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ABSTRACT 
Thick-walled cylindrical metal shells, commonly used in tubular structures and pipelines, 

during their lifetime may be subjected to considerable compressive loads, which can lead 

to local buckling. In modelling their structural behaviour, the use of standard J2 flow 

plasticity is known to produce unrealistically high buckling load estimates. Alternative 

constitutive models, which consider the formation of yield surface ‘corners’, can provide 

more accurate predictions, but they have been used scarcely, due to the limitations and 

complexities they introduce. 

The present work develops an efficient and versatile plasticity model to simulate the 

structural response of metal shells under compressive loads. It combines the simplicity of 

a Von Mises yield surface, with a non-associative flow rule, mimicking the effect of a 

yield surface corner. The model allows for tracing the equilibrium path of the shells and 

identifying structural instability in a consistent manner. A robust backward-Euler 

integration scheme is developed, suitable for three-dimensional (solid) and shell finite 

elements. The corresponding algorithmic moduli are obtained for nonlinear isotropic 

hardening materials. The nonlinear dependence of plastic strain increments on the 

direction of total strain increments is accounted for rigorously.  

The constitutive model is implemented in Abaqus as a user material subroutine (UMAT). 

Simulations of thick-walled metal cylinders under uniform compression show good 

agreement with experimental data in predicting the buckling and post-buckling 

performance of shells. The influence of geometric imperfection is considered, and 

comparisons are made with models employing the J2 flow plasticity. The reliability of the 

developed approach is further demonstrated by investigating more demanding problems 

of bending and pressure in inelastic cylinders, taking into account ovalization, bifurcation 

instabilities, imperfection. These problems involve non-trivial prebuckling equilibrium 

paths, non-uniform loading and significant non-proportionality, before instability onsets, 

which activate the model’s particular features, and illustrate their role in the evolution of 

buckling. Analyses showcase the model’s capabilities, producing accurate instability 

estimates, ultimate load and deformation predictions in line with experiments and clarify 

aspects of the buckling of inelastic shells. Extending a traditional practice, a simple 

method is presented for estimating the instability of inelastic cylinders under bending and 

pressure loads, drawing on similarities in their buckling with that of cylinders under 

compression. 
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LAY SUMMARY 
Long thick-walled metal cylinders are widely used in tubular structures and pipeline 

applications. During their installation, operation and in extreme events, they may be 

subjected to significant compressive loads, which can lead to structural instability in the 

form of local buckling (wave-like deformations developing in parts of the cylinder). In 

thin-walled cylinders, local buckling is considered as failure, as it is followed by an abrupt 

loss of strength and collapse of the tube section. For thicker cylinders, with diameter-

over-thickness ratios (D/t) less than 60, the post-buckling behaviour can be smoother, and 

a series of events can precede collapse. To take advantage of this additional strength in 

the design of tubes, simulation tools are needed to accurately estimate the onset of 

buckling, the structural behaviour until failure, and the factors that influence them. 

Since the 50s, the structural performance of thick-walled cylinders has been attracting 

research attention. These shells experience instability while loaded in the inelastic 

(plastic) range of the material, and the key subject of buckling estimation is known to be 

sensitive to the plasticity model used. The standard model has been found to produce 

overly high buckling load estimates, which may be attributed to sudden changes in the 

material loading that occur at buckling. More advanced material models, that account for 

lower material strength under such conditions, produce more realistic buckling estimates, 

in agreement with experimental data. However, these models have been employed 

scarcely in structural calculations due to limitations and complexities they introduce. 

The present research reviews the influence of material modelling in structural stability 

calculations of tubulars under compressive loads. An efficient and versatile material 

model is developed that accounts for properties of advanced material models in a 

simplified and effective manner. It is programmed and introduced in modern structural 

engineering tools, to reliably simulate the behaviour of thick-walled cylinders. Numerical 

analyses are performed to investigate the structural performance of tubulars under 

uniform compression, bending and pressure loads, which represent a wide range of load 

cases of practical interest. Simulated behaviours are in agreements with experimental data 

and aspects of instability in tubulars are clarified. The developed work frame may be used 

towards the accurate assessment of buckling and the post-buckling behaviours of tubulars, 

necessary for safe and economic design. 
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𝐷𝐷𝑜𝑜 Mean diameter of the cylinder (𝐷𝐷𝑜𝑜 = 𝐷𝐷 − 𝑡𝑡) 

𝐃𝐃 Elastic rigidity (fourth order elastic stiffness tensor) 

𝐃𝐃𝑒𝑒𝑝𝑝 Instantaneous elastoplastic rigidity tensor (continuum tangent moduli) 

