agreement with experimental and analytical results reported by
Limam et al. (2010).

Figures 3.21 and 3.22 show the beneficial role of internal pressure on bending
response in terms of the value of the critical curvature κcr and the results are summarized
in Table 3.4, including the values of normalised detachment (∆cr), radius of curvature
(ρcr) corresponding to the neutral axis of the pipe and global bending strain (εcr =

Do/2ρcr) at buckling for each type of pipe. It is clear that the critical curvature κcr
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increases with increasing internal pressure significantly. More specifically, the κcr value
for the SF Pipe is increased by 138% in the case of 10% pressure level, compared with
the κcr value at zero pressure. For the TF Pipe the corresponding increase is 104%.
Also, as the internal pressure increases, the critical curvature (κcr) values for the two
pipes become quite similar. In the case of 10% internal pressure level, the critical
curvature values are practically identical for SFP and TFP.

At this point, it should be noted that the beneficial effect of moderate levels of
internal pressure during bending is clearly shown, but the critical curvatures for each
internal pressure level and for both types of pipe are overestimated, due to the fact that
the effect of manufacturing process on the material properties of the liner pipe is not
taken into account. The influence of fabrication process on lined pipe bending response
is investigated and presented in Chapter 4 in more detail.

SFP
Buckling	analysis

0% 2% 3% 4% 5% 10%

Figure 3.21 Normalised detachment at the centre of the main buckle (χ = 0 and θ = 0)
of SF Pipes for different levels of internal pressure.
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TFP
Buckling	analysis

0% 2% 3% 4% 5% 10%

Figure 3.22 Normalised detachment at the centre of the main buckle (χ = 0 and θ = 0)
of TF Pipes for different levels of internal pressure.
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Table 3.4 Critical curvature, corresponding normalised detachment, radius of curvature
and global bending strain for different pressure values of SF and TF Pipes.

Internal
Pressure (p%)

Type of
Pipe

Normalised
Critical

Curvature
(κcr)

Normalised
Critical

Detachment
(∆cr%)

Buckling
Radius of
Curvature
(ρcr mm)

Buckling
Strain
(εcr %)

0
SFP 1.265 81.7 5337 3.05
TFP 1.478 79.7 4567 3.56

1
SFP 1.248 78.9 5409 3.00
TFP 1.445 75.8 4672 3.48

2
SFP 1.534 88.8 4401 3.69
TFP 1.602 86.9 4214 3.86

3
SFP 1.800 73.5 3750 4.33
TFP 1.818 67.4 3713 4.38

4
SFP 2.075 72.0 3253 5.00
TFP 2.082 64.1 3242 5.01

5
SFP 2.310 61.0 2922 5.56
TFP 2.320 61.3 2910 5.58

10
SFP 3.011 53.9 2242 7.25
TFP 3.011 46.0 2242 7.25

3.4.3 Imperfection sensitivity of pressurized lined pipes

The numerical results for the critical curvature value κcr, shown in Table 3.4 for
each level of internal pressure, refer to imperfection-free (perfect) pipes. Focke (2007)
detected initial wrinkles on the liner pipe after the manufacturing process, ranging from
4.7% to 9.3% of the liner pipe wall thickness. For these measurements, a laser trolley
was developed, moving on wheels through the pipe. In order to scan the inner surface
of the pipe, circumferential scans were performed at defined intervals along the pipe.
Initial geometric imperfections are introduced to the liner pipe either during fabrication
of the liner pipe or during the manufacturing process of the mechanically bonded lined
pipe, when the liner establishes contact with the outer pipe. In may cases, the outer pipe
is seamless fabricated from round billets, which are pierced at elevated temperature
(Kyriakides and Corona, 2007), introducing a spiral-type geometric imperfection in
the inner surface of the seamless pipe with a wavelength depending on fabrication
process parameters (i.e. feed speed, piercer dimensions). This spiral imperfection is
imprinted on the liner pipe during the manufacturing process of the lined pipe. A typical
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initial wrinkle amplitude is around 10% of the liner pipe wall thickness (Pépin et al.,
2017; Tkaczyk et al., 2020), while experimental measurements presented by Harrison
et al. (2016) verify the aforementioned liner pipe wrinkle amplitudes. Harrison et al.

(2016) used custom scanning devices to measure the liner imperfections, characterised
by trigonometric Fourier series. More specifically, two schemes were presented. The
first involves a custom trolley that rides the internal surface of the liner pipe on wheels,
performing circumferential scans of the inner surface. In the second, the pipe is fixed,
while both the inner and the outer surface of the pipe are scanned, using non-contact
instruments.

In the present section, sensitivity analysis of the bending response for different levels
of initial geometric imperfection is conducted for the case of 10% internal pressure level.
The shape of initial imperfection for both SF and TF Pipe refers to the liner (the outer
pipe has no imperfections) and is assumed in the form of the buckling configuration
of the corresponding imperfection-free lined pipe and its amplitude, normalised by
the liner pipe wall thickness (tl), is denoted as ∆0. It is expected that this shape of
imperfection simulates the worst-case imperfection scenario for the liner pipe. It should
be noted that other types of imperfection, such as mismatch of material properties
between consecutive pipe segments or fluctuation of the liner wall thickness value, are
not considered in the present study. As shown in Figures 3.17b and 3.17d, the liner
pipe at this level of pressure does not exhibit uniform wrinkling, but, instead, it buckles
locally with a main buckle, as shown in Figure 3.18b. The deformed configuration of
the “perfect” pipe is imported as initial shape of the imperfect lined pipe, assuming an
initial wrinkle, and several imperfection amplitudes can be imposed through appropriate
magnification. The initial imperfection amplitude ∆0 ranges between 1% and 13.5%
of the liner wall thickness tl . It is noted though, that the wrinkled shape is imposed
geometrically before initial pre-stressing is applied on the TF Pipe and prior to the
application of internal pressure on both pipes. The influence of initial wrinkling
imperfections on the bending response of both types of lined pipe is depicted in Figures
3.23 and 3.24 (p = 10%).

In addition, Figure 3.25 presents the critical curvature for both types of pipe with
respect to the value of the imperfection amplitudes (∆0) for pressurized and non-
pressurized lined pipes. In the case of non-pressurized pipes a uniform wrinkling
imperfection is considered, as shown in Figure 3.18a. With increasing imperfection
amplitude, the critical curvature decreases, especially for SF Pipes. Furthermore, this
imperfection sensitivity, for pressurized lined pipes, is significantly less pronounced for
small values of ∆0, compared to the one observed in the case of zero pressure as shown
in Figure 3.25. The latter case has also been reported in the paper by Vasilikis and
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Karamanos (2012). The difference between SFP and TFP results is due to the effects of
pre-stressing on the initial imperfection amplitude. Upon application of pre-stressing,
the initial value of imperfection ∆0 is significantly reduced to a lower value, which
may be referred to as “residual imperfection”. The residual imperfection amplitude is
significantly smaller compared to the ∆0 value (as shown in Figure 3.26 and in Table
3.5). Furthermore, the presence of internal pressure further reduces the amplitude of
this initial imperfection by a certain amount, also depicted in Figure 3.26 and Table 3.5.
For initial imperfection of 10% amplitude, the κcr value decreases by 73% and 18%
for SF and TF Pipe, respectively, with respect to the imperfection-free case. Table 3.6
summarizes the critical curvature κcr, with the corresponding value of detachment at
buckling ∆cr, in terms of the value of imperfection amplitude ∆0.

SFP
Buckling	analysis

10% 7.5% 5%

0%-3.5%

Figure 3.23 Development of liner detachment in SF Pipes with respect to applied
curvature for different imperfection amplitudes (p = 10%).
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TFP
Buckling	analysis

0%-10%

Figure 3.24 Development of liner detachment in TF Pipes with respect to applied
curvature for different imperfection amplitudes (p = 10%).

Buckling	analysis

Figure 3.25 Variation of normalised value of critical curvature (κcr) of SF and TF Pipe
in terms of initial imperfection amplitude (p = 10%).
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Buckling	analysis

Figure 3.26 Normalised residual imperfection of SF and TF Pipes in terms of initial
imperfection amplitude (∆0) for the case of p = 10%.
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Table 3.5 Residual imperfection amplitude in SF and TF Pipes with 10% internal
pressure.

Initial
Imperfection

(∆0%)

Residual
Imperfection

of SFP

Residual Imperfection
of TFP

After
pre-stressing

(before pressure)

After
pre-stressing
and pressure

1.0 0.216 0.027 0.024
2.0 0.845 0.124 0.106
3.5 2.131 0.421 0.358

4.25 2.820 0.635 0.542
5.0 3.528 0.888 0.764
5.5 4.006 1.076 0.931
6.0 4.487 1.287 1.111

6.75 5.212 1.637 1.409
7.5 5.991 2.016 1.749
8.5 6.919 2.584 2.240

10.0 8.394 3.537 3.087
10.75 - 4.058 3.547
11.25 - 4.411 3.873
12.0 - 4.954 4.381

12.75 - 5.528 4.905
13.5 - 6.125 5.436
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Table 3.6 Critical curvature and corresponding detachment for different imperfection
amplitudes of SF and TF Pipes with 10% internal pressure level.

Initial
Imperfection

(∆0%)

SFP TFP
Normalised

Critical
Curvature

(κcr)

Normalised
Critical

Detachment
(∆cr%)

Normalised
Critical

Curvature
(κcr)

Normalised
Critical

Detachment
(∆cr%)

0 3.011 53.9 3.011 46.0
1.0 2.971 51.8 2.992 55.1
2.0 2.928 49.9 2.953 51.8
3.5 2.810 45.8 2.899 53.2

4.25 2.683 50.9 2.868 49.8
5.0 2.428 69.0 2.837 47.8
5.5 2.146 67.2 2.822 56.0
6.0 1.836 76.7 2.791 47.8

6.75 1.445 70.4 2.752 49.0
7.5 1.199 77.4 2.715 53.1
8.5 1.006 85.1 2.647 60.8

10.0 0.832 88.1 2.483 63.6
10.75 - - 2.381 68.7
11.25 - - 2.285 66.4
12.0 - - 2.135 71.2

12.75 - - 1.976 81.1
13.5 - - 1.800 80.5

3.5 Summary of results

In the case of non-pressurized lined pipes, it is shown that the liner pipe detaches
from the outer pipe, upon applying monotonically increasing bending load, forming
short-wave uniform wrinkles at the compression side. Further increase of the applied
curvature results in local buckling of the liner pipe, characterized by a main buckle and
four adjacent minor buckles. This is a phenomenon reported previously in experimental
and numerical results, while it is verified in the present chapter in order to develop
an accurate numerical model. Subsequently, different levels of internal pressure are
applied followed by monotonic bending, showing that as the pressure level increases
gradually the local buckling of the liner pipe delays significantly. In the case of internal
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pressure levels up to 4% of the liner pipe plastic pressure, at first uniform wrinkling
(first bifurcation) and then local buckling (second bifurcation) is observed, similar to the
non-pressurized lined pipe case. For pressure level equal to 10% of the liner pipe plastic
pressure, the uniform wrinkling pattern vanishes and the lined pipe exhibits buckling
quite suddenly in the form of a localized pattern. It is also important to mention that
the maximum internal pressure level applied in the present study is chosen five times
lower than the one reported in current industrial practices (50% of Py,l), highlighting its
beneficial effect on liner local buckling during monotonic bending.

Furthermore, it is shown that the liner pre-stressing, simulating the mechanical
bonding due to manufacturing process, on the structural response of the lined pipe
becomes smaller with increasing the level of internal pressure. In addition, the bending
response of initially imperfect liner pipes is examined, in the absence of internal pressure.
It is shown an important decrease on the critical curvature, even for small imperfection
amplitudes. In the case of TF Pipes, the residual imperfection is significantly affected
by pre-stressing playing a major role in the imperfection sensitivity of the liner pipe. On
the other hand, for internally pressurized lined pipes, with pressure equal to 10% of the
liner pipe yield pressure, the critical curvature decrease occurs in higher imperfection
amplitudes, especially for TF Pipes, verifying the beneficial role of internal pressure.
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Chapter 4

Influence of manufacturing process on
lined pipe monotonic bending

4.1 Chapter outline

In the present chapter, a special-purpose finite element model is developed incor-
porating at the first stage the simulation of the manufacturing process of mechanically
bonded lined pipes and proceeds to the modelling of their bending behaviour at the sec-
ond stage of the analysis. The proposed model accounts for two methodologies of lined
pipe fabrication, used by the pipeline industry, as discussed in previous publications
as discussed in Chapter 1. The first methodology consists of hydraulic expansion of
both pipes up to elastic or plastic deformation in the outer pipe, whereas the second
methodology involves a thermo-hydraulic process, leading to the so-called “tight-fit
pipe” (TFP). Upon completion of the simulation of the fabrication process, the present
analysis proceeds in monotonic bending of the lined pipe, using the same finite element
model, until structural failure of the liner occurs in the form of wrinkling. More specif-
ically, the present analysis offers an integrated approach that employs a single finite
element model, which assesses the manufacturing process and the structural bending
in subsequent stages. Special emphasis is given on the material model of the liner and
the outer pipe. Both materials are described using advanced plasticity models obeying
non-linear kinematic hardening, capable of accounting for reverse plastic loading ef-
fects, and are calibrated with available experimental data. Parametric analyses are also
conducted, considering the effect of initial radial gap of both pipes, different heating
temperatures during the thermo-hydraulic expansion, geometric imperfections and the
presence of internal pressure during bending. The effect of different temperature levels,
accounting for either temperature-dependent or temperature-independent material of
the liner pipe, is also investigated during the thermo-hydraulic expansion.
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4.2 Material properties and numerical modelling

4.2.1 Lined pipe geometry and material properties

A lined pipe similar to the one examined in Chapter 3 is considered, after discussion
with Vasilikis (2018), working in TechnipFMC as a Rigid Pipelines Development
Engineer, in order to work with a real case scenario. The lined pipe consists of a
thick-walled outer pipe, made of X70 steel grade, and a thin layer inner pipe, made of
stainless steel 316L. The outside diameter (Do) and wall thickness (to) of the outer pipe
are equal to 12.75 in (323.85 mm) and 15.9 mm, whereas, the outside diameter (Dl) and
thickness (tl) of the liner are 289.25 mm and 2.8 mm, respectively, corresponding to an
initial radial gap (g0) between the liner and the outer pipe equal to 1.4 mm (50% of tl).
In the following sections, to examine the effect of initial radial gap, the outer diameter
of the liner pipe is re-adjusted accordingly.

During the manufacturing process of a mechanically bonded lined pipe, the liner
pipe deforms plastically in hoop direction during the pressurisation step, for all the
examined cases, as shown later in section 4.3. However, in some cases reverse load-
ing in hoop direction occurs even before monotonic bending is applied, such as the
thermo-mechanical fabrication process presented in sections 4.3.3 and 4.3.4. In the
aforementioned cases, the outer pipe deforms elastically, while in one of the hydrauli-
cally expanded cases, the outer pipe is loaded beyond the yield point in hoop direction.
The plastic deformation in hoop direction results in expansion of the yield surface size,
considering isotropic hardening of the materials, as described in section 2.5.2 and shown
in Figure 2.3. The yield surface expansion results in increase of the yield stress in the
axial direction as well, which affects the structural response of the lined pipe during
monotonic bending. Furthermore, the Bauschinger effect will not be captured in the
liner pipe for the thermo-mechanical manufacturing process, where reverse loading
is noticed. Therefore, a kinematic hardening model is essential to obtain accurate
numerical results.

The stress-strain curve of the X70 steel material of the seamless outer pipe is
obtained from the test results reported by Herynk et al. (2007). Upon first yielding,
the material exhibits negligible hardening up to 4.75% engineering strain, while the
Bauschinger effect occurs during reverse plastic loading. Furthermore, Young’s modulus
Eo is equal to 210 GPa, the Poisson’s ratio ν is equal to 0.3 and the yield stress σy,o is
498 MPa. To simulate the material response of the pure X70 carbon steel, a J2 (von
Mises, 1928) cyclic plasticity model with non-linear kinematic/isotropic hardening is
employed, which accounts for both the plastic plateau upon initial yielding, and the
Bauschinger effect. This behaviour is captured by applying certain amendments to
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the original kinematic hardening rule proposed by Armstrong and Frederick (1966)
(equation 2.25 with M = 1); this is a feature that is not included in built-in models of
the commercial software ABAQUS. The modification of the hardening rule follows the
proposal of Ucak and Tsopelas (2011), where a critical plastic strain εn is defined as the
value at which the plastic plateau ends. If the equivalent plastic strain is lower than the
critical strain value εn, a small value of hardening modulus C is assumed, representing
the plastic plateau, and γ , which determines the rate of decrease of hardening, is equal
to zero. For equivalent plastic strain values greater than εn or in case of reverse loading,
different C and γ values are considered.

In multi-axis stress state, in case of unloading from the plastic plateau an angle-
change criterion is established (Lee et al., 2007), to identify the loading scenarios
between plastic reloading and reverse plastic loading. Therefore, the angle between
the direction of the last plastic loading vector in the plateau and the direction of the
new plastic loading vector is calculated. Depending on this angle, the appropriate
hardening values are adopted. The constitutive model is described in more detail by
Chatzopoulou (2014); Chatzopoulou et al. (2016a,b), while the model is implemented
in a user-subroutine (UMAT) for ABAQUS/Standard, using an integration methodology
proposed by Hartmann and Haupt (1993). Table 4.1 presents the combined hardening
parameters for the isotropic (equation 2.27) and kinematic (equation 2.25 with M = 1)
hardening rules, calibrated with the test results reported by Herynk et al. (2007),
while the corresponding stress-strain curve is presented in Figure 4.1. This figure also
presents the cyclic response of an ABAQUS built-in model, considering J2 plasticity
with non-linear kinematic/isotropic hardening, using three back stresses (equation
2.25 with M = 3). The hardening parameters are C1,2,3 = 425850;10630;7500 MPa,
γ1,2,3 = 2836.34;208.4;146, Q = −130 MPa and b = 10; they are chosen to capture
the hysteresis loop and the corresponding cyclic softening of the carbon steel material.
It is shown that the built-in model may not be able to capture the severe discontinuity
of the pure material upon first yielding and the Bauschinger effect at the same time,
indicating that the built-in model is capable to simulate work-hardened carbon steels but
not as-received materials, under cyclic loading. Finally, the yield stress of the ABAQUS
built-in model is equal to 558 MPa at 0.2% residual plastic strain, compared to 498
MPa of the experimental behaviour (Herynk et al., 2007), leading to a stiffer response
during the first cycle.
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Table 4.1 Combined hardening parameters of the user-subroutine, for the cyclic response
of the outer pipe (L: loading, U: unloading, R: reloading, RL: reverse loading).

Loading Path
C

(MPa)
γ

Q

(MPa)
b

εp ⩽ εn
L-U-R 1335 0

−132 10
L-U-RL 26000 240

εp > εn
L-U-R 1900 8

L-U-RL 26000 240
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Figure 4.1 Stress-strain curve of outer pipe material (X70 carbon steel), comparing the
user-subroutine with ABAQUS built-in model.

The stress-strain curve of the liner material is shown in Figure 4.2 (also called
MAT-B in Chapter 5), and is based on experimental data provided by Vasilikis (2018).
The Young’s modulus El is equal to 193 GPa, the Poisson’s ratio ν is equal to 0.3 and
the yield stress of the liner material σy,l is 260 MPa. At this point, it should be noted
that in this case the yield stress of the liner pipe is quite higher than the as-received
316L material, which is equal to 205 MPa (Peckner and Bernstein, 1977). This is
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attributed to the electric resistance welded (ERW) liner pipe (Kyriakides and Corona,
2007), where the liner pipe material is hardened. To simulate the behaviour of this
material, a J2 (von Mises, 1928) plasticity model with non-linear kinematic/isotropic
hardening is used, considering three back stresses (equation 2.25 with M = 3), built-in
into ABAQUS/Standard. The plasticity model is calibrated with experimental data
(Vasilikis, 2018), as shown in Figure 4.2, to determine the appropriate kinematic (Cq,
γq) and isotropic (Q, b) hardening parameters to capture properly the hysteresis loop
and the corresponding cyclic hardening of the liner pipe material. These parameters are
C1,2,3 = 15000;23000;1800 MPa, γ1,2,3 = 1500;250;20, Q = 180 MPa and b = 5.

Finally, the geometrical and material properties of both pipes are listed in more
detail in Table 4.2. Also, in the majority of numerical analyses, the material properties
of both pipes are assumed temperature-independent, while the influence of temperature-
dependent material of both pipes on the mechanical bonding and subsequently on
bending response is investigated in the parametric analysis section 4.5.3, as an attempt
of refinement of the numerical model.
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Figure 4.2 Stress-strain curve of liner pipe (Vasilikis, 2018).
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Table 4.2 Geometric and material properties of the outer and liner pipe.

Outer Diameter
(mm)

Thickness
(mm)

Young’s Modulus
(GPa)

Yield Stress
(MPa)

Poisson’s
Ratio

Liner 289.25 2.8 193 260 0.3
Outer 323.85 15.9 210 498 0.3

4.2.2 Numerical modelling

In the present chapter, a numerical model, similar to the one presented in the
previous chapter in section 3.2.2, is created as shown in Figure 4.3, using the general-
purpose finite element software ABAQUS (Hibbitt et al., 2016). A three-dimensional
numerical model is developed representing a lined pipe segment of length χ = 15,
where χ = (L− z)/

√
Dm,ltl is the dimensionless length parameter introduced in 3.2.2.

As shown in the following section 4.4, the half-wavelength of the liner pipe on bending
is affected by the manufacturing process. In the current analysis, a longer lined pipe
segment is considered, compared with the numerical model presented in the previous
chapter, which is similar to the length of the model presented by Yuan and Kyriakides
(2014a,b, 2015) for more direct comparison with the present study. However, the liner
pipe bending response is not affected by the change of length. In section 3.3.2, the
numerical model used in the previous chapter, which considers normalised length χ = 10
(seven half-wavelengths), presents identical results with the two half-wavelength long
numerical model used by Vasilikis (2012), and also a good agreement with experimental
tests (Focke, 2007; Hilberink, 2011).

Following the modelling presented in section 3.2.2, the analysis considers the half
cross-section of the lined pipe using symmetry with respect to the y-z-plane of bending,
as shown in Figure 4.3. In addition, x-y-plane symmetry is assumed in the z = 0 plane
allowing only in-plane motion on the corresponding nodes, while in the z = L plane, a
reference node, in which the rotation is applied, is coupled with the nodes of the lined
pipe cross-section, so that these nodes can slide on the rotated plane, allowing the lined
pipe cross-section to ovalise freely, representing a segment of an infinite pipeline. The
reference node at z = L is simply supported, so that it is free to move in the z-direction
and rotate about the x-axis, as shown in Figure 4.3. Furthermore, the same type of
elements is used for both pipes (S4R for the liner and C3D20R for the outer pipe),
considering the same mesh density. The half-circumference contains one hundred and
fifty elements for the liner and outer pipe respectively, while in z-direction eighteen
and six elements every half-wavelength λc are employed for the liner and outer pipe,
respectively. The surface-to-surface contact is also considered frictionless.
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z=0

z=L
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6	o'clock
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Figure 4.3 Three-dimensional numerical model of the lined pipe.

4.3 Simulation of different manufacturing processes

The present section of the thesis investigates contact pressure changes (or the
bonding stresses) due to different manufacturing processes and the effect of these
processes on the mechanical behaviour of the lined pipe under monotonic bending. Two
different procedures of manufacturing are examined: (a) hydraulic expansion of both
pipes up to elastic (section 4.3.1) or plastic deformation (section 4.3.2) in the outer pipe
(the liner pipe deforms plastically in both cases) and (b) complete thermo-mechanical
process of tight-fit pipes (TFP) (sections 4.3.3 and 4.3.4). Different values of initial
radial gap (g0) between the two pipes, are examined. For simulating the manufacturing
process only (without analysing its effect on bending), a shorter version of the model
presented in Figure 4.3 is employed for reducing computational cost. In this model a
small value of L is employed, equal to 2% of the liner pipe diameter.

4.3.1 Elastically expanded

The elastically expanded process consists of inserting the liner into the outer, fol-
lowed by the application of internal pressure (Pin) up to 80% (41.1 MPa) of the plastic
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pressure of the outer pipe (Py,o = 2σy,oto/Dm,o, where Dm,o is the mean diameter of
the outer pipe, Dm,o = Do − to). This manufacturing process will be referred to as
“elastically expanded” in the sense that the word “elastically” refers to the outer pipe.
As shown in Figure 4.4, the liner expands initially elastically and then plastically
( 0 → 1 ), establishing contact with the outer pipe. The response during manufacturing
is axisymmetric, and therefore, no sliding occurs between the two pipes. Subsequently,
both pipes expand together ( 1 → 2 : the outer expands only linearly), followed by
depressurization of both pipes ( 2 → 3 ).

0

1 2

3

liner

outer

Figure 4.4 Normalised hoop stress with respect to normalised change in the diameter of
both pipes (liner and outer), during elastic hydraulic expansion of the outer pipe.

Considering initial radial gap (g0) values ranging from 35% to 75% of the liner wall
thickness (tl), and simulating the elastic hydraulic expansion manufacturing process,
the residual radial gap (gr) at the end of the process is calculated. The range from 35%
to 75% of the liner thickness is a reasonable range for this initial gap, based on the
information provided by the industry. Small values of initial radial gap may result in
scoring of the liner, which is a type of damage of the liner while is inserted in the outer
pipe. Considering small initial gap values, it might lead to longitudinal light scratches
on the outer surface of the liner pipe, or uncontrolled galling of the liner. This may
occur in case the pipes are axially misaligned during liner insertion or the pipe diameter
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and straightness tolerances are high. Liner galling may lead to build-up liner material
between both pipes and indent the liner pipe during internal pressurisation. This type of
damage is explained by Pépin et al. (2017), presenting also photographs of real cases.

On the other hand, considering higher gap values will increase the plastic deforma-
tion in the liner pipe during the manufacturing process, which affects significantly the
bending performance, as shown in the following section 4.4. It is interesting to notice
that the value of gr is smaller by one order of magnitude, compared with the value of
g0, as shown in Figure 4.5, verifying the observation of industrial suppliers (Vasilikis,
2018).
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Figure 4.5 Residual radial gap (gr) with respect to the initial radial gap (g0), for elastic
expansion of the outer pipe; gap values are normalised with liner thickness (tl).

4.3.2 Plastically expanded

A variation of the aforementioned manufacturing process, consists of applying
internal pressure during pressurization of the lined pipe that exceeds the plastic pressure
of the outer pipe, equal to 59.9 MPa (117% of Py,o). This manufacturing process will be
referred to as “plastically expanded”. As shown in Figure 4.6, the liner expands initially
elastically and then plastically ( 0 → 1 ), until the liner comes in contact with the outer
pipe. Then both pipes expand together ( 1 → 2 ), and at the end of stage 2 the outer
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pipe is also deformed plastically. This is followed by depressurization of both pipes
( 2 → 3 ). Due to the larger elastic deformation in the outer pipe, compared with the
one in the liner pipe, after depressurization, the two pipes remain in mechanical bonding,
and the contact pressure depends on the initial gap, as discussed later in section 4.3.5.
During depressurization, the liner pipe does not exhibit any wrinkles.

Liner hoop 
compression

Outer hoop
tension

0

1 2

3

liner
outer

Contact	Established

Figure 4.6 Normalised hoop stress with respect to normalised change in diameter of
both pipes (liner and outer), during plastic hydraulic expansion of the outer pipe.

4.3.3 Fully heated Tight-Fit Pipe

Furthermore, the so-called TFP process is considered in the present study, which
is a thermo-mechanical process. The thermal expansion coefficients are assumed
αl = 1.62×10−5K−1 (Atlas Specialty Metals, 2004) and αo = 1.3×10−5K−1 (Focke,
2007) for the liner and the outer pipe respectively. In addition, the temperature through
the thickness of both pipes is considered uniform, during the thermal expansion. The
outer pipe is heated first up to To = 680 K ( 0 → 1 ), as presented in Figure 4.7. On
this step, the liner pipe is slightly elongated, due to coupling between the outer and the
liner pipe at z = L through the reference node, resulting in a small diameter reduction.
Subsequently, the liner is pressurized internally ( 1 → 2 ) up to Pin/Py,l = 5.94 (31.4
MPa) (where Py,l = 2σy,ltl/Dm,l is the plastic pressure of the liner pipe), comes in
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contact with the outer pipe (as also presented in Figure 4.7), followed by expansion of
both pipes, while the temperature of the outer pipe is assumed constant in the current
step. In this step, the liner pipe is heated, due to the contact with the outer pipe, up to
the same temperature with the outer pipe (Tl = To, also referred to as the 100% case in
section 4.5.3). The thermal hoop strain increases significantly, tending to increase the
diameter of the liner pipe (εh,T = (∆Rl/Rl)|T ). Nevertheless, due to lateral confinement
by the outer pipe, the liner hoop tension gradually decreases and hoop compression
develops. This is represented by the sharp drop of the hoop stress of the liner shown
in Figure 4.7. The analysis also shows that reverse plastic loading (RPL) occurs in the
liner wall during the pressurization step, due to thermal hoop expansion and the lateral
confinement and it is denoted by the horizontal arrow on the curve before the end of
stage 2 . After depressurization ( 3 ), there is residual hoop compression in the liner
pipe, due to confinement by the outer pipe.

Figure 4.7 Tight-Fit Pipe manufacturing process with full heating of the liner pipe.
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4.3.4 Partially heated Tight-Fit Pipe

Subsequently, an alternative process of a TF Pipe is also investigated in the present
work (as shown in Figure 4.8), in which during the pressurization step ( 1 → 2 ) the liner
is partially heated (denoted as TFP PH) up to Tl = 388 K, assuming a liner temperature
used in experimental tests (Focke, 2007; Hilberink, 2011) and numerical analyses
(Naderi et al., 2021). This value corresponds to 57% of the outer pipe’s temperature (the
term “partially” implies uniform heating of the liner pipe up to a lower temperature level
from the To). In this case, the liner pipe exhibits less thermal hoop expansion, resulting
in a smaller drop of the hoop stress, as shown in Figure 4.8. Reverse plastic loading
(RPL) occurs during the depressurization step, as denoted with the horizontal arrow
before the end of stage 3 . At the end of the fabrication process ( 3 ), the liner pipe is
in higher hoop compression stress, compared to the fully heated process (denoted as
TFP FH). The initial temperature and the temperature after the depressurization step is
Ti = 298 K for both pipes, for the thermo-hydraulic expansion cases.

Figure 4.8 Tight-Fit Pipe manufacturing process with partial heating of the liner pipe.
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4.3.5 Comparison of mechanical bonding between the manufactur-
ing processes

In more detail, the residual compressive hoop stress of the liner pipe after the
manufacturing process is presented in Figure 4.9, showing that the TFP manufacturing
process with (full or partial) heating results in higher liner compression compared
with the plastic expansion process. In addition, the fully heated TFP results in lower
compression stress than the partially heated TFP. In this case, during the pressurization
step, the total hoop strain of the liner pipe is the sum of a mechanical part (εh,M), due
to hydraulic expansion and a thermal part (εh,T ), due to the contact with the heated
outer pipe (εh,Tot = εh,T + εh,M). The total hoop strain of the liner pipe is governed by
the outer pipe, due to confinement. In this case, an increase of the thermal hoop strain
results in a decrease of the mechanical hoop strain. The above results indicate that the
level of mechanical bonding depends on the temperature level of the liner pipe and the
mechanical hoop strain at the end of the pressurization step.

Plastic
Expansion

TFP	FH

TFP	PH

Figure 4.9 Liner compressive hoop stress (residual hoop stress) after different manufac-
turing processes.

An important observation refers to the material model used in the simulation of
the manufacturing process. The results show that reverse plastic loading may occur
during the manufacturing process and therefore consideration of the Bauschinger effect
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in material models is necessary. This implies that, the use of isotropic hardening for
modelling the liner pipe material may not be adequate for simulating the manufacturing
process. During the manufacturing process, the maximum hoop strain in the liner at
stage 2 , before depressurization is 1.12%, 1.51%, 1.61% and 1.57% for elastically,
plastically, fully and partially heated TF Pipes, for an initial radial gap equal to 50% of
liner thickness. For a gap equal to 75% of liner thickness the maximum hoop strain is
1.61%, 1.77%, 2.10% and 2.05%, respectively. During the pressurization, the liner pipe
is subjected to tension in the hoop direction, while after the depressurization results in
zero stress and elastic hoop compression for the elastically and plastically expanded
lined pipes (as shown in Figures 4.4 and 4.6). In the case of the fully heated TF Pipes,
during the pressurization step, and after contact between the two pipes is established,
the liner pipe is gradually compressed, resulting in reverse plastic loading (RPL), as
indicated by the arrow (➞) in Figure 4.7, whereas after depressurization, the liner is
elastically compressed in the hoop direction. In the case of partially heated TF Pipes,
after depressurization, the liner pipe exhibits reverse compressive plastic loading (RPL)
as indicated in Figure 4.8.

4.4 Results on monotonic bending

In this section, the mechanical behaviour of steel lined pipes under monotonic
bending is investigated, using the numerical model shown in Figure 4.3, considering
the effect of different manufacturing processes. The manufacturing process is simulated
in the first stage of the analysis, as described in the previous section, and it is followed
by monotonic bending in the second stage of the analysis. The following results refer to
imperfection-free lined pipes, whereas imperfect lined pipes are considered in the next
section. The lined pipe normalised length, as already described in section 4.2.2, is equal
to 15, as shown in Figure 4.10. In this figure, the model is mirrored (from χ = 0 to
χ =−15) for visualization purposes. Previous publications (Vasilikis and Karamanos,
2012; Yuan and Kyriakides, 2014a) have demonstrated that, after applying bending,
the liner pipe gradually detaches from the outer pipe, followed by the formation of a
uniform wrinkling pattern at the compression zone leading to localized buckling with
further increase of the curvature. Uniform wrinkling has been identified by Vasilikis and
Karamanos (2012) as the first bifurcation, followed by a second bifurcation at higher
curvatures leading to a main buckle (A), with four adjacent minor buckles (B), as shown
in Figure 4.10, a result also verified by Yuan and Kyriakides (2014a, 2015) and in the
present work as well.
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Figure 4.10 Localized buckling pattern of the liner pipe; buckle occurs at χ = 0 location.

4.4.1 Effect of the different processes on liner buckling curvature

In the following, liner deformation is presented in terms of its detachment, which
expresses its relative displacement with respect to the outer pipe. The maximum
normalised detachment (∆) of the liner pipe occurs at χ = 0 location at the main buckle
(A). It is shown in Figure 4.11 normalised by the wall thickness of the liner pipe (tl),
with respect to normalised curvature (κ = kr/ko; kr = φ/L, where φ is the rotation
applied on the reference node at z = L; ko = to/D2

m,o), for the different manufacturing
processes analysed earlier, and for the case of initial radial gap (g0) equal to 50% of
liner thickness.

The TFP with partial heating of the liner results in higher hoop compression of
the liner, compared with the fully-heated TFP process, also noticed in the previous
section. This observation may explain the results shown in Figure 4.11, where the
abrupt detachment of the liner pipe in partially heated TFP occurs at higher curvature. It
is shown in previous studies (Vasilikis and Karamanos, 2012) and in section 3.4.2 in the
present study, the beneficial effect of prestressing the liner pipe on delaying the local
buckling during bending. In case of Snug-Fit Pipe, where the liner is not compressed
in hoop direction, the axial compression of the liner increases during bending and the
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material yields at σx =−σy,l , as shown in Figure 2.2b. In case of Tight-Fit Pipe, where
hoop compression occurs in the liner pipe at the end of fabrication process, the liner pipe
is under bi-axial compression during bending, while higher axial compressive stress is
required (σx <−σy,l) to reach the yield surface. Therefore, higher bending is required
to yield the liner pipe material and lead to local buckling eventually. For the same
reason, the partially heated TF Pipes, where higher hoop compression occurs at the
end fabrication compared to fully heated TH Pipes, present better bending performance
delaying the abrupt liner detachment.

In addition, despite that the plastically expanded lined pipe results in mechanical
bonding, the abrupt detachment of the liner from the outer pipe occurs earlier compared
with the elastically expanded lined pipe, in which a residual radial gap (gr) is observed.
The abrupt detachment of liner pipe shown in Figure 4.11 is also associated with the drop
of bending moment carried by the liner pipe. The latter is represented by normalised
moment ml , defined as ml = Ml/Mo, where Mo = σy,oD2

m,oto. This behaviour is shown
in Figure 4.12, for each manufacturing process, for initial radial gap equal to 50% liner
thickness, indicating the onset of local buckling of the liner pipe in a diamond-type
mode.
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Figure 4.11 Evolution of detachment of liner pipe at χ = 0 location, with respect to
normalised curvature for different manufacturing processes, in case of 50% initial radial
gap (g0).
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Elastic	Expansion

Plastic	Expansion

TFP	FH

TFP	PH

Figure 4.12 Normalised moment of the liner pipe, with respect to normalised curvature
for different manufacturing processes, in case of 50% initial radial gap (g0).

The “critical” curvature (κcr) is defined as the curvature at which the slope of the
detachment-curvature diagram (d∆/dκ) reaches its maximum, a definition introduced
in the previous chapter (section 3.4.2). As shown in Figure 4.11, the detachment of the
liner pipe increases rapidly after a specific curvature value, leading to local buckling of
the liner pipe. The value of “critical” curvature from the above definition corresponds
to the abrupt drop of moment of the liner pipe, as shown in Figure 4.12. Based on the
above failure criterion, Figure 4.13 presents the critical curvature of the lined pipe from
each manufacturing process and for different values of initial radial gap (g0). The results
show that the TFP manufacturing process with partial heating of the liner pipe results in
higher critical curvature values compared with all the other manufacturing processes.
In addition, the plastically-expanded lined pipe exhibits the lowest critical curvature
values, due to the excessive plastic deformation of the liner pipe. In more detail, the
critical buckling curvature of partially-heated TFP is 17%, 28% and 57% higher than the
corresponding value for fully heated TFP, elastically expanded and plastically expanded
lined pipes, respectively, assuming a 50% value of initial radial gap, due to bi-axial
compression during bending as explained previously. The results are summarized in
Table 4.3, including the values of normalised detachment (∆cr), radius of curvature (ρcr)
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corresponding to the neutral axis of the pipe and global bending strain (εcr = Do/2ρcr)
at buckling, for each fabrication process.

Plastic
Expansion

Elastic
Expansion

TFP	FH

TFP	PH

Figure 4.13 Critical curvature in terms of initial radial gap size for different manufactur-
ing processes.

Table 4.3 Critical curvature, corresponding normalised detachment, radius of curvature
and global bending strain for different fabrication processes.

Manufacturing
Process

Normalised
Critical

Curvature
(κcr)

Normalised
Critical

Detachment
(∆cr%)

Buckling
Radius of
Curvature
(ρcr mm)

Buckling
Strain
(εcr %)

Plastic Expansion 0.543 138 10986 1.47
Elastic Expansion 0.732 172 8144 1.98
Fully Heated TFP 0.821 121 7261 2.23

Partially Heated TFP 0.971 82 6145 2.63
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4.4.2 Influence of manufacture processes on liner wave-length

In addition to the critical bending curvature (κcr), the manufacturing process may
affect the buckling wavelength (Lhw). The results herein are reported in normalised
form (lhw = Lhw/

√
Dm,ltl). For the fully and partially heated TF Pipes, the normalised

half-wavelength is equal to 1.375, while for elastically expanded and plastically ex-
panded pipes the corresponding values are somewhat smaller, equal to 1.3 and 1.225,
respectively. As the plastification of the liner increases, the normalised half-wavelength
is further reduced. Furthermore, considering the TFP manufacturing process, the nor-
malised half-wavelength has a somewhat lower value compared with the value of 1.425
reported in previous work by Vasilikis and Karamanos (2012) and in section 3.4.2 as
well. It should be noted though that in these works the manufacturing process has been
taken into account only indirectly, assuming an initial hoop stress. The normalised
half-wavelength of the liner pipe is presented in Figure 4.14, showing also the gradual
liner detachment with increasing curvature along the liner pipe, for each manufacturing
process.
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(a) Elastically expanded lined pipe (referring to the outer pipe).

Figure 4.14 Continues in the next page.
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(b) Plastically expanded lined pipe (referring to the outer pipe).

Normalized Length (χ)

Normalized Curvature (κ)

0

0.5

1.0

1.5

N
or

m
al

iz
ed

 D
et

ac
hm

en
t (

Δ
)

2.0

0.848

2.5

0.821

0.796

0.769

150.743
10

5
0

-50.715
-10

-15

lhw=1.375

(c) Fully heated TF Pipe.

Figure 4.14 Continues in the next page.
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(d) Partially heated TF Pipe.

Figure 4.14 Normalised detachment along the liner pipe at the compression side for
each manufacturing process.

4.4.3 Influence of fabrication numerical modelling on liner buck-
ling performance

At this point, additional analysis is conducted, comparing the influence of the
detailed manufacturing process modelling, assumed in the present chapter, with the
simpler mechanical bonding modelling considered in Chapter 3.