𝐃𝐃𝑒𝑒𝑝𝑝
𝑐𝑐  Consistent (algorithmic) elastoplastic rigidity tensor 

𝐃𝐃𝑒𝑒𝑝𝑝
𝑐𝑐𝑐𝑐  Condensed consistent (algorithmic) elastoplastic rigidity tensor for shell 

elements 

𝐸𝐸 Young’s Modulus 

𝐸𝐸𝑆𝑆 Secant Modulus 

𝐸𝐸𝑇𝑇 Tangent Modulus 

𝐞𝐞 Deviatoric part of total strain tensor 𝛆𝛆 

�̇�𝐞 Deviatoric part of total strain rate tensor �̇�𝛆 

𝐺𝐺 Shear Modulus 

𝐻𝐻 Hardening Modulus 𝐻𝐻 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝜀𝜀𝑞𝑞⁄ = [𝐸𝐸𝑇𝑇−1 − 𝐸𝐸−1]−1 

ℎ ℎ = 𝑑𝑑 𝜀𝜀𝑞𝑞⁄ = [𝐸𝐸𝑆𝑆−1 − 𝐸𝐸−1]−1 

ℎ� Non- associative hardening modulus 

ℎ1 ℎ1−1 = 𝐻𝐻−1 − ℎ−1 

𝐈𝐈 Second order identity tensor  𝐼𝐼𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖 

𝐈𝐈𝑠𝑠𝑠𝑠𝑠𝑠 Symmetric fourth order identity tensor 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒
𝑠𝑠𝑠𝑠𝑠𝑠 = 1 2⁄  �𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑒𝑒 + 𝛿𝛿𝑖𝑖𝑒𝑒𝛿𝛿𝑖𝑖𝑖𝑖� 

𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒 Volumetric fourth order identity tensor  𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑣𝑣𝑜𝑜𝑒𝑒 = 1 3⁄  𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑒𝑒 

𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 Deviatoric fourth order identity tensor   𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 = 𝐈𝐈𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒 

J2CT J2 corner theory 

J2DT J2 deformation theory 

J2FT J2 flow theory 

J2NA J2 non-associative model 

𝐾𝐾 Bulk modulus 

𝑑𝑑 Material yield stress in uniaxial tension 𝑑𝑑(𝜀𝜀𝑞𝑞) 

𝐿𝐿 Length of tube segment 

LBH Local Buckling Hypothesis 

𝑀𝑀0 Full plastic moment of cylindrical shell 𝑀𝑀0 = 𝜎𝜎𝑜𝑜𝐷𝐷𝑜𝑜2𝑡𝑡 
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𝐦𝐦 
Unit tensor perpendicular to the deviatoric stress 𝐬𝐬, in the direction of the 
strain rate �̇�𝐞 

𝐧𝐧 Unit tensor in the direction of the deviatoric stress 𝐬𝐬 

𝑝𝑝 Hydrostatic part of the stress tensor 𝑝𝑝 = −1 3⁄  𝐈𝐈 ⋅ 𝛔𝛔 

𝑝𝑝𝑜𝑜 Yield pressure of cylindrical shells  𝑝𝑝𝑜𝑜 = 𝜎𝜎𝑜𝑜𝑡𝑡 𝐷𝐷0⁄  

𝑝𝑝𝑐𝑐 Critical external pressure of cylindrical shells 

𝑞𝑞 Von Mises equivalent stress 

𝑅𝑅 Radius (mean) of the cylinder 

𝑅𝑅𝑒𝑒𝑞𝑞 Local hoop radius at the intrados of the cylinder under bending 

�̇�𝑞 Rate of the Von Mises equivalent stress 

𝐬𝐬 Deviatoric stress tensor 𝐬𝐬 =  𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 ⋅ 𝛔𝛔 

�̇�𝐬 Rate of the deviatoric stress tensor 

𝑡𝑡 Cylinder thickness 

𝑤𝑤∗ (Normalized) Plastic production ratio 

Δ Cylinder ovalization  Δ = (𝐷𝐷𝑠𝑠𝑚𝑚𝑥𝑥 − 𝐷𝐷𝑠𝑠𝑖𝑖𝑚𝑚) (𝐷𝐷𝑠𝑠𝑚𝑚𝑥𝑥 + 𝐷𝐷𝑠𝑠𝑖𝑖𝑚𝑚)⁄  

𝛥𝛥𝛆𝛆 Total strain increment 

𝛥𝛥𝛆𝛆𝑒𝑒 Elastic strain increment 

𝛥𝛥𝐞𝐞𝑝𝑝 Plastic strain increment 

𝛥𝛥𝛆𝛆� Know part of total strain increment - no component 𝛥𝛥𝜀𝜀33 (shell element) 