The bending performance of a lined pipe is examined, considering the geometric
and material characteristics of the present chapter, as presented in section 4.2, while
the mechanical bonding is achieved following the simpler bonding modelling presented
in chapter 3 (section 4.2). An initial hoop compressive stress is applied on liner pipe,
followed by an unloading step and leading to residual hoop compression equal to the
fully heated TF Pipe case presented in 4.4.1, for initial radial gap equal to 50%. In this
case, it should be noted that the outer diameter of the liner pipe is readjusted accordingly,
considering zero initial gap between both pipes, such as in Chapter 3.

- 93 -



Chapter 4 4.5 Parametric analysis

Following the critical curvature definition, adopted in the present study, the liner pipe
buckles locally at normalised curvature equal to 1.119, compared with the fully heated
TF Pipe where the liner detaches abruptly at curvature value equal to 0.821 (as shown
in Figures 4.11 and 4.13). The results show that accounting for the plastic deformation
in the liner pipe during the manufacturing process, the buckling response of the liner
pipe is affected, leading to decreasing the critical curvature by 31%. Therefore, the
proper modelling of the fabrication process affects significantly the bending response
of the lined pipe.

4.5 Parametric analysis

In the following sections, the effect of different parameters on the bending response
of mechanically bonded pipes is investigated. Imperfection sensitivity analysis of the
liner pipe is considered in the form of the buckling configuration of the imperfection-free
liner pipe, examined in the previous section 4.4. Subsequently, the structural stability
of the liner pipe in the presence of moderate levels of internal pressure is examined.
Finally, the influence of the maximum liner temperature, during the thermo-hydraulic
manufacturing process, on bending performance is investigated.

4.5.1 Imperfection sensitivity analysis

In the present section, the mechanical behaviour of lined pipes in the presence of
geometrical initial imperfections of the liner pipe is investigated for elastically expanded,
plastically expanded and fully heated TF Pipes. The shape of the initial geometric
imperfection of the liner pipe is based on the buckling pattern of the imperfection-free
lined pipe of the corresponding manufacturing process, normalised by the liner pipe
wall thickness (tl). The shape of the imperfection is presented in Figure 4.15 and
it has the form of buckling mode of the corresponding “perfect” pipe. Therefore, it
is expected that the buckled configuration of each lined pipe (elastically expanded,
plastically expanded and fully heated TF Pipes) simulates the worst case scenario
for the imperfection sensitivity analysis. The imperfection values range from zero to
10% of liner pipe wall thickness, while these values are classified as acceptable by
DNV-OS-F101 (2013) guidelines, representing real case scenarios.
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Figure 4.15 Geometric configuration of the initial imperfection of the liner pipe.

In the case of elastically expanded lined pipes, after depressurization, a residual
imperfection with amplitude ∆r is observed, as shown in Figure 4.16, in terms of the
initial imperfection amplitude, while for the other two cases the residual imperfection
after the manufacturing process is negligible for the entire range of initial imperfection
amplitude considered. The effect of the initial geometric imperfection, assuming the
maximum value of amplitude (∆0 = 10%), is presented in Figures 4.17, 4.18, showing
its influence on the liner pipe detachment (∆) from the outer pipe and the liner pipe
moment (ml). The solid curves correspond to imperfection-free liner, while the dashed
curves refer to imperfect liner, respectively. In Figure 4.19, the critical curvature values
of the different examined types of manufacturing processes for the case of 50% initial
radial gap (g0) are presented. For the case of the elastically expanded and plastically
expanded pipes, a significant reduction of the critical curvature value occurs with
increasing initial imperfection ∆0, an observation which is consistent with the results
reported in previous publications (Vasilikis and Karamanos, 2012, 2013). This reduction
is more significant for small values of ∆0, and less pronounced for larger values of
∆0. It is interesting to note that a 10% initial imperfection, results in a 36% and 26%
decrease of critical curvature for the case of the elastically expanded and plastically
expanded pipes, respectively. On the other hand, the mechanical behaviour of the fully
heated TF Pipes is less sensitive to initial geometric imperfections, resulting in a 9%
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decrease for the same imperfection size (10%). The critical curvature (κcr) for different
values of initial geometric imperfection amplitude and fabrication cases is summarized
in Table 4.4.

Figure 4.16 Normalised residual imperfection (∆r) of elastically expanded lined pipes
(referring to the outer pipe) with respect to normalised initial imperfection (∆0).
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Figure 4.17 Normalised detachment (∆) with respect to normalised curvature (κ) for
the different manufacturing processes for zero and 10% initial imperfection.
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Figure 4.18 Normalised moment of the liner pipe (ml), with respect to normalised curva-
ture (κ) for the different manufacturing processes for zero and 10% initial imperfection.
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Figure 4.19 Normalised critical curvature in terms of initial imperfection amplitude for
hydraulically expanded and fully heated TF lined Pipes.
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Table 4.4 Critical curvature (κcr) for different imperfection amplitudes (∆0) for different
fabrication processes.

Imperfection
Amplitude (∆0%)

Critical Curvature (κcr)
Elastic

Expansion
Plastic

Expansion
TFP FH

0.1 0.689 0.533 0.821
0.5 0.643 0.497 -
1.0 0.603 0.481 -
1.5 0.582 0.468 -
2.0 0.565 0.460 0.816

2.75 0.546 0.448 -
3.5 0.531 0.440 0.796

4.25 0.521 0.434 0.790
5.0 0.513 0.427 0.786
5.5 0.503 0.424 0.782

6.25 0.495 0.420 0.776
7.0 0.487 0.418 0.774

7.75 0.481 0.413 0.767
8.5 0.475 0.409 0.757

9.25 0.473 0.406 0.751
10.0 0.467 0.402 0.747

4.5.2 Internally pressurized lined pipes

The effect of internal pressure (Pin) on the bending response of mechanically bonded
lined pipes is investigated in the present work and its beneficial role on the critical
curvature is demonstrated in Chapter 3. In the present section, lined pipes fabricated
through different manufacturing procedures (namely, plastically expanded, partially
heated and fully heated TF Pipes), and initial radial gap equal to 50%, are subjected
to pressurized bending. The pressure is applied after the manufacturing process and
is held constant during the monotonic bending process. The pressure level is 10% of
the liner pipe yield pressure (Py,l = 2σy,ltl/Dm,l , where Dm,l is the mean diameter of
the liner pipe). A tensile force (Fp) is also applied on the reference node in the z = L

plane, equal to the applied internal pressure times the internal cross-section of the liner
(Fp = Pinπ(Dl −2tl)2/4) in order to simulate the force at the two capped ends due to the
internal pressure. This force is referred to as “capped-end force”, and remains constant
during bending, but follows the orientation of reference node (follower force).

- 99 -



Chapter 4 4.5 Parametric analysis

The normalised amplitude of detachment (∆) of the liner pipe is presented in Figure
4.20, showing that in the presence of internal pressure the abrupt detachment of the
liner occurs at higher values of curvature for all three fabrication procedures. In Figure
4.21, the normalised moment of the liner pipe is presented, showing that the sharp drop
of each case occurs at higher curvature values a result compatible with the one in Figure
4.20. The critical curvature (κcr) of the plastically expanded, fully and partially heated
TF pressurized pipes is increased by 27%, 143% and 115%, respectively. As already
presented in more detail in the previous chapter (section 3.4.2), despite the low level
of internal pressure, the critical curvature (κcr) increases significantly. In the case of
plastically expanded lined pipes, the increase of critical curvature is considerably less
pronounced, compared to the other two manufacturing cases. This is attributed to the
excessive plastic deformation of the liner pipe during the manufacturing process and
the significantly lower mechanical bonding between the liner and the outer pipe at the
end of fabrication, compared to partially heated and fully heated TF Pipes. The results
are summarized in Table 4.5, including the values of normalised detachment, radius of
curvature corresponding to the neutral axis of the pipe and global bending strain (εcr) at
the buckling stage, for each fabrication process.
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Figure 4.20 Normalised detachment (∆) with respect to normalised curvature (κ) for
the different manufacturing processes for zero and 10% internal pressure.
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Plastic	expansion

TFP	FH
TFP	PH

Plastic	expansion

TFP	FH

TFP	PH

non-pressurized

pressurized

Figure 4.21 Normalised moment of the liner pipe (ml), with respect to normalised
curvature (κ) for the different manufacturing processes for zero and 10% internal
pressure.

Table 4.5 Critical curvature, corresponding normalised detachment, radius of curvature
and global bending strain for different fabrication processes in case of 10% internal
pressure.

Manufacturing
Process

Normalised
Critical

Curvature
(κcr)

Normalised
Critical

Detachment
(∆cr%)

Buckling
Radius of
Curvature
(ρcr mm)

Buckling
Strain
(εcr %)

Plastic Expansion 0.689 113 8657 1.87
Fully Heated TFP 2.000 58 2982 5.43

Partially Heated TFP 2.091 59 2852 5.67

4.5.3 Effect of liner pipe temperature in Tight-Fit Pipes

The effect of the temperature level of the liner pipe on the final state of stress of the
partially heated TF Pipes is also investigated. In the previous results, the partially heated
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liner pipe is examined only for temperature equal to 57% (Tl = 388 K) of the fully
heated TF Pipes. In the present section, other temperatures levels ranging from 57%
to 100% of the temperature used in the fully heated TF Pipe (where the temperature
of the liner pipe is equal to the outer pipe’s To), are investigated. In the following,
the temperature will be denoted as a percent, referring to the percentage of the liner
temperature with respect to the temperature of the outer pipe. In this section three types
of analysis are adopted, considering (a) temperature-independent material properties of
both pipes (as described in section 4.2.1), (b) temperature-dependent material properties
of the liner pipe and (c) temperature-dependent material properties for both pipes. The
latter cases (b) and (c) should be regarded as an attempt for refinement of the present
model.

4.5.3.1 Temperature-independent material properties

Figure 4.22 presents the normalised hoop compression of the liner pipe of partially
heated TF Pipes after the manufacturing process, with respect to different temperature
levels of the liner on the pressurization step. The results are obtained with the assump-
tion of temperature-independent material properties. For temperatures varying from
57% to 92% of To the hoop compression of the liner decreases slightly as the tempera-
ture increases, while the residual compressive stress is higher than the yield stress (σy,l)
of the liner. These cases follow corresponding paths of hoop stress of the liner pipe with
respect to diameter change as shown in Figure 4.8. For 96% and 100% temperature
levels, the hoop compressive stress decreases significantly resulting in stress smaller
than the yield stress. As explained previously in section 4.3.5, during the pressurization
step the thermal part of the hoop strain of the liner pipe increases significantly while
the mechanical part decreases resulting in plastic hoop compression. After the depres-
surization, the hoop stress of the liner pipe is in the elastic region, as shown in Figure
4.7, justifying the sharp drop of hoop compressive stress of the liner pipe in Figure 4.22.
Figures 4.23 and 4.24 present the detachment and the corresponding moment of the
liner pipe, showing the abrupt liner detachment (and the corresponding sharp drop of the
bending moment of the liner) in higher curvature values as the maximum temperature
of the liner decreases. The critical curvature, as defined in Chapter 3 (section 3.4.2), is
presented in Figure 4.25, while the results are also summarized in Table 4.6, including
the values of normalised detachment, radius of curvature corresponding to the neutral
axis of the pipe and global bending strain (εcr) at the buckling stage for each fabrication
process.
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T-dependent	(liner	only)

T-independent
(both	pipes)

Figure 4.22 Liner compressive hoop stress (residual hoop stress) with respect to the liner
pipe temperature during pressurization, for temperature-dependent and temperature-
independent liner material.

Increasing	Temperature
(57%,	65%,	75%,	85%,
92%,	96%,	100%)

Figure 4.23 Normalised detachment (∆) with respect to normalised curvature (κ) for
the different temperature levels of the liner pipe for the partially heated TF Pipes,
considering temperature-independent liner material.
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Increasing	Temperature
(57%,	65%,	75%,	85%,
92%,	96%,	100%)

Figure 4.24 Normalised moment of the liner pipe (ml), with respect to normalised
curvature (κ) for the different temperature levels of the liner pipe for the partially heated
TF Pipes, considering temperature-independent liner material.

T-dependent

(liner	only)T-independent

(both	pipes)

Figure 4.25 Normalised critical curvature (κcr) in terms of different temperature levels
of the liner pipe for the partially heated TF Pipes, for temperature-dependent and
temperature-independent liner material.
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Table 4.6 Critical curvature, corresponding normalised detachment, radius of curvature
and global bending strain for different temperature levels of the liner pipe for the
partially heated TF Pipes.

Temperature Level
of the Liner (%)

Normalised
Critical

Curvature
(κcr)

Normalised
Critical

Detachment
(∆cr%)

Buckling
Radius of
Curvature
(ρcr mm)

Buckling
Strain
(εcr %)

57 0.971 82 6145 2.63
65 0.960 99 6212 2.61
75 0.932 99 6400 2.53
85 0.895 103 6665 2.43
92 0.855 98 6979 2.32
96 0.827 94 7211 2.25

100 0.821 121 7261 2.23

4.5.3.2 Temperature-dependency of liner pipe

All previous results on TF Pipes have been obtained under the assumption that the
material properties are not affected by the level of temperature. In the present section,
the mechanical behaviour of the liner pipe is also investigated assuming temperature-
dependent Young’s modulus (El), yield stress (σy,l) and thermal expansion coefficient
(αl) of the liner pipe, in an attempt to refine of the numerical model, while the outer
pipe is still considered temperature-independent.

The dependency of Young’s modulus, yield stress and thermal expansion coefficient
on the temperature adopted in the present study is the one proposed by Alain et al.

(1997); Atlas Specialty Metals (2004); Hong et al. (2003), shown in Table 4.7. In Figure
4.22, the normalised hoop stress of the liner pipe, after the manufacturing process, is
presented for partially heated TF Pipes, taking into account the temperature-dependent
material properties of the liner pipe. The residual hoop compression of the liner pipe,
when temperature-dependent liner pipe material properties are considered, is higher
compared with the temperature-independent liner material, for temperature levels Tl

varying from 57% to 92% of To, as the Young’s modulus and yield stress of the liner
pipe decreases. However, for temperature level Tl near the 100% level, the residual hoop
compression of the liner decreases, resulting in lower compression values compared
with the temperature-independent case. For this high-temperature range, the thermal
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expansion coefficient of the liner (αl) also increases, resulting in higher thermal hoop
strain, and lower mechanical bonding.

Table 4.7 Material properties of the liner pipe with respect to the temperature level.

Temperature of the liner
Tl (K)

Young’s Modulus
El (MPa)

Yield Stress
σy,l (MPa)

Thermal Expansion
Coefficient

αl (10−5K−1)

273-298 193000 260
1.59298-373

180306
181.45373-448

1.62

448-474 178322
474-557 171394

150.23
557-574 170141
574-588

163064
588-659

1.75
659-674 161989
674-768 154971

133.96768-811 -
811-872 - -

Figure 4.25 shows the critical curvature (κcr) with respect to different temperature
levels of the partially-heated liner pipe, considering temperature-dependent liner pipe
material properties. For temperature levels ranging from 57% to 96% of To, the critical
curvature values are higher compared to the corresponding κcr values obtained assuming
temperature-independent liner pipe material properties. For the case of temperature-
dependent properties, the values of Young’s modulus and yield stress of the liner are
lower compared with the temperature-independent case, resulting in higher residual
hoop compression of the liner pipe, as shown in Figure 4.22, and critical curvature
values, respectively. For fully heated liner pipe, the critical curvature is lower in
the temperature-dependent case. This is attributed to the fact that the residual hoop
compression, after the manufacturing process, is 52% lower than the corresponding
value obtained by the temperature-independent case.

Finally, the difference of the critical curvature value obtained considering temper-
ature-dependent and temperature-independent material properties of the liner, ranges
from 0.27% to 3.08%, leading to the conclusion that the assumption of temperature-
independent material of the liner yields very reasonable results, and can be used for
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obtaining reliable estimates of liner buckling curvature. However, the material of
the outer pipe is considered temperature-independent; this is an assumption which is
examined in the following section 4.5.3.3.

4.5.3.3 Temperature-dependency of both pipes

At elevated temperatures, the material properties of the carbon steel is also affected,
reducing its stiffness and strength. In this section, both pipes are assumed temperature-
dependent, aiming at simulating a closer to reality scenario, identifying also the influence
of the outer pipe temperature dependency on the mechanical bonding of both pipes and
the buckling performance of the liner pipe under monotonic bending.

Two different cases are investigated considering both temperature dependent and
temperature independent material properties of the outer pipe, while the liner pipe
material is assumed temperature dependent. This analysis is aimed at identifying the
influence of temperature dependency of the outer pipe material on the mechanical
bonding of the pipes and the buckling performance of the liner pipe. In this section,
the outer pipe material is modelled with the ABAQUS built-in plasticity model, as
described in section 4.2.1 and shown in Figure 4.1. Furthermore, the dependency of
Young’s modulus (Eo) and yield stress (σy,o) of the outer pipe adopted in the present
study follows the provisions of the European Standard (EN-1993-1-2, 2005), as shown
in Table 4.8. For the liner pipe material, the plasticity model described in section 4.2.1
is employed, accounting for temperature-dependent material properties as shown in
Table 4.7.

Table 4.8 Material properties of the outer pipe with respect to the temperature level
(EN-1993-1-2, 2005).

Temperature of the outer
To (K)

Young’s Modulus
Eo (GPa)

Yield Stress
σy,o (MPa)

298-373 210 558
373-473 189 452
473-573 168 343
573-680 147 235

Figure 4.26 presents the liner hoop compressive stress for the case of temperature de-
pendent and temperature independent outer pipe material at the end manufacturing pro-
cess, with respect to different temperature levels of the liner pipe during pressurisation.
When the material properties of the outer pipe are considered temperature-independent,
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the outer pipe deforms elastically throughout the fabrication process, resulting in iden-
tical hoop compression in the liner pipe, such as in the analysis presented in Figure
4.22 in section 4.5.3.2. It should be noted that in the current analysis the outer pipe is
described by the ABAQUS built-in model, while in section 4.5.3.2 the user-subroutine
is used. However, the outer pipe deforms elastically in both cases, leading to identical
response. In the temperature-dependent case, the stiffness and strength of the outer pipe
are reduced significantly, and the outer pipe deforms plastically during the fabrication
process, while the hoop compression of the liner pipe is not significantly affected,
compared to the temperature-independent outer pipe material. Figure 4.26 shows an
identical liner hoop compression for temperature levels up to 92% of the outer pipe
temperature, while in higher temperature levels the liner hoop compression increases
slightly, leading to higher mechanical bonding.

T-dependent

(only	liner)

T-dependent

(both	pipes)

Figure 4.26 Liner compressive hoop stress (residual hoop stress) with respect to the liner
pipe temperature during pressurization, considering temperature-dependent materials
for both pipes.

The bending response is also investigated for the temperature dependent and tem-
perature independent properties of the outer pipe, considering liner temperature equal
to 57% (partially heated) and 100% (fully heated) of the outer pipe. Following the
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buckling definition established in section 3.4.2, in partially heated pipes the critical
curvature κcr is calculated equal to 1.001 and 1.030, for temperature-independent and
temperature-dependent outer pipe material. On the other hand, for fully heated TF Pipe
the critical curvature is calculated equal to 0.797 and 0.831, respectively. This increase
on the curvature values is attributed to the slight increase on liner hoop compression, as
shown in Figure 4.26, for each case. It should be noted that lined pipe bending occurs
after cooling down the pipe at Ti = 298 K, as described in sections 4.3.3 and 4.3.4.
Therefore, the decrease of stiffness and strength of both pipes at elevated temperature
levels occurs only during the manufacturing process. The temperature dependency of
the outer pipe material leads to plastic deformation in the outer pipe during the fabrica-
tion process, which also affects slightly the stress state during bending. However, the
liner pipe buckles locally at very low curvature levels, resulting in very small influence
of prior plastic deformation in the outer pipe during fabrication process

4.6 Summary of results

At the beginning of the present chapter, purely mechanical and thermo-mechanical
processes for lined pipe fabrication are simulated. In the case of elastically expanded
lined pipes, and for initial radial gap ranging from 35% to 75% of the liner pipe wall
thickness, a residual radial gap is observed at the end of the manufacturing process,
resulting in a lined pipe with no mechanical bonding. On the other hand, plastically
expanded lined pipes, as well as fully and partially heated TFP result in contact between
the liner and the outer pipe, associated with hoop compression of the liner pipe. The
results indicate that the TFP process induces higher hoop stress than the plastically
expanded lined pipe, while the mechanical bonding of partially heated TFP is higher
than the one in fully heated TFP. In thermo-hydraulic expanded pipes, reverse plastic
loading of the liner material has been detected during the manufacturing process,
implying that a cyclic-plasticity model should be used in the finite element model.

In the following, the bending behaviour of lined pipes, is investigated, accounting
for their manufacturing process. The main purpose of this analysis is the calculation
of the critical curvature of the liner under monotonic bending. The results show that
TF Pipes buckle at higher curvature compared with the hydraulically expanded pipes,
especially when partial heating of the liner occurs, highlighting the important influence
of prestressing of the liner pipe. In the case of plastically expanded lined pipes, the
critical curvature value is lower than that of the corresponding elastically expanded
lined pipes. With increasing plastic deformation of the liner, the critical curvature and
the corresponding half-wavelength of the wrinkled liner decrease, implying that, during
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manufacturing, the plastic deformation of the liner pipe has a significant effect on its
structural performance; this should be major parameter for the fabrication process.

In initially imperfect elastically expanded lined pipes, a residual geometric imper-
fection is observed after manufacturing, while for plastically expanded and fully heated
TF Pipes, the residual imperfection is negligible. The critical curvature of hydraulically
expanded pipes (both elastic and plastic) is imperfection sensitive, especially for small
values of imperfection amplitude. The imperfection sensitivity of fully heated TF Pipes
is less pronounced, due to the smooth inner surface of the outer pipe.

The beneficial effect of internal pressure on bending response has been verified.
This benefit has been more significant in fully and partially heated TF Pipes, but it is less
pronounced in plastically expanded lined pipes, due to excessive plastic deformation of
the liner pipe induced by the manufacturing process.

Finally, the influence of different levels of liner temperature on the bending response
of partially heated TF Pipes is investigated, assuming both temperature-independent
and temperature-dependent material properties. Under both assumptions, the residual
compression and the corresponding critical curvature of the liner pipe decreases as the
maximum temperature of the liner pipe increases. In case of temperature-dependent
materials, the outer pipe deforms inelastically during the manufacturing process, due to
the reduced strength at elevated temperature levels. However, the hoop compression in
the liner pipe and the corresponding buckling response are not affected significantly.
Considering temperature-dependent outer pipe material, it leads to plastic deformation
in the outer pipe during the manufacturing process, which also affects the stress state
during bending. However, the influence on liner pipe buckling response is rather small,
concluding that the assumption of temperature independent outer pipe material may
lead to reasonable results.
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Cyclic bending of steel lined pipes

5.1 Chapter outline

The present study investigates the structural behaviour of lined pipes, subjected
to cyclic loading conditions, representing loading conditions imposed by the reeling
installation process. Those loading conditions are associated with maximum curvature
values lower than the “critical” curvature determined by monotonic loading (sections
3.4.2 and 4.4). The study uses a single numerical model that simulates the manufacturing
process of a mechanically bonded lined pipe in its first stage and proceeds to its cyclic
loading in the second stage of the analysis, taking into account the entire plastic loading
history of the liner pipe during the fabrication process, including possible reverse plastic
loading. Advanced finite element models are employed to simulate the outer pipe and
liner response, including pipe wall wrinkling and local buckling, as well as its post-
buckling behaviour. The analyses are aimed at simulating the mechanical performance
of a mechanically bonded lined pipe subjected to five bending cycles, i.e. the two
bending cycles during reeling (Figure 1.3a), and three additional cycles, associated
with the case of a failure-repair scenario. The results pinpoint the severe effect of
cyclic loading on localized buckling of the liner pipe. Several analyses are conducted,
considering different bending curvature ranges, as an attempt to quantify the influence
of different reel and aligner radii. The effect of reverse bending during cyclic loading,
the influence of geometric imperfections of the liner pipe, the effect of different values
of liner wall thickness, the presence of low levels of internal pressure during cyclic
bending and the effect of different manufacturing parameters are also examined in detail
in the present chapter.
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5.2 Material properties and numerical modelling

5.2.1 Lined pipe geometry and material properties

In the present chapter, the analysis is conducted using a similar lined pipe considered
in the previous chapter, as presented in section 4.2.1 (Table 4.2). The outside diameter
(Do) and wall thickness (to) of the thick-walled outer pipe are equal to 12.75 in (323.85
mm) and 15.9 mm (0.63 in), whereas, the outside diameter (Dl) and thickness (tl) of
the thin-walled liner are 288.97 mm (11.38 in) and 2.8 mm (0.11 in), respectively,
corresponding to an initial radial gap (g0) between the liner and the outer pipe equal to
1.54 mm (55% of tl), following the initial gap range examined in the previous chapter.

The stress-strain curve used for simulating the X70 steel material of the seamless
outer pipe is shown in Figure 4.1, using the user-subroutine (UMAT) presented in
4.2.1. The use of a UMAT is dictated by the presence of plastic plateau, in carbon steel
upon first yielding, and the Bauschinger effect during reverse loading. Unfortunately,
ABAQUS built-in models can not model both features. The model implemented in the
UMAT accounts for a J2 plasticity model with non-linear kinematic/isotropic hardening.
The cyclic response of the X70 carbon steel material is calibrated with experimental
data reported by Herynk et al. (2007), while the material and hardening parameters of
this model are presented in Tables 5.1 and 4.1, respectively.

Table 5.1 Geometric and material properties of the outer and liner pipe.

Outer Diameter
(mm)

Thickness
(mm)

Young’s Modulus
(GPa)

Yield Stress
(MPa)

Poisson’s
Ratio

Liner 288.97 2.8 193 260 0.3
Outer 323.85 15.9 210 498 0.3

Furthermore, the geometric and material parameters of the liner pipe are summarised
in Table 5.1. To simulate the behaviour of liner pipe material, the ABAQUS/Standard
built-in model, as described in section 4.2.1, is used. It consists of a J2 (von Mises, 1928)
plasticity model with non-linear kinematic/isotropic hardening, considering multiple
back stresses. Two sets of kinematic hardening parameters Cq and γq (Chaboche, 1986;
Lemaitre and Chaboche, 1994) are considered, namely MAT-A and MAT-B. Both
material sets are calibrated with experimental data provided by Vasilikis (2018), and are
capable of predicting the cyclic strain-controlled response quite satisfactorily, as shown
in Figures 5.1 and 4.2. The MAT-A kinematic hardening parameters used for the cyclic
response of the liner pipe are C1,2,3,4 = 202000;16000;800;150 MPa and γ1,2,3,4 =

2800;150;3;1, while the corresponding MAT-B hardening parameters are the same that
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used in section 4.2.1 (C1,2,3 = 15000;23000;1800 MPa and γ1,2,3 = 1500;250;20). The
cyclic hardening of the liner pipe 316L material is modelled using the same isotropic
hardening parameters in both material sets (Q = 180 MPa and b = 5).
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Figure 5.1 Experimental cyclic stress-strain curve of liner pipe (Vasilikis, 2018) and
numerical fitting with MAT-A properties.

However, the material sets MAT-A and MAT-B predict a significantly different
rate of accumulation of plastic strain under non-symmetric stress controlled loading
conditions, referred to as material ratcheting (Bari and Hassan, 2002; Chaboche and
Nouailhas, 1989a,b) and this may be a significant factor in cyclic loading. To elucidate
this issue stress-controlled simulations are conducted for both materials A and B,
imposing the loading conditions reported in the tests by Kang and Gao (2005). In
those tests, 316L stainless steel coupons are cyclically loaded, applying a number of
cycles with four consecutive stress amplitudes, as shown in Table 5.2. Figure 5.2
presents the evolution of axial average strain (ratcheting) in those tests, defined as
εr = (εmax + εmin)/2, where εmax and εmin are the maximum and minimum axial strains
recorded in each cycle. The results in Figure 5.2 show that, despite the fact that MAT-A
and MAT-B predict in a very similar manner the strain-controlled loops in Figures
5.1 and 4.2, their prediction of the stress-controlled response is quite different. More
specifically, the predicted strains of MAT-A set is in very good agreement with strain
observed in the experiment, while the ratcheting rate of MAT-B is significantly lower.
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Based on material ratcheting predictions in 316L stainless steel specimens, MAT-A
set of parameters is used in the majority of the analyses that follow, whereas MAT-B
set is used only for comparison purposes in a small number of cases. The sensitivity
of material parameters on the mechanical response of the liner under cyclic loading is
examined in section 5.3.

Table 5.2 Loading conditions of mean (σm) and amplitude (σα ) stress history.

Number of
Cycles

Mean Stress
(σm/σy,l)

Amplitude
(σα/σy,l)

30 0 ±1.03
10 0.21 ±1.03
10 0.35 ±1.03
10 0.56 ±1.03

SS	316L

Figure 5.2 Evolution of average strain with respect to the number of cycles in stainless
steel 316L; experimental results from Kang and Gao (2005) and predictions from
MAT-A and MAT-B.
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5.2.2 Numerical modelling and manufacturing process description

In the present chapter, the analyses are performed using the numerical model
presented in section 4.2.2 and shown in Figure 4.3. The three-dimensional numerical
model represents of a lined pipe segment of length χ = 15 (χ = (L−z)/

√
Dm,ltl), while

the rest of the modelling parameters, such as boundary conditions, type of elements,
mesh density of each pipe and the interaction between both pipes follows the modelling
parameters as described in detail in section 4.2.2.

Furthermore, prior to simulating the cyclic bending of a lined pipe, the manufactur-
ing process is modelled. In the first stage, the thermo-hydraulic manufacturing process
is simulated, proceeding to the cyclic response of the lined pipe in the second stage
of the analysis. The complete process of the tight-fit pipe fabrication is described in
more detail in section 4.3.3, and is also shown in Figure 4.7. Moreover, the material
properties of both pipes are considered temperature-independent; this assumption may
not influence the mechanical bonding of both pipes and the corresponding bending
response significantly, as already demonstrated in the previous chapter in section 4.5.3.3.
The fully heated tight-fit pipe is used for all the analyses presented in the current chapter,
while the effect of different fabrication processes on the cyclic response of a lined pipe
is examined in section 5.4.6.

5.3 Numerical results for a geometrically perfect lined
pipe

In the current section, the cyclic loading behaviour of a mechanically bonded lined
pipe is investigated, using the three-dimensional lined pipe model shown in Figure 4.3.
In the first part of the analysis, the thermo-hydraulic (TFP) manufacturing process, with
heating temperature of the liner pipe equal to the outer pipe temperature, is simulated,
as described in section 4.3.3 (Figure 4.7). Subsequently, in the second part of the
analysis, the lined pipe is subjected to five consecutive bending cycles representing an
installation/repair scenario.

During reeling, the pipeline goes through two main bending cycles, while in a case
where a serious defect is detected, the installation process is stopped so that the pipe
is repaired (Vasilikis, 2018). In this case, the pipeline is spooled and unspooled again
passing through the aligner, the reel and the straightener, adding three bending cycles
until the repaired pipeline leaves the reeling vessel. Therefore, a total of five cycles are
considered.
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The vales of curvature κ are equal to kr = φ/L, where φ is the rotation range applied
on the reference node at z = L and are normalised by the curvature-like parameter
ko = to/D2

m,o. The loading path has been chosen so that the applied curvature ranges
∆κ represent a pipe passing through a reeling (Cycles 1 and 2) and repair scenario
(Cycles 3, 4 and 5), with a global bending strain εb = Do/2ρ (where ρ is the radius of
curvature corresponding to the neutral axis of the pipe). In the analysis presented in
current section, the εb value is equal to 1.59%, and is referred to as “Case I”, while the
applied curvature for each cycle is shown in Table 5.3 in more detail. In the case of
reeling, this corresponds to reel (Rreel) and aligner (Raligner) radii equal to 10 m, which
is a typical value in practical reeling applications [Chapter 2 in the book by Kyriakides
and Corona (2007)]. Furthermore, a negative curvature is applied, representing the
deformation that the pipe undergoes passing through the straightener during the reeling
process. In the present section, the pipes are considered imperfection-free, while the in-
fluence of initial geometric imperfections of the liner pipe is investigated in section 5.4.3.

Table 5.3 Normalised curvature and global bending strain for the five bending cycles in
Case I.

Number of
Cycle

Normalised Curvature
(κ)

Bending Strain
(εb %)

1
0 ➝ 0.587 0 ➝ 1.59
0.587 ➝ 0 1.59 ➝ 0

2
0 ➝ 0.587 0 ➝ 1.59

0.587 ➝ -0.133 1.59 ➝ -0.72
-0.133 ➝ 0 -0.72 ➝ 0

3
0 ➝ 0.587 0 ➝ 1.59
0.587 ➝ 0 1.59 ➝ 0

4
0 ➝ 0.587 0 ➝ 1.59
0.587 ➝ 0 1.59 ➝ 0

5
0 ➝ 0.587 0 ➝ 1.59

0.587 ➝ -0.133 1.59 ➝ -0.72
-0.133 ➝ 0 -0.72 ➝ 0

In Figure 5.3, the total moment applied on the double-walled pipe is presented with
respect to the number of bending cycles. The value of moment is normalised by Mo =

σy,oD2
m,oto, where Dm,o is the mean diameter of the outer pipe, so that m = MTotal/Mo.
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The detachment of the liner pipe from the outer pipe at 12 o’clock location reaches
its maximum value at χ = 0 and is presented in Figure 5.4, normalised by the wall
thickness of the liner pipe (tl), with respect to the number of bending cycles. The 12
o’clock position (Figure 4.3) corresponds to the side of the lined pipe that is compressed
first during cyclic bending loading (positive curvature values), and represents the side
of the pipe that is in contact with the reel and the aligner in the case of reeling. Figure
5.5 presents the corresponding buckling configurations of the liner pipe at 12 o’clock
location, showing that during the first two bending cycles a uniform wrinkling pattern
develops along the compression side of the liner with amplitude less than the wall
thickness of the liner pipe (“a”, “b”). In the last three cycles, the detachment increases
rapidly (“c”) leading to local buckling of the liner and the formation of a main buckle A
with four minor adjacent buckles B (“d”, “e”, “f”), as shown in Figure 5.6.
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Figure 5.3 Normalised bending moments of the lined (bi-material) pipe (m) and the
liner pipe (ml) for loading Case I, with respect to the number of cycles.

Liner pipe detachment at χ = 0 and 6 o’clock location is also presented in Figure
5.4, with respect to the number of bending cycles. The 6 o’clock position (Figure 4.3)
corresponds to the side of the lined pipe that exhibits tension during initial bending. At
the end of the second cycle, the liner pipe is slightly detached from the outer pipe, while
at the end of the third cycle the liner pipe has developed some small wrinkles (“a”), as
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shown in Figure 5.7. Subsequently, during the fourth cycle (“b”), four adjacent local
buckles B develop on the liner pipe. Buckles B are completely formed at the end of the
fifth cycle, representing the reverse bending of the pipe on the straightener (“c”) at the
end of the repair.

a
b

c

d

e

f

g

h

i

j

Figure 5.4 Normalised detachment at 12 and 6 o’clock positions of the liner pipe, with
respect to the number of cycles (Case I).

The results presented in Figure 5.4 indicate that the detachment of the liner pipe
is larger at the 12 o’clock position, than the one at the 6 o’clock position, because the
cyclic loading is non-symmetric. The evolution of detachment is also presented at 6
o’clock on the fifth cycle; bending deformation is not so severe on this side of the pipe,
compared to 12 o’clock location. Finally, the bending moment carried by the liner pipe
is plotted in Figure 5.3, with respect to the number of bending cycles, showing that the
bending moment of the liner pipe exhibits a significant reduction on the third cycle,
leading to local buckling in a diamond-type mode. The detachment at the 12 o’clock
location increases rapidly on the same curvature value of the third cycle, as shown in
Figure 5.4, leading to the buckling pattern “c” of Figure 5.5. Therefore, the last three
cycles are considered important for the liner pipe, in terms of local buckling, while a
low amplitude wrinkling is developed during the first two cycles.
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a

b

c

d

e

f

Δ	

Figure 5.5 Sequence of liner pipe deformation and detachment (∆), presenting the
buckling configuration during cyclic bending, at 12 o’clock location; the configurations
of this figure correspond to the stages of Figure 5.4.

Finally, the effect of material parameters (MAT-A and MAT-B sets) on cyclic
response is investigated, in an attempt to examine the sensitivity of results to small
variations of material properties. In each case, the lined pipe is fully heated following
the manufacturing process described in section 4.3.3 and subsequently loading Case
I is applied (Table 5.3). Figure 5.8 presents the normalised detachment of the liner
at 12 o’clock location for the two sets of material parameters MAT-A and MAT-B,
with respect to the loading cycles. There is a striking difference of structural response
obtained from the two sets of material properties. Using MAT-B properties, the liner
pipe undergoes significantly smaller liner deformation and its gradual detachment
develops with a significantly lower rate than the MAT-A case, as shown in Figure 5.8.
More specifically, at the third cycle the detachment of the liner pipe using MAT-B
properties is 81% lower compared to the MAT-A case. In terms of liner local buckling,
the liner pipe using MAT-A set buckles locally during the third cycle, while in the
case of MAT-B material properties the liner pipe buckles locally at a later stage during
the fourth cycle, highlighting the effect of material parameters on the cyclic response.
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This is attributed to the substantially lower rate of ratcheting predicted by MAT-B in
comparison with MAT-A (see Figure 5.2). Those results indicate that material ratcheting
has a paramount effect on the prediction of cyclic bending response of lined pipes and
should be taken into account for calibrating the material model, using appropriate data
from stress-controlled cyclic material testing. Given the fact that the stress-controlled
material response of MAT-A is closer to the experimental data as discussed in section
5.2.1, MAT-A properties are considered more reliable in representing the response of
316L liner material, and will be employed exclusively for the following parametric
analyses.

B

B

A

BB

B BA

A

z=0 z=L

χ=15
χ=0

Figure 5.6 Local buckling of the liner pipe at χ = 0 location.
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g

h

i

j

Δ

Figure 5.7 Sequence of liner pipe deformation and detachment (∆), presenting the
buckling configuration during cyclic bending, at 6 o’clock location; the configurations
of this figure correspond to the stages of Figure 5.4.

Figure 5.8 Effect of material properties on the mechanical response of lined pipes;
normalised detachment of the liner pipe (∆) at 12 o’clock location, with respect to
loading cycles, for loading Case I.
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5.4 Influence of various parameters on structural re-
sponse

In the following sections, the influence of several parameters on the cyclic response
of lined pipes is examined. The effect of different loading cases on the cyclic perfor-
mance of the liner pipe is investigated first. Imperfection sensitivity of the liner pipe
is also considered in the form of two initial geometric configurations. Subsequently,
the structural stability of the liner pipe under cyclic loading is examined assuming
different wall thickness values, including the effect of moderate levels of internal pres-
sure. Finally, the influence of different types of manufacturing processes on the cyclic
performance of the liner pipe is analysed.

5.4.1 Cyclic loading under non-negative bending curvature

In addition to Case I loading, presented in section 5.3, alternative loading sequences
are also considered in the present section. In Case II, the lined pipe undergoes five
consecutive bending cycles, with bending strain that ranges from zero to the maximum
bending strain of Case I (εb = 1.59%). The exact loading sequence in terms of the
corresponding applied curvatures and bending strains with respect of the number of
cycles are presented in Table 5.4. The main feature of this loading case is the absence
of negative curvature. Therefore, comparison of the results from loading Cases I and II
would indicate the effect of straightener during the reeling process on liner buckling. In
this comparison, the thermo-mechanical manufacturing process is followed, as described
in section 4.3.3, and the liner pipe is considered free of geometrical imperfections.

Figure 5.9 presents the normalised moment of the lined and liner pipe, with respect
to the number of cycles, while the normalised detachment of the liner pipe from the
outer pipe is shown in Figure 5.10. The results show that the detachment of the liner pipe
under loading Case II is lower compared with the one under Case I. More specifically,
the normalised detachment of the liner at points “c”, “d” and “e” in Figures 5.4 and
5.10, is decreased by 50%, 20% and 8%, respectively, in Case II with respect to Case
I. The different buckling performance of the liner for the two loading cases is more
apparent in Figures 5.5 and 5.11. In both loading cases, the liner pipe buckles locally,
forming one main (A) and four minor (B) buckles. In Case I, this occurs at the third
cycle (bending configuration “c” in Figure 5.5), whereas in Case II it occurs at the
fourth cycle (bending configuration “d” in Figure 5.11).
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Table 5.4 Normalised curvature and global bending strain for the five bending cycles in
Case II.

Number of
Cycle

Normalised Curvature
(κ)

Bending Strain
(εb %)

1
0 ➝ 0.587 0 ➝ 1.59
0.587 ➝ 0 1.59 ➝ 0

2
0 ➝ 0.587 0 ➝ 1.59
0.587 ➝ 0 1.59 ➝ 0

3
0 ➝ 0.587 0 ➝ 1.59
0.587 ➝ 0 1.59 ➝ 0

4
0 ➝ 0.587 0 ➝ 1.59
0.587 ➝ 0 1.59 ➝ 0

5
0 ➝ 0.587 0 ➝ 1.59
0.587 ➝ 0 1.59 ➝ 0
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Figure 5.9 Normalised bending moments of the lined (bi-material) pipe (m) and the
liner pipe (ml) for loading Case II, with respect to the number of cycles.
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The difference of liner detachment amplitude between the two loading cases is
apparent in Figures 5.12 and 5.13, where the horizontal axis represents the number
of cycles. In each bending cycle there are four loading stages, namely bending of the
pipe, unloading, reverse bending and unloading. The present numerical results on the
evolution of liner detachment in Figures 5.12 and 5.13 are qualitatively in accordance
with the ones presented by Tkaczyk et al. (2011). Furthermore, the liner detachment at
12 o’clock position (Figure 5.12) in loading Case II is significantly reduced highlighting
the influence of negative curvature values imposed by the straightener on liner buckling
performance. Furthermore, at the end of the fifth cycle, the liner pipe has a much
smaller wrinkling amplitude at the 6 o’clock position in Case II than in Case I (Figure
5.13).

a

b

c

d

e

f

Figure 5.10 Normalised detachment (∆) at 12 o’clock location, with respect to the
number of cycles (Case II).
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a
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c

d

e

f

Δ

Figure 5.11 Sequence of liner pipe deformation and detachment (∆), presenting the
buckling configuration during cyclic bending at 12 o’clock location, for loading Case
II; the configurations of this figure correspond to the stages of Figure 5.10.
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Figure 5.12 Normalised detachment of the liner pipe at 12 o’clock position, with respect
to loading cycles, for loading Cases I and II.

Figure 5.13 Normalised detachment of the liner pipe at 6 o’clock position, with respect
to loading cycles, for loading Cases I and II.
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5.4.2 Application of different bending loading cases

The effect of different values of maximum bending strain during the five loading
cycles is also investigated, considering two additional loading cases. Those involve
non-negative bending strain cycles, with the purpose of identifying the effect of different
bending strain ranges, compared with the strain range of Case II. Case III consists of
five cycles with bending strain that ranges from zero to 1.93% (cycles 1, 4) and 1.59%
(cycles 2, 3, 5); the loading path is presented in more detail in Table 5.5. The maximum
values of strain represent a reel/aligner radius equal to 8.23 m (εb = 1.93%) and 10 m

(εb = 1.59%) respectively. Furthermore, Case IV consists of five cycles with bending
strain ranging from zero to 1.93% (cycles 1, 4) and from zero to 1.25% (cycles 2, 3, 5),
and the loading path is presented in detail in Table 5.6. Case IV represents a reel and
aligner radii equal to 8.23 m (εb = 1.93%) and 12.79 m (εb = 1.25%), respectively. In
both additional cases, the bending strain values represent real case scenarios (Chapter 2
in the book by Kyriakides and Corona (2007)). In all the above cases, imperfection-free
lined pipes are considered.

Table 5.5 Normalised curvature and global bending strain for the five bending cycles in
Case III.

Number of
Cycle

Normalised Curvature
(κ)

Bending Strain
(εb %)

1
0 ➝ 0.711 0 ➝ 1.93
0.711 ➝ 0 1.93 ➝ 0

2
0 ➝ 0.587 0 ➝ 1.59
0.587 ➝ 0 1.59 ➝ 0

3
0 ➝ 0.587 0 ➝ 1.59
0.587 ➝ 0 1.59 ➝ 0

4
0 ➝ 0.711 0 ➝ 1.93
0.711 ➝ 0 1.93 ➝ 0

5
0 ➝ 0.587 0 ➝ 1.59
0.587 ➝ 0 1.59 ➝ 0

The normalised bending moment of the lined pipe for Cases III and IV is presented
in Figures 5.14 and 5.15, with respect to loading cycles. In these figures, the normalised
bending moment carried by the liner pipe is also depicted. The results show that, in
both cases, the liner pipe undergoes a uniform wrinkling pattern at the end of the second
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cycle. In Case III the liner buckles locally at the beginning of the third cycle, associated
with the slight drop of moment of the liner pipe shown in Figure 5.14. In Case IV,
uniform wrinkling does not grow further during the second and third cycle, due to the
low value of the maximum normalised curvature (κ = 0.462), while during the fourth
cycle the liner pipe buckles locally, at a value of normalised curvature equal to 0.711,
corresponding to reel radius equal to 8.23 m.

Table 5.6 Normalised curvature and global bending strain for the reeling and repair
cycles in Case IV.

Number of
Cycle

Normalised Curvature
(κ)

Bending Strain
(εb %)

1
0 ➝ 0.711 0 ➝ 1.93
0.711 ➝ 0 1.93 ➝ 0

2
0 ➝ 0.462 0 ➝ 1.25
0.462 ➝ 0 1.25 ➝ 0

3
0 ➝ 0.462 0 ➝ 1.25
0.462 ➝ 0 1.25 ➝ 0

4
0 ➝ 0.711 0 ➝ 1.93
0.711 ➝ 0 1.93 ➝ 0

5
0 ➝ 0.462 0 ➝ 1.25
0.462 ➝ 0 1.25 ➝ 0

The normalised detachment of liner pipe for the different non-negative bending
loading cases (II, III, IV) is also presented in Figure 5.16. In all cases, during the first
two cycles, the liner detaches from the outer pipe forming short-wave uniform wrinkles,
which may be considered an acceptable situation during reeling of a lined pipe. This
is more apparent in Case III, which involves a more severe loading history than Cases
II and IV, resulting in 87% larger detachment than the other two cases. At the fourth
cycle, in all cases, the liner pipe exhibits significant detachment from the outer pipe
leading to local buckling.
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Figure 5.14 Normalised bending moments of the lined (bi-material) pipe (m) and the
liner pipe (ml) for loading Case III, with respect to the number of cycles.

0 1 2 3 4 5
Cycle

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

N
or

m
al

iz
ed

 M
om

en
t (

m
)

-0.15

-0.10

-0.05

0

0.05

0.10

0.15

N
or

m
al

iz
ed

 M
om

en
t o

f t
he

 L
in

er
 P

ip
e 

(m
l)m

ml

Figure 5.15 Normalised bending moments of the lined (bi-material) pipe (m) and the
liner pipe (ml) for loading Case IV, with respect to the number of cycles.
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Figure 5.16 Normalised detachment of the liner pipe at 12 o’clock position, with respect
to loading cycles, for loading Cases II, III and IV.

5.4.3 Buckling of imperfect liner pipe

In the present section, sensitivity analysis of the cyclic bending performance of
a lined pipe in the presence of initial geometric imperfections is conducted. The
initial imperfection refers to the liner pipe only, while the outer pipe is considered
geometrically perfect. Two shapes of geometric imperfections are examined. The first
configuration is a uniform wrinkling pattern of the liner pipe, called “IMP-1” and shown
in Figure 5.17a. The second type of imperfection is the buckling configuration of the
liner, observed in the previous analyses, with a main buckle (A) and four minor buckles
(B), called “IMP-2” and shown in Figures 5.17b. In both cases, the imperfect shapes
refer to wrinkles with amplitude at 12 and 6 o’clock locations of the liner, and maximum
value (∆0) equal to 10% of the wall thickness of the liner pipe (tl) at χ = 0 location.
For both types of imperfection, to conduct a fair comparison the same manufacturing
process is followed, as described in section 4.3.3, and the lined pipe is subjected to
loading Case II, as presented in section 5.4.1 and Table 5.4.

The normalised bending moment of the liner pipe, for the pipe with perfect liner
and the two different types of imperfection, is presented in Figure 5.18. For the perfect
and the IMP-1 cases, the liner pipe develops a uniform wrinkling pattern, at the end
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Figure 5.17 Initial geometric configurations of both types of imperfection of the liner
pipe.
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of the second cycle. In the case of imperfection 1, the liner pipe buckles locally at the
beginning of the third cycle. In Figure 5.18, the moment of liner exhibits a slight drop,
indicating liner local buckling, which is in accordance with the results in Figure 5.19,
where a rapid increase of detachment is observed. For the case of a perfect liner pipe,
buckling occurs at a latter stage (fourth cycle), as shown in Figures 5.9 and 5.18 where
the moment of the liner drops gradually and the corresponding detachment increases
(Figures 5.10, 5.19). On the other hand, in the IMP-2 case the liner pipe starts to
develop a local buckling pattern at 12 o’clock location at the end of the second cycle.
Figure 5.18 shows that the bending moment of the liner for the IMP-2 is slightly lower.
This result is consistent with the curves in Figure 5.19, where at the third cycle, the
detachment of the liner pipe increases more rapidly and corresponds to 44% and 93%
larger value, compared with the IMP-1 and perfect cases, respectively. This result
shows that IMP-2 corresponds to the worst case scenario in terms of the imperfection
sensitivity of the liner pipe, and is in accordance with observations reported in previous
publications (Vasilikis, 2012; Vasilikis and Karamanos, 2012) and in the previous
Chapters 3 and 4. It should be noted that the worst case scenario is determined in
terms of liner detachment, which is assumed as the performance criterion of interest in
lined pipes. Early stage liner detachment may lead to local buckling in a diamond-type
mode, which is as the main limit state. This might lead to cracking of the liner pipe
under operational thermo-mechanical loads, resulting in corrosion of the outer pipe
with significant environmental impact.
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Figure 5.18 Normalised bending moments of the liner pipe (ml) for the perfect and
imperfect liners, with respect to loading cycles, for loading Case II.
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P

Figure 5.19 Normalised detachment of the liner pipe (∆) for the perfect and imperfect
liners, with respect to loading cycles, for loading Case II.
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5.4.4 Liner pipe wall thickness

Numerical analyses with different values of wall thickness of the liner pipe have
been conducted, in order to investigate its effect on the cyclic response of the liner
pipe. It is expected that increasing liner wall thickness, the detachment of the liner pipe
would be retarded, delaying or even preventing buckling of the liner pipe during the
five loading cases. In addition to the base case (also called tl,A in the current section)
as described in section 5.2.1, three different pipes are examined, considering liners
with increased wall thickness by 25% (tl,B = 3.5 mm), 50% (tl,C = 4.2 mm) and 100%
(tl,D = 5.6 mm). In the present analyses, liners are considered geometrically perfect,
while the internal pressure during the manufacturing process is properly adjusted, in
order to result in equal equivalent mechanical bonding conditions at the end of the
process, i.e. in a hoop compression equal to the same percentage of the yield stress of
the liner (σθ/σy,l). The loading path applied in the present study is the one Case II,
presented in detail in Table 5.4.

Figure 5.20 shows the bending moment, carried by the liner pipe, with respect to
the applied curvature. For consistency, moment and curvature values are normalised
by Mo = σy,oD2

m,oto and ko = to/D2
m,o, respectively. As expected, there is an increase

of liner moment as the liner wall thickness increases. Furthermore, liner detachment
evolution normalised by the wall thickness of the base case (tl,A), with respect to five
bending cycles, is presented in Figure 5.21 for each case. As already mentioned in
section 5.4.1, the liner pipe with wall thickness equal to tl,A results in uniform wrinkling
during the second bending cycle, and buckles locally during the fourth cycle, an event
that corresponds to moment drop. However, assuming wall thickness values equal to
tl,B and tl,C, the liner pipe presents uniform wrinkling of significantly smaller amplitude
at the end of the fifth cycle, as shown in Figure 5.22, while the corresponding moment
is slightly reduced per cycle, due to wrinkling and small increase of detachment. The
decrease of liner detachment in each case, is compared with the base case (thickness
equal to tl,A), and the comparison depicted in Figures 5.21 and 5.22, shows that for the
case of tl,D the liner pipe has a very good performance, with slight detachment from
the outer pipe. At the end of the second cycle, the normalised detachment of the liner
pipe is 34%, 44% and 50% lower for tl,B, tl,C and tl,D, respectively, compared with the
base case tl,A. Before the end of the fifth cycle, the corresponding differences in the
detachment amplitude are 140%, 163% and 184% due to local buckling of the liner pipe
in the base case (tl,A). As a result, considering slightly thicker liner than the base case,
the lined pipe is capable of undergoing five loading cycles with only minor wrinkling.
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Figure 5.20 Normalised bending moments of the liner pipe (ml) for different wall
thickness values of liners, with respect to loading cycles, for loading Case II.

Figure 5.21 Normalised detachment of the liner pipe (∆) for different wall thickness
values of liners, with respect to loading cycles, for loading Case II.
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Δ

tl,A

tl,B

tl,C

tl,D

Figure 5.22 Sequence of liner pipe deformation and detachment (∆), presenting the
buckling configuration at the end of fifth cycle at 12 o’clock location, for different liner
wall thickness values, for loading Case II.

5.4.5 Cyclic response under internal pressure

The cyclic bending response of a lined pipe under moderate level of internal pressure
is investigated. Internal pressure is aimed at preventing detachment and, eventually,
buckling of the liner pipe, without increasing the liner wall thickness. The beneficial
effect of moderate level of internal pressure on monotonic bending response is examined
extensively in the previous chapters (sections 3.4.2 and 4.5.2). Moreover, the cyclic
response of lined pipes under high level of internal pressure has also been examined
in previous publications (Sriskandarajah et al., 2013b; Toguyeni and Banse, 2012),
showing its beneficial role.

In the present work, the effect of low level pressure on cyclic response is investigated.
An imperfection-free lined pipe is considered for the purposes of this investigation,
as described in section 5.2.2. In the analysis procedure, after the end of the thermo-
hydraulic manufacturing process, internal pressure 0.5 MPa is applied, equal to 10%
of the plastic pressure of the liner pipe (Py,l = 2σy,ltl/Dm,l , where Dm,l is the mean
diameter of the liner pipe). A tensile force (Fp) is also applied on the reference node in
the z = L plane (as shown in Figure 4.3), equal to the product of the internal pressure
times the internal cross-section of the liner (Fp = Pinπ(Dl −2tl)2/4) in order to simulate
the force at the two capped ends due to the internal pressure. This force, often referred

- 136 -



Chapter 5 5.4 Influence of various parameters on structural response

to as “capped-end force”, follows the orientation of reference node (follower force).
The internal pressure and the magnitude of capped-end force remain constant during
cyclic bending. In this analysis, Case II loading path is applied.

In Figure 5.23, the normalised bending moment of the liner pipe (ml) under pres-
surized and non-pressurized conditions is plotted, with respect to the loading cycles.
In the case of non-pressurized lined pipe, the liner pipe detaches from the outer pipe,
buckles locally, and exhibits a drop of moment at the fourth cycle, as shown in Figure
5.23 and described in more detail in section 5.4.1. On the other hand, in the presence of
a moderate level of internal pressure, the liner pipe does not detach from the outer pipe
during the five bending cycles and local buckling is prevented.
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Figure 5.23 Normalised bending moments of the liner pipe (ml) for pressurized, non-
pressurized and different wall thickness values of liner pipes, with respect to loading
cycles (loading Case II and pressure equal to 0.5 MPa for all the pressurized pipes).

To elucidate this issue, and examine the combined effect of pressure and liner
thickness on cyclic bending response, keeping the level of pressure constant (0.5 MPa),
the mechanical behaviour of thinner liners is investigated. This analysis can be regarded
as an attempt to reduce the cost of a lined pipe. Two additional values of thickness
are examined, reducing the base case tl,A by 15% (tl,E = 2.38 mm) and 25% (tl,F = 2.1
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mm). The thermo-hydraulic manufacturing process is taken into account for each
case, adjusting the fabrication pressure in order to obtain an equivalent mechanical
bonding in terms of the σθ/σy,l ratio at the end of the process. Following the simulation
of the fabrication process, internal pressure and the corresponding capped-end force
are applied to the desired level (0.5 MPa), which are kept constant throughout the
subsequent application of five bending cycles. Figure 5.23 presents the normalised
moment of each liner pipe. In both cases, no liner pipe detachment has been detected,
verifying the beneficial effect of this moderate level of internal pressure on detachment
and local buckling. Therefore, applying an internal pressure at a level of 10% of Py,l

constitutes a promising solution for preventing liner buckling under cyclic loading.
These results could motivate the industry at establishing new practices during reeling of
lined pipes. This argument is investigated further in the next chapter in section 6.4.6
using a more rigorous three-dimensional reeling model.

Finally, additional analyses are performed, with internal pressure ranging from 5%
(0.25 MPa) to 8% (0.41 MPa) of the liner pipe plastic pressure (Py,l). The liner pipe
wall thickness is equal to tl,A, and the Case II loading path is applied. Initially, the fully
heated thermo-hydraulic manufacturing process is performed in the analysis, followed
by the application of internal pressure. Figure 5.24 presents the liner detachment during
spooling of the fifth cycle at 12 o’clock location, for different internal pressure levels.
The results show that for internal pressure equal to 8% of Py, l, the liner pipe does not
detach from the outer pipe, similar to the case of 10% pressure level. For pressure level
equal to 5%, the liner pipe exhibits very small amplitude wrinkling. The corresponding
maximum value of ∆ is equal to 0.448, and occurs during spooling of the fifth cycle.
Furthermore, at the end of loading a negligible liner detachment is detected with a value
of ∆ equal to 0.091. The numerical results indicate that in the case of the minimum
internal pressure level examined in the present study (5% of Py,l), local buckling of the
liner is prevented, while the 8% pressure level could be considered as the minimum
pressure level which provides zero liner detachment during Case II loading.
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Figure 5.24 Sequence of liner pipe deformation and detachment (∆); buckling configura-
tion during spooling of fifth cycle at 12 o’clock location, for different internal pressure
values (loading Case II).

5.4.6 Alternative manufacturing processes

The lined pipes, examined in the previous sections, are manufactured through the
thermo-hydraulic process. In that process, the liner reaches the temperature of the outer
pipe during the pressurization step. This case is referred to as fully heated tight-fit pipe
(TFP FH), and is described in detail in section 4.3.3. In Chapter 4, it was demonstrated
that the type of manufacturing process, as well as the value of several parameters within
a certain process may affect bending response by a substantial amount. In the present
section, the cyclic loading performance of lined pipes is examined, considering an
alternative thermo-mechanical process and a purely mechanical process. The lined
pipes are assumed geometrically perfect, having the same geometrical and material
properties described in section 5.2.1 and summarized in Table 5.1, and are subjected to
the Case II loading path.
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The thermo-hydraulic fabrication process is discussed in more detail in section 4.3.4,
while Figure 4.8 presents the response of both pipes during the fabrication process.
During the pressurization step ( 1 → 2 ) the liner is partially heated (denoted as TFP
PH) up to Tl = 388 K, which is 57% of the outer pipe’s temperature. It is noted that the
term “partially” implies uniform heating of the liner pipe up to a lower temperature level
than To. In this case, the liner pipe exhibits a smaller amount of thermal hoop expansion,
resulting in a smaller drop of the hoop stress, as shown in Figure 4.8. Reverse plastic
loading (RPL) occurs during the depressurization step, as denoted by the horizontal
arrow before the end of stage 3 . At the end of the fabrication process ( 3 ), the liner
pipe is at higher hoop compression stress, compared to the fully-heated process (TFP
FH).

In addition, a purely hydraulic manufacturing process is also simulated, consisting
of applying internal pressure during pressurization of the lined pipe that exceeds the
plastic pressure of the outer pipe, equal to 59.9 MPa (117% of Py,o). The pipe fabricated
through this manufacturing process will be referred to as “plastically expanded”. 4.6
shows that the liner expansion is initially elastic, and subsequently inelastic ( 0 → 1 ),
until the liner establishes contact with the outer pipe. Then both pipes expand together
( 1 → 2 ), and at the end of stage 2 the outer pipe is also deformed plastically. This is
followed by depressurization of both pipes ( 2 → 3 ). After depressurization, due to
the larger elastic deformation in the outer pipe, compared with the one in the liner pipe,
the two pipes remain in mechanical bonding, and the contact pressure depends on the
size of the initial gap, as reported in sections 4.3.2 and 4.3.5.

In Figures 5.25, 5.26, the normalised bending moment and the corresponding liner
detachment are plotted for the different manufacturing processes, with respect to the
bending cycles. The case of fully heated TF Pipe has been examined in detail in section
5.4.1. In this pipe, the liner wrinkles at the end of the second cycle, which is associated
with the slight drop in the liner bending moment shown in Figure 5.25, while local
buckling occurs in the fourth cycle. In the case of partially heated TF Pipe, the liner
detaches in the second cycle and develops wrinkles of lower amplitude size, compared
with those of the fully heated TF Pipe, as shown in Figure 5.26. In this case, the liner
exhibits a localized buckling pattern at the fifth cycle, while the bending moment of
the liner pipe presents a slight drop, which is also shown in Figure 5.25. This result is
in accordance with the superior structural response of partially heated TF Pipe during
monotonic bending, as presented in section 4.4.1. Increasing the hoop compression
of the liner pipe at the end of fabrication process leads to an increase of the axial
compression, due to von Mises (1928) yield criterion (Figure 2.2b).
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Figure 5.25 Normalised bending moments of the liner pipe (ml) for different manufac-
turing processes, with respect to loading cycles, for loading Case II.

On the other hand, the cyclic response of plastically expanded lined pipes is quite
different. In this case, local buckles develop in the liner pipe very soon, during the
first cycle, in a pattern with a main buckle with the adjacent four minor buckles. This
means that -practically- liner buckling initiates under monotonic loading conditions,
before even reverse loading is applied, and this is presented in Figures 5.25, 5.26 by the
moment drop and the abrupt increase of the detachment. This early-stage buckling of
the liner pipe is attributed to the severe plastic deformation of the liner pipe during the
manufacturing process. Beyond the second cycle, excessive deformation occurs and,
therefore, the plastically expanded pipe is examined only on the first two loading cycles,
which results in 160% and 193% larger detachment than the fully heated and partially
heated TFP, respectively.

The previous observations indicate superior performance of partially heated TF
Pipes, compared with the one of fully heated TF Pipes and poor performance of
plastically expanded pipes against structural instability. Those conclusions are in
accordance with those reported in the previous Chapter 4 (section 4.4) that refers to
monotonic bending of the lined pipes under consideration.
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Figure 5.26 Normalised detachment of the liner pipe (∆) at 12 o’clock position, for
different manufacturing processes, with respect to loading cycles, for loading Case II.

5.5 Summary of results

In the present chapter, the structural behaviour of mechanically bonded lined pipes
is examined, subjected to five bending cycles, representing offshore reeling installation
conditions and the subsequent repair cycles in the case of a failure/repair scenario. A
three-dimensional model is created, simulating in the first stage of the analysis, the
manufacturing process with a thermo-mechanical expansion (TFP FH) of the lined
pipe as base case, and in the second stage, the cyclic bending response. The numerical
results refer to 12.75 in diameter pipe, with a thickness equal to 15.9 mm. The results
underline the significant effect of liner material properties, especially its ratcheting
behaviour, on lined pipe cyclic response. This indicates the importance of performing
both stress-controlled and strain-controlled material tests to determine the appropriate
values of material parameters. The influence of negative bending curvature is examined,
representing the load imposed by the straightener during reeling installation. Compared
to bending cycles with non-negative curvature, it is found that local buckling of the
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liner occurs at an early stage, immediately after the end of the negative curvature
application, and leads to the development of significantly higher detachment at both 12
and 6 o’clock locations. Furthermore, the influence of two different shapes of initial
geometric imperfection of the liner pipe is analysed, considering imperfection amplitude
equal to 10% of liner wall thickness. It is shown that pipes with uniform wrinkling
imperfection, buckle during the fourth cycle, similar to the imperfection-free pipe. On
the other hand, in liners with imperfection in the form of the local buckling shape,
earlier buckling occurs, at the beginning of the third cycle, indicating that this is the
worst imperfection case. Several pipes with increased wall thickness of the liner pipe,
up to twice the thickness of the base case (tl,A), were also considered. In all those cases,
no local buckling is detected during the five loading cycles, despite the observation of
a slight detachment. The cyclic response of internally pressurized lined pipes, under
relatively low level of pressure (5%, 8% and 10% of Py,l), verified the beneficial effect
of pressure. The results show that in the case of 5% of Py,l , a negligible liner detachment
is detected, while local buckling of the liner pipe is prevented. Furthermore, the 8%
pressure level could be considered as the minimum pressure level which provides zero
detachment during the five bending cycles, even for liners with quite small thickness.
Finally, the manufacturing process is also shown to influence significantly the structural
instability of the liner under cyclic loading. Partial heating of the liner (TFP PH) results
in higher hoop compression of liner by the outer pipe at the end of the process, due to
smaller amount of thermal expansion of the liner pipe, and for this case local buckling
occurs at a later stage than the fully heated case. On the other hand, a purely hydraulic
process, in which the fabrication pressure induces plastic deformation in the outer pipe,
results in premature local buckling of the liner due to the severe plastic deformation of
the liner material during manufacturing.
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Reeling of lined pipes and its influence
on liner buckling

6.1 Chapter outline

The work in the present chapter investigates the structural response of lined pipes
during spooling-unspooling and straightening, representing the loading conditions
during the reeling installation process. Those loading cycles impose a maximum
curvature value lower than the “critical” curvature that causes liner local buckling under
monotonic loading (sections 3.4.2 and 4.4). The present study uses a single numerical
model that starts with the simulation of the manufacturing process of a mechanically
bonded lined pipe and proceeds to its reeling performance in the second stage of the
analysis, taking into account the entire plastic loading history of the liner pipe during
the fabrication process, including possible reverse plastic loading. An advanced finite
element model is developed to model the mechanical response of the outer and the liner
pipe, capable of simulating possible pipe wall wrinkling and local buckling, as well
as its post-buckling behaviour. The analyses are aimed at simulating the mechanical
performance of a mechanically bonded lined pipe subjected to five spooling-unspooling
loading cycles, i.e. the two cycles during reeling (Figure 1.3a), and three additional
cycles, associated with the case of a failure/repair scenario. The effect of straightener at
the end of reeling is also simulated, using a three-point bending scheme. The results
pinpoint the severe effect of cyclic loading on localized buckling of the liner pipe.
Several analyses are conducted, considering different reel diameter values, as an attempt
to quantify its influence on liner buckling response. The effect of straightener during
reeling, the structural response of the liner under different back tension levels, the
influence of geometric imperfections of the liner pipe, the effect of different values of

- 144 -



Chapter 6 6.2 Material properties and numerical modelling

liner wall thickness and the presence of low levels of internal pressure during reeling
are also investigated in detail in the present study.

6.2 Material properties and numerical modelling

6.2.1 Lined pipe geometry and material properties

In the following analyses, the same material and geometric properties considered in
the previous chapter are used, as shown in Table 5.1, and the structural response of a
lined pipe during reeling is investigated. The lined pipe consists of a thick-walled outer
pipe, made of X70 carbon steel material, and a thin-walled inner pipe, made of stainless
steel 316L. The user-subroutine (UMAT) is used for the outer pipe considering the same
material parameters, described in more detail in section 4.2.1, while the stress-strain of
the outer pipe is shown in Figure 4.1. Furthermore, the non-linear kinematic/isotropic
hardening plasticity (built-in) ABAQUS model is used for the liner pipe, as described in
section 5.2.1, considering the MAT-A material parameters, which account accurately for
the plastic strain accumulation under non-symmetric stress controlled loading conditions
(Kang and Gao, 2005), as presented in Figure 5.2.

6.2.2 Finite Element Modelling

In the present chapter, a three-dimensional numerical model is developed to simulate
the reeling process of a lined pipe, using the general-purpose finite element software
ABAQUS (Hibbitt et al., 2016) and considering non-linear geometry in the description
of parts of the numerical model. The reel is represented as a circular rigid surface
of radius Rreel , which constitutes a major loading parameter, defined in the following
sections. The total length of the lined pipe is equal to one hundred and fifty (150) times
the outer diameter of the outer pipe (Do). One end of the lined pipe is kinematically
connected to the reel, as shown in Figure 6.1, while the other end is placed between
rollers, allowing only horizontal displacement of the pipeline. Furthermore, the lined
pipe is incrementally reeled around the reel by applying an appropriate rotation ω

(shown in Figure 6.1), while a constant tensile force, called “back tension”, is applied
at the other end during the reeling process. Finally, the model considers half the cross-
section, using symmetry with respect to the y-z-plane of bending, as shown in Figure
6.2.
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Figure 6.2 Lined pipe cross-section mesh (for SEG-A, SEG-B and SEG-C sections).

The thin-walled liner pipe is modelled with four-node linear shell elements (S4),
while the outer pipe is modelled with eight-node linear solid elements (C3D8). In the
present research, the objective is to simulate the winding-unwinding and straightening
effect of the reeling installation method on the buckling response of the liner pipe. As
already presented in previous publications (Vasilikis, 2012; Vasilikis and Karamanos,
2013; Yuan, 2015; Yuan and Kyriakides, 2014a) and also in Chapters 3, 4 and 5, short-
wave wrinkles develop at the compression side of the liner pipe, which grow further
with gradual increase of the applied curvature, leading to local buckling of the liner
pipe. In order to capture the buckling phenomena and the accurate wavelength of the
liner pipe while optimizing computational efficiency, the lined pipe should be modelled
with the appropriate mesh following similar density mesh to those used by Yuan and
Kyriakides (2020).
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The lined pipe is divided into four segments (SEG-A, SEG-B, SEG-C and SEG-
D), as shown in Figure 6.1. SEG-A is an “entry section” connected to the reel with
six outer diameters (Do) length, containing sixty elements on the axial direction (z-
axis) for both pipes. The “test section”, denoted as SEG-B, follows, containing three
hundred and six hundred elements in the axial direction for the outer and the liner pipe,
respectively. At this point, it should be noted that the liner pipe in SEG-B section has
been initially modelled with three hundred elements, following the work reported by
Yuan and Kyriakides (2020), and four hundred elements in the axial direction (denoted
as “MA”). However, this discretization was not able to produce converged results for
liner wrinkling at 6 o’clock location, as shown in Figure 6.3. Using five hundred and
six hundred elements, also called “MB” and “MC”, similar results were obtained. Six
hundred elements are considered in the present study. The length of SEG-B is equal
to six times the diameter of the outer pipe. Subsequently, a section with coarser mesh
than the SEG-B section follows; it has forty four elements in the axial direction for the
outer and the liner pipe with thirteen outer diameters length. In those three sections,
the number of elements around the circumference is equal to eighty for each pipe. In
order to simulate the formulation of local buckling at 12 and 6 o’clock location of the
cross-section, a finer mesh is adopted containing twenty five elements for 0 ≤ θ ≤ π/4
and 3π/4 ≤ θ ≤ π , while thirty elements are used for π/4 ≤ θ ≤ 3π/4, as shown in
Figure 6.2. Summarizing, SEG-A section contains {z,θ , t}= {60,80,2} elements for
the outer pipe and {60,80,1} elements for the liner pipe, SEG-B contains {300,80,2}
and {600,80,1} elements, while SEG-C contains {44,80,2} and {44,80,1} elements
for both the outer and the liner pipe, respectively.

An additional “trailing section” (denoted as SEG-D) is considered following the
SEG-C section, in order to simulate that the SEG-B, which is the pipe segment that the
results are extracted from, experiences the loads that are representative during an actual
reeling process. Beam elements could have been used to reduce the computational cost,
but the ovalisation of the pipe will not be described accurately and that may also affect
the deformation of SEG-B and SEG-C section. Therefore, solid and shell elements are
used for the outer and liner pipe, respectively, similar to the previous sections of the
pipe. The elements in SEG-D section do not establish contact with the reel, so a coarser
mesh is considered containing {z,θ , t} = {105,12,1} elements for the outer and the
liner pipe, respectively, while the length of SEG-D section is equal to one hundred and
twenty five (125) outer diameters. The outer and the liner pipe elements in this section
are connected with the corresponding elements of SEG-C section of the lined pipe,
using the “Tie Constraint” feature in ABAQUS.
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In addition, three circular rigid surfaces, denoted as RB-A, RB-B and RB-C, are
developed, capable of performing three point bending on SEG-B section after the
winding-unwinding cycles. The three point bending represents the straightener, as
shown in Figure 1.3 schematically, resulting in zero residual curvature before the
pipeline leaves the vessel. The complete reeling process is investigated, including the
effect of straightening, and is presented later in the present chapter in section 6.3.

Finally, contact between the outer and the liner pipe is modelled using a surface-to-
surface interaction, with finite-sliding contact, allowing for separation and frictionless
sliding/rotation without penetration between the two surfaces, an assumption also
used in previous works (Vasilikis, 2012; Vasilikis and Karamanos, 2012; Yuan, 2015;
Yuan and Kyriakides, 2014a) and in the previous chapters (sections 3.2.2, 4.2.2 and
5.2.2). Furthermore, contact between the rigid surfaces and the deformable lined pipe
is modelled considering the rigid surfaces as “master” and the pipe as “slave” surface,
using an exponential softening contact pressure-overclosure algorithm in ABAQUS
with 0.7 MPa and 0.001 mm (Yuan and Kyriakides, 2020) as representative pressure
and clearance values, respectively. All contacts in the present model are considered
frictionless.

Figure 6.3 Liner wrinkle amplitude at 6 o’clock location in SEG-B section, for different
mesh densities in the axial direction.
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6.3 Reeling of geometrically perfect lined pipes

In the present section, the structural response of a mechanically bonded pipe during
reeling is investigated, using the three-dimensional model shown schematically in
Figure 6.1 and presented in detailed in section 6.2.2. In the first part of the analysis, the
thermo-mechanical (TFP) manufacturing process is simulated, as described in section
4.3.3 and shown in Figure 4.7, while in the second part of the analysis, the lined pipe
is subjected to five winding-unwinding cycles representing a real installation-repair
scenario. As mentioned previously in section 5.3, if a serious defect is detected, the
installation process is stopped and the pipe is repaired. In this case, except for the two
main bending cycles of reeling, the pipeline is spooled and unspooled again passing
through the aligner, the reel and the straightener, adding three bending cycles until the
repaired pipeline leaves the reeling vessel.

The present model is a useful addition in the knowledge of the effect of reeling
on pipelines structural performance. Extensive numerical models have been reported
examining the mechanical behaviour of single wall pipes during spooling/unspooling
on a drum (Liu and Kyriakides, 2017; Liu et al., 2017, 2015), while more recently
Yuan and Kyriakides (2020) presented numerical results on spooling monotonically a
double-walled pipe onto a reel. The present study constitutes an attempt to develop a
more complex numerical model, which considers the plastic deformation of the liner
pipe during the manufacturing process, and simulates further the cyclic response of
lined pipe under five cycles, accounting also the significant influence of straightener on
liner buckling.

Considering a reel radius Rreel equal to 10 m, which is a typical value in practical
applications (Kyriakides and Corona, 2007), the spooling process is simulated by
applying a rotation ω = 45◦, as shown in Figure 6.1, subjecting the lined pipe to global
bending strain εb = Do/(2Rreel +Do) equal to 1.59%. The angle ω is chosen so that
the test section SEG-B, where the results are extracted from, is fully wound onto the
reel and a significant part of the SEG-C section is also in contact with the reel, as shown
in Figure 6.4, ensuring that further rotation of the reel will not affect the SEG-B section.
In addition, at the end of the second and fifth cycle, a three point bending of the lined
pipe is performed, simulating pipeline straightening. The RB-1 and RB-2 rigid surfaces
are located at the beginning and at the end of SEG-B section, while RB-3 translates
downwards at y direction bending the lined pipe. The RB-3 translation is appropriately
chosen in order to obtain local curvature equal to zero at the end of straightening process,
in the middle section of SEG-B segment (black cross in Figure 6.4).
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Figure 6.4 Sequence lined pipe configurations during spooling onto a reel; the colour
contours represent the equivalent plastic strain (εq).

During reeling, a constant “back tension” force is applied to control the configuration
shape of the pipeline free span, and avoid local buckling (Brown et al., 2004; DNV-
OS-F101, 2013; Kyriakides, 2017; Manouchehri, 2012). Therefore, a back tension
force is applied in the present study, which is equal to 2% of the yield tension of the
outer pipe (Tp = σy,oπDm,oto, where Dm,o = Dm − to is the mean diameter of the outer
pipe), following typical values used in the industry (Vasilikis, 2018) and in previous
publications (Liu and Kyriakides, 2017). This is in agreement with the expression
presented by Manouchehri (2012), calculating the back tension force according to the
plastic moment of the outer pipe (the outer pipe in this case) over the radius of the
reel. The aforementioned loading is referred to as “Reeling Case I”. In the present
section, the pipes are considered imperfection-free, while the influence of geometric
imperfections of the liner pipe is investigated in the following section 6.4.4.

In Figure 6.5, the total bending moment on the double-walled pipe is presented
with respect to the number of cycles. The moment is calculated in the middle section
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of the SEG-B segment (denoted with a black cross in Figure 6.4), summing the axial
stress resultants acting on each node of the cross section multiplied by their distance
from mid-surface. The value of bending moment is normalised by Mo = σy,oD2

m,oto,
where Dm,o is the mean diameter of the outer pipe, so that m = MTotal/Mo. As the
reel incrementally rotates, the pipeline arches upwards, and the total moment increases
reaching a maximum value, which corresponds to the point where the middle of the
SEG-B segment establishes contact with the reel. During unwinding, as the pipeline is
lifted off the reel, the bending moment drops and becomes negative, due to straightening
of the pipeline and the applied back tension force.
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Figure 6.5 Normalised bending moments of the bi-material lined pipe (m) and the liner
pipe (ml), with respect to the number of cycles, for loading Reeling Case I.

Subsequently, Figure 6.6 presents the maximum detachment of the liner pipe from
the outer pipe at 6 o’clock location with respect to the bending cycles. The detachment
is calculated in the middle of SEG-B segment and normalised by the wall thickness
of the liner pipe (tl). The 6 o’clock location corresponds to the side of the lined pipe
that is compressed first during reeling and establishes contact with the reel, as shown
in Figure 6.2. Figure 6.7 shows the corresponding buckling patterns of the liner at 6
o’clock location, indicating that during the first two reeling cycles a uniform wrinkling
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is formed along the compression side of the liner pipe with amplitude less than the
wall thickness of the liner pipe (configurations “a” and “b”). Moreover, the normalised
half-wavelength is equal to 1.373 (lhw = Lhw/

√
Dm,ltl , where Dm,l is the mean diameter

of the liner pipe), which is in accordance with previous results presented in the previous
chapters.

a b

c

d

e

f

Figure 6.6 Liner normalised detachment (∆) at 6 o’clock location, with respect to the
number of cycles, for loading Reeling Case I.

During the repair cycles, the liner pipe detaches rapidly (“c”) and local buckling
begins to develop, as shown in Figure 6.8. In particular, during the last two cycles of
repair the liner pipe buckles locally forming a main buckle A and four adjacent minor
buckles B (configurations “d”, “e”, “f”). The minor buckles are not symmetric around
the main buckle A, compared with previous publications (Vasilikis and Karamanos,
2012, 2013; Yuan and Kyriakides, 2014a) nor with the results presented in Chapters
3, 4 and 5 in the present work, where a pure bending model is used. This asymmetry
is attributed to the non-uniform curvature experienced by the current pipe segment, as
the pipeline engages the reel. This observation is also presented in Figure 6.9, where
a part of the SEG-B segment is shown at 6 o’clock location during the five reeling
cycles. At this point, it should be highlighted that liner pipe collapse in a diamond-type
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buckling mode is considered as the main limit state of lined pipes. This performance
criterion is considered unserviceable and might lead to cracking of the liner pipe under
operational thermo-mechanical loads, resulting in corrosion of the outer pipe. Therefore,
in case that the pipeline undergoes only the reeling cycles with global bending strain
εb = 1.59%, assuming that the failure scenario does not happen, the liner pipe ends
with minor wrinkling. Furthermore, the normalised bending moment carried by the
liner pipe (ml) is presented in Figure 6.5, with respect to the reeling cycles, showing
that the moment of the liner pipe gradually reduces during the fourth cycle, where the
liner detachment is abruptly increased, leading to a diamond-type local buckling of the
liner pipe (configuration “d” of Figure 6.8).

In addition, the ovalisation of the outer pipe is presented in Figure 6.10, calculated
in the middle section of SEG-B segment (black cross in Figure 6.4). It is defined
as ζo = (Dm,o,h −Dm,o,v)/(Dm,o,h +Dm,o,v), where Dm,o,h and Dm,o,v are the deformed
horizontal and vertical mean diameters of the outer pipe, a definition also used by API
RP 1111 (1999); Kyriakides and Corona (2007); Murphey and Langner (1985). A
gradual increase of the ovalisation is observed during winding, while a small local
spike occurs when the cross-section establishes contact with the reel. The ovalisation of
the outer pipe cross-section remains constant with further rotation of the reel. During
unwinding, the ovalisation is initially constant when the cross-section remains in contact
with the reel. When the cross-section loses contact with the reel, a local spike is shown,
an observation reported in previous publications (Kyriakides, 2017; Liu et al., 2017). As
the unwinding proceeds, gradual decrease of the ovalisation is followed. At the second
reeling cycle, the ovalisation of the outer pipe is equal to 0.59%, before straightening,
and increases to 0.86% afterwards, showing the influence of straightener on cross-
sectional ovality. The effect of “straightener” is also shown at the end of the fifth cycle,
where the ovality increases from 1.17% to 1.32%.

The values of curvature k are normalised by the curvature-like parameter ko =

to/D2
m,o, where to and Dm,o is the wall thickness and the mean diameter of the outer

pipe, respectively, so that κ = k/ko. Figure 6.11 presents the local curvature κ of the
outer pipe calculated on the neutral axis of the pipe in the middle of SEG-B section
(black cross in Figure 6.4) by fitting three nearby nodes of the outer pipe on a circle with
local radius equal to 1/(κko). Initially, the local curvature increases during winding,
reaching a maximum curvature value on the first 2πRreel pipeline length, which is in
contact with the reel. With continuing spooling and packing the pipeline on the drum,
the applied curvature gradually decreases. Subsequently, during unwinding, the pipeline
loses contact with the reel, the local curvature decreases, and residual local curvature
exists at the end of each cycle. These values range from 0.088 to 0.120, depending on
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the cycle, while the local curvature is zero at the end of the second and fifth cycle after
performing the straightening of the pipeline.

Δ
x

z

z

y

a

b

Side	view	of	liner Bottom	view	of	liner
(6	o'clock	location)

liner

reel

Figure 6.7 Sequence of liner pipe deformation and normalised detachment (∆), at 6
o’clock location; the configurations of this figure correspond to stages “a” and “b” of
Figures 6.6, which are the regular installation cycles.
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Figure 6.8 Sequence of liner pipe deformation and normalised detachment (∆), at 6
o’clock location; the configurations of this figure correspond to stages “c”-“f” of Figure
6.6, which refer to the last three cycles because of repair.
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Figure 6.9 Three-dimensional configuration of the buckled liner pipe, for the deforma-
tion configurations shown in Figures 6.7 and 6.8; half of the pipe is shown referring to
the part in contact with the reel.

Finally, Figure 6.12 presents the evolution of liner detachment for the complete
reeling model for Reeling Case I loading, presented in the current chapter in section
6.2.2, compared with the pure cyclic bending model, employed in Chapter 5, under
Case I loading. At this point, it should be also noted that the 6 o’clock location in the
present chapter (Figure 6.2) corresponds to the 12 o’clock location in Chapter 5 (Figure
4.3). In both loading cases, the pipe is geometrically perfect, and is manufactured using
the fully heated TFP process. In the present case, the liner detachment in each cycle is
significantly lower than the one calculated with the pure bending model. In the pure
bending model, the applied curvature on the pipe ranges from zero to the maximum
value (κ ∈ [0,0.587], with curvature range ∆κ = 0.587), while in the present case a
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residual curvature is observed during unwinding (κ ∈ [κres,0.587], where κres > 0 and
curvature range ∆κ = 0.587−κres < 0.587); as a result, the pipeline is cyclically loaded
under a smaller curvature range, leading to a smaller strain range, and therefore the
evolution of plastic deformation in the liner pipe is also lower, delaying the formation
of local buckling. It should be also noted that using the present model, the liner pipe
during unwinding does not develop wrinkles or local buckles at the opposite location
(the 12 o’clock location shown in Figure 6.2). This is different than the response of the
pipe under pure bending model; this difference is attributed to the residual curvature
after unwinding. The smaller curvature range loading results in a lower rate of plastic
strain accumulation in the liner pipe; as a result the formation of local buckling at 12
o’clock location is not developed during the five cycles.

Figure 6.10 Ovalisation (ζo) of the outer pipe at the SEG-B section, with respect to the
number of cycles, for Reeling Case I.
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Figure 6.11 Local curvature (κ) of the lined pipe at the SEG-B section, with respect to
the number of cycles, for loading Reeling Case I.

Figure 6.12 Normalised detachment of liner pipe at 6 o’clock position with respect to
loading cycles for Reeling Case I, compared with the corresponding cyclic bending
Case I from Chapter 5 using a pure bending model.
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6.4 Effect of various parameters on lined pipe reeling

In the following sections, the effect of several parameters on the reeling performance
of lined pipes is investigated. The influence of straightening and different reel diameters
on the buckling response of the liner pipe are investigated first. The effect of different
back tension forces is also examined, while imperfection sensitivity of the liner pipe is
considered assuming an initial configuration of the liner with geometric imperfections.
Finally, the structural stability of the liner pipe during reeling is examined assuming
different wall thickness values of the liner pipe, while the effect of moderate levels of
internal pressure is also investigated.

6.4.1 Effect of straightener on liner buckling

In addition to Reeling Case I, analysed in the previous section 6.3, an alternative
loading case is also investigated in the present section, referred to as Reeling Case II.
In this case, the mechanically bonded pipe undergoes five consecutive reeling cycles,
in the absence of straightener, which is performed in the current analysis by a three
point bending at the end of the second and fifth cycle. The reel diameter (Rreel) equals
to 10 m (εb = 1.59%) and the back tension force is 2% of the yield tension (Tp) of the
outer pipe, and remains constant during the five reeling cycles. The main feature of
Reeling Case II is the absence of negative curvature values on SEG-B segment of the
pipe. Therefore, the comparison of the numerical result from Reeling Cases I and II
would indicate the influence of straightener on liner pipe buckling. The fully heated
thermo-mechanical manufacturing process, presented in section 4.3.3, is considered,
and both pipes are assumed free of geometric imperfections.

Figure 6.13 presents the normalised bending moment of the lined pipe and the liner
pipe calculated in the middle section of SEG-B segment, with respect to the number
of reeling cycles. A reduction on the liner bending moment occurs during the fourth
cycle, while the moment drop on the fifth is more pronounced, indicating significant
detachment of the liner pipe, associated with local buckling. Accounting for this issue,
the normalised detachment of the liner pipe is presented in Figure 6.14, showing a
significant increase of the maximum liner detachment on the fourth reeling cycle. At
this stage, the liner pipe starts buckling locally, forming a main buckle with four minor
adjacent buckles. Figures 6.7 and 6.15 present the buckling configurations of the liner
pipe during the five reeling cycles, showing the formation of a uniform wrinkling of
the liner pipe at the 6 o’clock location during the first three cycles, while the liner pipe
buckles locally during the last two cycles. Figure 6.14 also presents the difference
in liner detachment amplitude between the Reeling Cases I and II to highlight the
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effect of reverse bending on liner buckling response. The detachment in Reeling Case
I is significantly more pronounced during the last three cycles, after straightening the
pipeline at the end of the second cycle, showing its significant influence on liner pipe
buckling response. More specifically, liner detachment during spooling in Reeling Case
II is 74%, 36% and 17% lower than in Reeling Case I at the third, fourth and fifth cycle,
respectively.
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Figure 6.13 Normalised bending moments of the lined (bi-material) pipe (m) and the
liner pipe (ml), with respect to the number of cycles, for Reeling Case II.

Furthermore, the ovalisation of the outer pipe, with respect to the reeling cycles, is
presented in Figure 6.16 for Reeling Case II, showing a lower increase rate compared
with the Reeling Case I. The ovalisation in Reeling Case II is equal to 0.51% and 0.75%
at the end of the second and fifth cycle, respectively, and reaches a maximum value
equal to 1.7% during spooling of the fifth cycle. In Reeling Case I, the corresponding
values are 0.87%, 1.32% and 2.10%. Finally, Figure 6.17 shows the evolution of
local curvature of the outer pipe at the middle section of SEG-B segment. The local
curvature measured ranges between a residual value, which equals to κ = 0.120, and
the maximum curvature value during spooling (κ = 0.587).
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Figure 6.14 Normalised detachment of the liner pipe at 6 o’clock position, with respect
to loading cycles, for Reeling Cases I and II.
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Figure 6.15 Sequence of liner pipe deformation and normalised detachment (∆), at 6
o’clock location; the configurations of this figure correspond to stages “c”-“f” of Figure
6.14, which refer to the last three cycles because of repair.
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Figure 6.16 Ovalisation (ζo) of the outer pipe at the SEG-B section, with respect to the
number of cycles, for Reeling Case II.

Figure 6.17 Local curvature (κ) of the lined pipe at the SEG-B section, with respect to
the number of cycles, for Reeling Case II.
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6.4.2 Different reel diameter values

The influence of different global bending strains, considering different reel diam-
eters, on liner pipe buckling during the five loading cycles is also investigated. Two
additional loading cases are examined in the present paragraph aimed at identifying the
effect of reel size, and are compared with Reeling Case II, and they are denoted as Reel-
ing Case III and IV. In Reeling Case III, the reel radius is equal to 8.23 m, corresponding
to global bending strain εb = 1.93%, while Reeling Case IV consists of a reel with
radius 12.79 m and εb = 1.25%, respectively. The choice of the specific bending strain
εb values is related to reeling vessel characteristics, presented by Kyriakides and Corona
(2007). In both cases, the fully heated thermo-mechanical manufacturing process is
followed, presented in section 4.3.3, and both pipes are considered imperfection-free.
The back tension force is equal to 2% of yield tension Tp, while the reel maximum
rotation (ω) is adjusted to 55◦ and 36◦ for Reeling Cases III and IV, in order to wind
and unwind the same pipeline length.

Figure 6.18 presents the normalised bending moment of the liner pipe (ml), with
respect to the reeling cycles. A slight drop of moment is observed in the fourth cycle,
where the liner detachment increases significantly and uniform wrinkling of the liner
pipe leads to local buckling (configuration “d” in Figure 6.15), while local buckling
is completely formed in the fifth cycle and the corresponding moment drop is more
pronounced. In Reeling Case III, the moment of the liner pipe drops abruptly in the
third cycle, indicating local buckling of the liner pipe. This result is verified in Figure
6.19, where the normalised detachment of the liner pipe for the different loading cases,
with respect to the reeling cycles, is presented. In this case, uniform wrinkling of
the liner is developed during the second cycle, local buckling occurs during the third
cycle, and therefore, the last two cycles may not be performed. In Reeling Case IV,
the maximum value of liner moment remains unchanged through the reeling cycles.
A slight detachment is observed in Figure 6.19, resulting in a very low amplitude
wrinkling formation. More specifically, in Reeling Case III, the liner detachment during
spooling of the third cycle is 156% and 192% larger than the corresponding detachment
in Reeling Case II and IV, respectively. The results indicate that for global bending
strain εb values equal to 1.59% and 1.93%, the liner pipe forms uniform wrinkling
during the reeling cycles and buckles locally during repair, while for εb = 1.25% the
liner pipe undergoes five cycles avoiding local buckling.
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Figure 6.18 Normalised bending moment of the liner pipe (ml), with respect to the
number of cycles, for Reeling Cases II, III and IV.

In addition, Figure 6.20 depicts the local curvature of the outer pipe (κ), calculated
on the neutral axis of the pipe in the middle section of SEG-B segment, fitting a circle
on three nearby nodes of the pipe in each Reeling Case (II, III and IV), with respect
to the reeling cycles. A residual local curvature is observed for all three cases during
unspooling, equal to κ = 0.120, while the maximum curvature value on the lined pipe
during spooling is 0.587, 0.711 and 0.462, for Reeling Cases II, III and IV, respectively.
Reducing the reel radius, the applied curvature range increases, resulting in increasing
the rate of plastic strain accumulation in the liner pipe and earlier formation of local
buckling. The effect of reel diameter on the ovalisation of the outer pipe (ζo) is also
presented in Figure 6.21, with respect to the reeling cycles. Increasing the reel diameter,
the outer pipe ovalisation increases significantly. More specifically, cross-sectional
ovality at the end of the third cycle equals to 0.58%, 1.02% and 0.28% for Reeling
Cases II, III and IV, while the maximum ovalisation value during the same cycle is
1.53%, 2.28% and 0.94%, respectively.
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Figure 6.19 Normalised detachment of the liner pipe (∆), with respect to the number of
cycles, for Reeling Cases II, III and IV.
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Figure 6.20 Local curvature (κ) of the lined pipe in SEG-B section, with respect to the
number of cycles, for loading Reeling Cases II, III and IV.
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Figure 6.21 Ovalisation (ζo) of the outer pipe in SEG-B section, with respect to the
number of cycles, for Reeling Cases II, III and IV.
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6.4.3 Influence of back tension

In the previous sections, back tension is considered equal to 2% of the yield tension
of the outer pipe (Tp = σy,oπDm,oto, where Dm,o is the mean diameter of the outer pipe),
which is a typical value used in practice (Liu and Kyriakides, 2017; Manouchehri,
2012; Vasilikis, 2018). However, Manouchehri (2012) reported that in several cases,
the back tension force is higher than the ratio of plastic moment of the pipe over the
reel radius, to achieve efficient packing and avoid local buckling on the reel. In this
section, different levels of back tension, varying from 1% to 10% of yield tension Tp,
are applied examining its effect on liner detachment evolution, compared with the base
case presented in section 6.4.1. In this parametric investigation, Reeling Case II is
considered. Furthermore, it is assumed that the pipe is fabricated with the fully heated
thermo-mechanical manufacturing process, presented in section 4.3.3 in detail, and it is
free of geometric imperfections.

Figure 6.22 presents the variation of local curvature (κ) of the pipeline at segment
SEG-B, with respect to the loading cycles, for back tension levels equal to 1%, 2%,
4%, 7% and 10% of the yield tension Tp of the outer pipe cross-section. The results
show that the back tension level affects significantly the residual local curvature at the
end of each cycle. The value of residual curvature, for back tension level equal to 1%,
2%, 4%, 7% and 10%, is 0.143, 0.120, 0.076, 0.040 and 0.004, respectively, while
the maximum curvature observed in all the different levels of back tension is 0.587;
this corresponds to the curvature value of the first 2πRreel pipeline length, which is in
contact with the reel. Once this pipeline length is wound, the pipe is bent under a larger
radius of curvature (Rreel +Do), decreasing the maximum curvature that the pipeline is
bent at.

This observation is also shown in Figure 6.23, where the shape of the pipeline during
spooling and unspooling is presented for 1% and 10% levels of tension. At the end of
unspooling, the pipeline is straighter for the case of 10% Tp than the case of 1% Tp and
the corresponding residual curvature value is very small. The results indicate that the
increase of tension during spooling controls pipeline curvature as it engages with the
reel, reducing the transition length of the pipe. This observation is shown in Figure
6.23, where in the case of 1% Tp the pipeline is arched upwards and the local curvature
gradually increases as a pipe cross-section approaches the reel, until the cross-section is
fully wound and the maximum curvature value is reached. On the other hand, in the
case of 10% Tp the pipeline is straighter during spooling, indicating very small value of
local curvature of a cross-section far from the reel. Approaching the reel, the curvature
of a cross-section remains small, due to the high tensile force value; it increases to the
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maximum just before is wound onto the reel. A similar observation was reported by
Liu and Kyriakides (2017) for single wall pipes.

Furthermore, the ovalisation of the outer pipe (ζo) for various values of back tension
is presented in Figure 6.24, with respect to the reeling cycles. It is shown that increasing
the back tension, pipeline ovalisation also increases, a result also mentioned in previous
publications (Kyriakides, 2017; Liu et al., 2017). The inelastic response of thick-walled
pipes, under combined bending on a stiff curved surface and axial tension, has been
investigated extensively by Dyau and Kyriakides (1992) and Kyriakides et al. (1994).
The distributed transverse load on the reel is equal to the tension force times the bending
curvature. The transverse force, due to contact with the stiff curved surface, increases
the cross-sectional ovalisation of the bent pipe, compared with the response of a stand
alone pipe under bending. Therefore, increasing the initial tensile force the cross-
sectional ovalisation of the bent pipe also increases. Experimental and analytical results
that verify this argument are presented in more detail by Kyriakides and Corona (2007).

Increasing
back	tension

Figure 6.22 Local curvature (κ) of the lined pipe at the SEG-B section with respect to
the number of cycles, for different values of back tension, and for Reeling Case II.
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Increasing
back	tension

Figure 6.24 Ovalisation (ζo) of the outer pipe at the SEG-B section for different back
tensions, with respect to the number of cycles, for Reeling Cases II.

At the end of the fifth cycle, cross-sectional ovality of the outer pipe in the middle of
the SEG-B segment is 0.54%, 0.78%, 1.19%, 2.05% and 3.23% for back tension level
equal to 1%Tp, 2%Tp, 4%Tp, 7%Tp and 10%Tp, respectively, while the corresponding
maximum value equals to 1.43%, 1.70%, 2.26%, 3.24% and 4.53%; these values explain
the significant influence of back tension on pipe ovalisation, while the cross-sectional
ovality of the pipeline is strongly related to the external collapse pressure (Chatzopoulou
et al., 2016a; Kyriakides et al., 1989; Liu et al., 2017).

Finally, Figure 6.25 presents the detachment of the liner pipe from the outer pipe
for 1%, 2% and 4% of yield tension Tp, over the loading cycles. The results show that
increasing the back tension level, liner detachment also increases, and as a result, the
liner pipe buckles locally at an earlier stage. During the fourth cycle spooling, and for
the case of 2%Tp and 4%Tp back tension, the liner detachment is 95% and 114% higher
than in the case of 1%Tp back tension. Increasing the back tension, the cross-sectional
ovalisation of the outer pipe increases, which ovalises further the liner pipe, due to
confinement, reducing its bending stiffness. Moreover, the applied curvature range also
increases, justifying the higher liner detachment values. This observation is also shown
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in Figure 6.22, where the maximum curvature value corresponds to the pipeline segment
which is in contact with the reel, while the minimum value of the curvature reduces
as back tension increases, amplifying the curvature range applied on the pipe. On the
other hand, increasing the back tension level further, a decrease on liner detachment is
observed. Figure 6.26 shows the liner detachment for back tension levels equal to 4%Tp,
7%Tp and 10%Tp, with respect to the loading cycles. During spooling on the fourth
cycle, for 7%Tp and 10%Tp levels, the liner detachment is 24% and 173% lower than
the one that occurs at the 2%Tp level. Furthermore, increasing the applied back tension,
the compression at 6 o’clock location decreases during spooling. More specifically,
during spooling on the first cycle, the longitudinal strain of the liner pipe in the middle
section of SEG-B (black cross in Figure 6.4) at 6 o’clock location, is equal to −1.34%,
−1.26%, −1.17%, −1.06% and −0.96%, for 1%, 2%, 4%, 7% and 10% of tension
level, respectively. For 1%Tp, 2%Tp and 4%Tp levels, the increasing curvature range is
shown to affect the increasing liner detachment. On the other hand, considering the 4%,
7% and 10% levels, the rate of plastic strain accumulation in the liner pipe decreases
with increasing back tension, delaying liner detachment and local buckling formation.

Figure 6.25 Normalised detachment of the liner pipe (∆) with respect to the number of
cycles, for back tension levels equal to 1%, 2% and 4% of yield force Tp, for Reeling
Case II.
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Figure 6.26 Normalised detachment of the liner pipe (∆) with respect to the number of
cycles, for back tension levels equal to 4%, 7% and 10% of yield force Tp, for loading
Reeling Cases II.

6.4.4 Reeling of imperfect liner pipe

A sensitivity analysis is conducted on the reeling performance of lined pipes in the
presence of initial geometric imperfections. Those imperfections refer to liner pipe
only, while the outer pipe is considered geometrically perfect in its initial state. The
shape configuration of the initial imperfection is a uniform wrinkling pattern, as shown
in Figure 6.27, similar to the liner pipe wrinkles observed in the analysis, described
in section 6.4.1. Initial wrinkles of small amplitude on the liner pipe are noticed in
experimental test specimens (Focke, 2007). The initial wrinkles are assumed at 6 and
12 o’clock locations of the liner, where local buckling might occur under cyclic loading.
The imperfection is considered in SEG-B section, with maximum value (∆0) equal to
10% of the liner pipe wall thickness (tl), while the rest of liner sections are considered
geometrically perfect. The loading scheme is the one followed in Reeling Case II, with
back tension equal to 2% of yield tension Tp.
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Figure 6.27 Initial configuration of liner pipe imperfection (SEG-B section).

Figure 6.28 presents the normalised bending moment of the liner pipe (ml) for
the perfect and imperfect liner, with respect to the loading cycles. In the absence of
imperfections, the liner pipe exhibits uniform wrinkling during the first three cycles,
and buckles locally at the fourth cycle, showing a slight moment drop. For imperfect
liner, the bending moment of the liner slightly drops earlier, during the third cycle,
indicating the formation of a local buckle. This observation is also verified in Figure
6.29, where the normalised detachment of the liner pipe, with respect to the loading
cycles, is presented. An abrupt increase on liner detachment occurs in the third cycle,
while the detachment of the imperfect liner, during spooling in the third, fourth and
fifth cycle, is 82%, 28% and 9% higher than the detachment of the perfect liner pipe,
respectively. More specifically, the imperfect liner buckles locally in an earlier stage, at
the third cycle, while the geometrically perfect liner forms a low amplitude wrinkling
presenting the highest detachment difference. During spooling of the fourth cycle, the
already buckled imperfect liner presents a high detachment value, while the perfect
liner start forming local buckling, reducing the detachment difference between both
cases. During the final cycle, both liners buckle locally, showing negligible difference
on the detachment values. One should notice that the initial imperfection amplitude
of the liner pipe reduces significantly during the manufacturing process. Assuming a
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rough inner surface of the outer pipe, which may be the case in seamless pipes due to
their fabrication process, the geometric imperfection can be affected on the liner pipe,
resulting in local buckling at an earlier stage, during the first two cycles. This is a real
case scenario that is recommended for further study in section 7.3.
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Figure 6.28 Normalised bending moment of the liner pipe (ml) for perfect and imperfect
liner, with respect to the number of cycles, for Reeling Case II.
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Figure 6.29 Liner detachment (∆) at 6 o’clock location with respect to the number of
cycles, for perfect and imperfect liner, for Reeling Case II.

6.4.5 Liner pipe wall thickness

Numerical analyses considering different values of wall thickness of the liner
pipe have been conducted, to investigate its influence on liner pipe response during
reeling. As shown in Chapter 5 (section 5.4.4), increasing liner pipe wall thickness,
the detachment of the liner from the outer pipe is delayed, while local buckling of the
liner pipe may be avoided in several cases. In addition to the base case (described
in section 6.2.1), with liner wall thickness equal to 2.8 mm (denoted as tl,A), three
additional thickness values are also examined, considering liner pipes with increased
wall thickness by 25% (tl,B = 3.5 mm), 50% (tl,C = 4.2 mm) and 100% (tl,D = 5.6 mm).
In the present analyses, all liner pipes are considered imperfection-free. Furthermore,
the internal pressure applied during the manufacturing process is properly adjusted, in
order to achieve similar mechanical bonding conditions at the end of the process (i.e.
hoop compression equal to the same percentage of the yield stress of the liner; σθ/σy,l).
The loading path applied in the present study is the one followed in Reeling Case II,
with back tension is equal to 2% of Tp.
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Figure 6.30 presents the bending moment of the liner pipe (ml) for each liner wall
thickness value, with respect to the loading cycles. For consistency, the bending moment
of each liner thickness case, presented in Figure 6.30, is normalised by Mo = σy,oD2

m,oto,
where Dm,o is the mean diameter of the outer pipe. The results show an increase of
liner bending moment as the liner wall thickness increases, as expected due to the
decrease of the liner diameter over thickness ratio. In addition, Figure 6.31 presents the
evolution of liner detachment for each value of liner thickness case at 6 o’clock location,
over the loading cycles, normalised by the wall thickness of the base case (tl,A). As
described in section 6.4.1, the lined pipe with liner wall thickness equal to tl,A exhibits
uniform wrinkling during the first three cycles and develops a local buckle at the fourth
cycle (Figures 6.7 and 6.15), and this is also represented by the moment drop on the
corresponding cycle. However, increasing the liner pipe wall thickness local buckling is
prevented. For wall thickness values equal to tl,B and tl,C, the liner pipe at the end of
the fifth cycle exhibits uniform wrinkling of significantly smaller amplitude than the
corresponding amplitude of thickness tl,A, as shown in Figure 6.32. The liner moment
for tl,B and tl,C thickness is slightly reduced per cycle, due to wrinkling and the small
amount of liner detachment. In the case of wall thickness equal to tl,D, the liner pipe
has a very good structural performance, with a negligible detachment from the outer
pipe at the end of the fifth cycle (Figure 6.32).

Finally, during spooling on the fifth cycle, the liner detachment for thickness values
equal to tl,B, tl,C and tl,D is smaller by 152%, 186% and 192% respectively, than the
detachment observed in the base case (tl,A). In all the cases, local buckling of the liner
is prevented. The main conclusion from the above results is that the use of liner pipe
slightly thicker than the one of the base case, the lined pipe is capable of undergoing
five winding-unwinding cycles with minor and negligible wrinkling.
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Figure 6.30 Normalised bending moment of the liner pipe (ml) for different liner wall
thickness values, with respect to the number of cycles, for Reeling Case II.

Figure 6.31 Liner normalised detachment (∆) for different liner wall thickness values of
liners, with respect to the number of cycles, for Reeling Case II.
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Figure 6.32 Sequence of liner pipe deformation and normalised detachment (∆), pre-
senting the buckling configuration at the end of fifth cycle at 6 o’clock location, for
different liner wall thickness values, for loading Reeling Case II.
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6.4.6 Reeling of internally pressurized lined pipe

Previous studies have demonstrated that internal pressure improves bending de-
formation capacity and may delay buckling of shells under bending (Houliara and
Karamanos, 2006; Limam et al., 2010; Mathon and Limam, 2006). In the case of dou-
ble-walled pipes, the cyclic response of lined pipes under high levels of internal pressure
has been examined in previous publications (Gouveia et al., 2015; Sriskandarajah et al.,
2013b; Toguyeni and Banse, 2012), through full-scale experiments. Nevertheless, the
beneficial effect of moderate levels of internal pressure on monotonic bending response
of lined pipes was investigated extensively previously in sections 3.4.2 and 4.5.2. Sub-
sequently, in Chapter 5 (section 5.4.5), the very good structural performance of lined
pipes in the presence of moderate level of internal pressure, under cyclic loading, was
presented.

The present section examines the effect of similar pressure level on the reeling
response of lined pipe. The lined pipe is geometrically perfect, and has been fabricated
using the fully heated thermo-mechanical manufacturing process. During cyclic loading
(Reeling Case II) internal pressure 0.5 MPa is applied, which is equal to 10% of the
plastic pressure of the liner pipe (Py,l = 2σy,ltl/Dm,l , where Dm,l is the mean diameter
of the liner pipe). During pressurization of the lined pipe, a tensile force (Fp) is also
applied at the free end of the pipeline (as shown in Figure 6.1), equal to the product of
the internal pressure and the internal cross-section of the liner (Fp = Pinπ(Dl −2tl)2/4)
representing the force at the two capped ends due to the internal pressure. During
reeling, the total force (due to pressurization and back tension) applied at the free end
of the pipeline is equal to 2% of the yield tension of the outer pipe (Tp).

Figure 6.33 shows the normalised bending moment carried by the liner pipe (ml),
under pressurized and non-pressurized conditions, with respect to the loading cycles. In
non-pressurized lined pipe, the liner detaches and uniform wrinkling develops during
the first three cycles. Subsequently, local buckling occurs during the last two cycles
(Figures 6.7 and 6.15) characterized by a moment drop, as shown in Figure 6.13, which
is also explained in more detail in section 6.4.1. On the other hand, under a low level of
internal pressure, the liner pipe does not detach from the outer pipe during the entire
loading history (five loading cycles) and local buckling is prevented.

In an attempt to reduce the cost of the lined pipe, the combined effect of internal
pressure and liner wall thickness on reeling response is examined, considering internal
pressure equal to 0.5 MPa and a thinner liner pipe, with wall thickness value 15%
smaller than the base case tl,A (tl,E = 2.38 mm). Fully-heated thermo-mechanical
manufacturing process is taken into account, adjusting the fabrication pressure in order
to obtain an equivalent mechanical bonding in terms of the σθ/σy,l ratio at the end of
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the process. Following the simulation of the fabrication process, internal pressure (0.5
MPa) is applied, which is kept constant throughout the subsequent application of five
reeling cycles. Bending loading follows the Reeling Case II pattern, under a 2%Tp back
tension. Figure 6.33 presents the normalised bending moment of each liner pipe. In the
case of the thinner liner (tl,E = 2.38), no liner pipe detachment is detected throughout
the analysis, verifying the beneficial effect of moderate levels of internal pressure on
liner detachment and local buckling formation.
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Figure 6.33 Normalised bending moment of the liner pipe (ml) for different values of
pressure and wall thickness, with respect to the number of cycles (Reeling Case II and
pressure equal to 0.5 MPa).

6.5 Summary of results

In the present chapter, a large-scale numerical model is developed for investigating
the structural response of mechanically bonded lined pipes during reeling installation
process. In the first stage of the model, the fully heated thermo-mechanical manufactur-
ing process of a lined pipe is simulated, while, in its second stage, a winding-unwinding
cyclic loading is applied, under back tension, investigating its structural response. Five
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loading cycles are considered, representing offshore reeling installation that includes a
failure-repair scenario.

The cyclic loading pattern is performed accounting for pipeline straightening at
the end of the second and fifth cycle. Compared with reeling cyclic loading without
straightening, it is found that liner buckling occurs at an early stage, immediately after
the end of pipeline straightening and leads to significantly higher liner detachment at
the 6 o’clock position, which is in contact with the reel. The influence of different reel
diameters on liner response is also investigated, showing a significant effect on liner
buckling. Considering a 10-meter reel radius (εb = 1.59%), the liner pipe develops
uniform wrinkling during the first three cycles and exhibits local buckling in the fourth
cycle. Moreover, for a 12.79-meter reel radius (εb = 1.25%), the liner pipe exhibits
low amplitude wrinkling at the end of the fifth cycle avoiding local buckling, while
in the case of a 8.23-meter radius (εb = 1.93%), the liner pipe buckles at an early
stage of loading on the third cycle. Different levels of back tension on liner buckling
are examined, affecting the residual ovalization and local curvature of the pipeline.
Applying tension up to 4% of outer pipe yield tension (Tp), the residual local curvature
at the end of unwinding decreases, increasing the curvature range that the lined pipe
is cyclically loaded, resulting in earlier detachment and local buckling of the liner
pipe. On the other hand, further increase of back tension from 4% to 10% of Tp, the
liner detachment rate decreases and liner buckling is delayed. The numerical results
also show that increasing the back tension, the longitudinal compressive strain during
spooling decreases, leading to lower rate of plastic strain accumulation in the liner pipe
and delay of local buckling.

Moreover, imperfection sensitivity is examined, considering liners with initial
geometric imperfection in the form of uniform wrinkling. The presence of initial imper-
fections results in higher liner detachment rate and earlier local buckling. Furthermore,
several lined pipes are considered with increased liner pipe wall thickness, up to twice
the thickness of the base case. In all those cases, no local buckling of the liner pipe
occurs. For the thicker liner, very low amplitude uniform wrinkling at the 6 o’clock
position is detected at the end of the entire loading history, which may be negligible for
practical purposes. Finally, winding-unwinding of lined pipes, under relatively low level
of internal pressure, is simulated, verifying the beneficial effect of internal pressure;
no liner detachment or local buckles are detected at the end of the fifth cycle, even for
liners with very small wall thickness.
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Summary, conclusions and
recommendations

7.1 Summary of doctoral work

The main objective of the present doctoral work is the investigation of the mechanical
behaviour of steel bi-metallic pipes, in terms of their structural response under different
loading conditions. The present work has been motivated by practical engineering
applications, in an attempt for better understanding and more accurate predictions of
bifurcation and post-buckling response of steel double-walled pipes. The investigation
is computational using advanced finite element tools, through the employment of a
general-purpose finite element software. For the numerical analysis of each chapter,
a proper numerical model is developed with non-linear finite elements accounting for
geometric non-linearities and inelastic material behaviour. The numerical models of
the present work are based on the findings and conclusions from previous publications.
Nevertheless, further changes and developments are considered in the current research,
towards improving the simulation capability of the numerical models and providing
better understanding of the bi-metallic pipes buckling. Three main novel issues are
examined in detail, which have not been considered in the existing literature:

• The main issue refers to cyclic loading of these bi-metallic pipes. This constitutes
the main problem under reeling conditions and is tackled in a systematic form in
Chapters 5 and 6.

• The second novel issue refers to the effect of manufacturing process on the
structural response of bi-metallic pipes (Chapter 4).
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• Finally, the in-depth investigation of internal pressure effects on structural re-
sponse is an important novel aspect of the present study. It is described in detail
in Chapter 3, as well as in special sections in every subsequent chapter.

Chapter 3 focuses on the structural response of lined pipes under monotonic bending.
Two types of bi-metallic pipes are considered, “snug-fit” pipe (SFP) and “tight-fit” pipe
(TFP), which account for the hoop compression of the liner pipe by the outer pipe due
to manufacturing process. In the case of TF Pipes, the mechanical bonding between the
outer and the liner pipe is simulated by an initial pre-stressing. Initially, the bending
response of both types of lined pipes is simulated in the absence of internal pressure,
verifying the numerical simulations reported in previous publications. In the following,
the structural performance of lined pipes under low and moderate levels of internal
pressure is examined. An ovalisation analysis is conducted on the examining the
effect of different levels of internal pressure on cross-sectional ovality, while a three-
dimensional analysis investigates the liner wrinkling and post-buckling behaviour of
pressurized lined pipes, compared with non-pressurized ones. Furthermore, the effect
of initial wrinkling of the liner pipe on buckling response is conducted for both types of
pipes (non-pressurized and pressurized).

Chapter 4 presents a more rigorous finite element model, which incorporates the
simulation of the manufacturing process of mechanically bonded lined pipes (at the
first stage), while, at the second stage, the model proceeds to the analysis of monotonic
bending response. Two types of lined pipe fabrication are analysed. The first is purely
mechanical and consists of hydraulic expansion of both pipes up to elastic or plastic
deformation in the outer pipe, while the second involves a thermo-hydraulic process
(tight-fit pipe or TFP). The present analysis offers an integrated approach that employs
a single finite element model, which includes simulation of both the manufacturing
process and the structural bending response in subsequent stages. Special emphasis
is given on the material model of the liner and the outer pipe. The materials of both
pipes are described using advanced plasticity models obeying non-linear kinematic
hardening, capable of accounting for reverse plastic loading effects, and are calibrated
with available experimental data. Parametric analyses are also conducted, considering
the effect of initial radial gap of both pipes, different heating temperatures during
the thermo-hydraulic expansion, geometric imperfections and the presence of internal
pressure during bending. The effect of different temperature levels, accounting for
either temperature-dependent or temperature-independent material of the liner pipe, is
also investigated during the thermo-hydraulic expansion.

The following chapter (Chapter 5) investigates the structural behaviour of lined pipes,
subjected to cyclic loading conditions, representing loading conditions imposed by the
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reeling installation process. Those loading conditions are associated with maximum
curvature values lower than the “critical” curvature determined by monotonic loading.
The present model is unique and it uses a single numerical model that simulates the
manufacturing process of a mechanically bonded lined pipe in its first stage and proceeds
to its cyclic loading under five bending cycles, which represents a failure/repair scenario,
in the second stage of the analysis. The model takes into account the entire plastic
loading history of both pipes, including possible reverse plastic loading during the
fabrication process. The results show that severe cyclic loading results in localized
buckling of the liner pipe. Several analyses are conducted, considering different bending
curvature ranges, as an attempt to quantify the influence of different reel and aligner
radii. The effect of reverse bending during cyclic loading, the influence of geometric
imperfections of the liner pipe, the effect of different values of liner wall thickness,
the presence of low levels of internal pressure during cyclic bending, and the effect of
different manufacturing parameters are also examined in detail in the present chapter.

Finally, in Chapter 6, the structural response of lined pipes under cyclic loading
(spooling-unspooling and straightening) is investigated, representing more accurately
the loading conditions during the reeling installation process with maximum curvature
lower than the “critical” curvature that causes liner buckling under monotonic loading.
A single numerical model is adopted that simulates the manufacturing process of a
mechanically bonded lined pipe in its first stage and proceeds to its reeling performance
in the second stage of the analysis, taking into account the entire plastic deformation in
the liner pipe during the fabrication process, including possible reverse plastic loading.
The analyses are aimed at simulating the mechanical performance of a mechanically
bonded lined pipe subjected to five spooling-unspooling loading cycles, including a
failure-repair scenario, and the effect of straightening. The results pinpoint the severe
effect of cyclic loading on localized buckling of the liner pipe. Several analyses are
conducted, considering different reel diameter values, which control the maximum
imposed curvature. The effect of straightener during reeling loading, the structural
response of the liner under different back tension values, the influence of geometric
imperfections of the liner pipe, the effect of different values of liner wall thickness, and
the presence of low levels of internal pressure during reeling are also investigated.

7.2 Novelty and key findings

This doctoral research investigated the structural response of lined pipes under
monotonic and cyclic bending, using advanced finite element tools. The scope of
this study was to simulate rigorously the structural performance of the liner pipe
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under different loading scenarios, and identify the influence of the principal geometric,
material and loading parameters on liner buckling. The novelty of the present work
refers to

• the systematic investigation of cyclic loading of bi-metallic pipes,

• the effect of manufacturing process on the structural response of mechanically
bonded lined pipes, and the

• influence of relatively low levels of internal pressure on liner pipe buckling
response.

The key findings of the research are summarised in the following.

• The results show a significant delay on liner detachment initiation from the outer
pipe in the presence of relatively low levels of internal pressure, while the liner
buckles locally in higher curvature values than the non-pressurized case.

• The pressure level considered in the present analyses is approximately six times
lower than the one used in the industry. Therefore, the current industry practice
should be readjusted, applying lower pressure levels during reeling, ensuring also
the structural integrity of the liner pipe.

• In elastically expanded lined pipes, there is a residual radial gap at the end of the
fabrication process. It is found that the residual gap value is smaller by one order
of magnitude, compared with the initial radial gap value.

• In plastically expanded lined pipes, the liner pipe results in low hoop compression
at the end of fabrication. The excessive plastic deformation in the liner pipe
during manufacturing process, combined with low mechanical bonding between
the two pipes, leads to a significant decrease of the buckling curvature of the liner
pipe.

• The thermo-mechanical fabrication method results in higher mechanical bonding
between the two pipes than the purely mechanical manufacturing process. This
is attributed to higher recoverable hoop strain of the outer pipe at the end of
manufacturing process. During depressurization and cooling, the outer pipe
recovers the mechanical elastic strain and thermal strain, resulting in higher liner
hoop compression, compared to the hydraulically expanded pipes. Therefore, the
higher bonding between both pipes leads to higher buckling curvature values of
the liner under bending because of biaxial compression.
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• Different maximum temperature levels of the liner pipe during the thermo-
mechanical manufacturing process, indicated an increase of the mechanical bond-
ing between both pipes and the corresponding buckling curvature of the liner pipe,
when the maximum temperature is reduced. Furthermore, the results show that
considering temperature-independent material for both pipes leads to reasonable
results.

• Applying negative (opposite sign) curvature values during cyclic bending, which
represents the straightener during reeling, a significant influence on the liner
detachment and local buckling is observed, compared with non-negative curvature
values. This is observed in both models of Chapters 5 and 6.

• Considering slightly thicker liners than the ones proposed by DNV-OS-F101
(2013), and applying five bending cycles with global bending strain εb equal to
1.59% (reel diameter of 10 meters), which is a typical value in practical cases,
local buckling of the liner pipe is avoided. This result is observed using both the
pure bending model and the full-scale reeling model.

• The beneficial effect of moderate levels of internal pressure is also observed in
case of cyclic bending. For internal pressure level equal to 5% of the plastic
pressure of the liner pipe (Py,l), a negligible liner detachment is observed for five
bending cycles with global bending strain εb equal to 1.59%. Application of 10%
of Py,l and considering thinner liners than the ones proposed by DNV-OS-F101
(2013), no detachment is observed, verifying the significant influence of relatively
low internal pressure on liner buckling.

• Increasing back tension, the cross-sectional ovalisation of the outer pipe increases,
which ovalises further the liner pipe, due to confinement, reducing its bending
stiffness. This results in higher detachment values during reeling.

• Increasing further the back tension level, the compression at 6 o’clock location
decreases during spooling. Therefore, the rate of plastic strain accumulation in
the liner pipe decreases, delaying liner detachment and local buckling formation.

7.3 Recommendations for further study

This doctoral work has investigated in detail several aspects on the structural be-
haviour of pressurized and non-pressurized mechanically bonded pipes under monotonic
and cyclic loading, representing reeling loading conditions. However, there is still room
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for further investigation, considering that several open issues exist within the topic of
mechanical behaviour of lined (bi-metallic) pipes, worth of investigation.

The present model can be employed to develop design rules for bi-metallic pipelines,
in terms of their structural behaviour and installation process. Therefore, it constitutes a
very useful tool for code drafting committees related to pipeline engineering.

In the present work, local buckling of the liner pipe, which is considered as a
performance criterion, is investigated in depth under monotonic and cyclic loading.
However, the present work could be extended investigating fatigue phenomena at the
welds, which are related due to severe plastic deformation during reeling installation,
and constitute another important performance criterion. Plastic strain accumulation at
the welds may lead to crack initiation, therefore fatigue and fracture analysis is an open
issue and of high interest of investigation.

In addition, the present model constitutes a useful tool to simulate the complete
loading history of lined pipes during manufacturing process and reeling, determining
the exact state of stress and strain at the end of installation process. As a next step of
the analysis, the present model could be used as a basis to investigate the structural
response of HT/HP (high temperature; high pressure) pipelines. High temperature and
pressure liquids may lead to lateral buckling of the pipeline on the seabed, therefore
a more reliable analysis could be performed considering the exact state of stress and
strain after reeling. Finally, the application of “Residual Curvature Method” in reeled
pipes could be analysed, which is an effective method of controlling lateral buckling of
HT/HP pipelines Zhang and Kyriakides (2021), considering proper adjustment of the
present model.
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