𝛥𝛥𝜀𝜀𝑞𝑞 Equivalent (accumulated) plastic strain increment 

𝛆𝛆 Total strain 

𝛆𝛆𝑒𝑒 Elastic strain 

𝐞𝐞𝑝𝑝 Plastic strain 

�̇�𝛆 Rate of total strain 

�̇�𝛆𝑒𝑒 Rate of elastic strain 

�̇�𝐞𝑝𝑝 Rate of plastic strain 

𝜀𝜀𝑞𝑞 Equivalent (accumulated) plastic strain 

𝜀𝜀�̇�𝑞 Rate of equivalent plastic strain 

𝜁𝜁 
Angle by which the deviatoric stress rotates between 𝑡𝑡𝑚𝑚 and 𝑡𝑡𝑚𝑚+1 
cos 𝜁𝜁 = (𝐬𝐬𝑚𝑚 ⋅  𝐬𝐬𝑚𝑚+1) (‖𝐬𝐬𝑚𝑚‖ ‖𝐬𝐬𝑚𝑚+1‖)⁄  

𝜁𝜁∗ 
Angle between the deviatoric stress at 𝑡𝑡𝑚𝑚+1 and the elastic predictor 
cos 𝜁𝜁∗ = (𝐬𝐬𝑒𝑒 ⋅  𝐬𝐬𝑚𝑚+1) (‖𝐬𝐬𝑒𝑒‖ ‖𝐬𝐬𝑚𝑚+1‖)⁄  
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𝜁𝜁𝑒𝑒 
Angle between the deviatoric stress at 𝑡𝑡𝑚𝑚 and the elastic predictor 
cos 𝜁𝜁𝑒𝑒 = (𝐬𝐬𝑚𝑚 ⋅  𝐬𝐬𝑒𝑒) (‖𝐬𝐬𝑚𝑚‖ ‖𝐬𝐬𝑒𝑒‖)⁄ ,   𝜁𝜁𝑒𝑒 = 𝜁𝜁 + 𝜁𝜁∗ 

𝜃𝜃𝑚𝑚 
Angle formed by strain increment and the deviatoric stress at time 𝑡𝑡𝑚𝑚 
cos 𝜃𝜃𝑚𝑚 = (𝐬𝐬𝑚𝑚 ⋅  𝛥𝛥𝐞𝐞) (‖𝐬𝐬𝑚𝑚‖ ‖𝛥𝛥𝐞𝐞‖)⁄  

𝜃𝜃𝑚𝑚+1 
Angle formed by strain increment and the deviatoric stress at time 𝑡𝑡𝑚𝑚+1  
cos 𝜃𝜃𝑚𝑚+1 = (𝐬𝐬𝑚𝑚+1 ⋅  𝛥𝛥𝐞𝐞) (‖𝐬𝐬𝑚𝑚+1‖ ‖𝛥𝛥𝐞𝐞‖)⁄  

𝜃𝜃𝑐𝑐 Yield surface vertex semi-angle; material property 

𝜃𝜃𝑒𝑒 
Angle formed by strain increment and the elastic predictor  
cos 𝜃𝜃𝑒𝑒 = (𝐬𝐬𝑒𝑒 ⋅  𝛥𝛥𝐞𝐞) (‖𝐬𝐬𝑒𝑒‖ ‖𝛥𝛥𝐞𝐞‖)⁄  

𝜃𝜃𝑝𝑝 
Angle formed by plastic strain increment and the deviatoric stress at time 𝑡𝑡𝑚𝑚+1 
cos 𝜃𝜃𝑝𝑝 = (𝐬𝐬𝑒𝑒 ⋅  𝛥𝛥𝐞𝐞) (‖𝐬𝐬𝑒𝑒‖ ‖𝛥𝛥𝐞𝐞‖)⁄  

𝜅𝜅1 Curvature normalization parameter 𝜅𝜅1 = 𝑡𝑡 𝐷𝐷𝑜𝑜2⁄  

𝜆𝜆𝑐𝑐 Wrinkling halfwave of cylinder under compression 

𝜆𝜆𝐻𝐻𝐻𝐻 Wrinkling halfwave of cylinder under bending 

𝛔𝛔 Stress tensor 

�̇�𝛔 Rate of the stress tensor 

𝛔𝛔𝑒𝑒 Elastic prediction – Purely elastic trial stress 

𝜎𝜎𝑜𝑜 0.2% offset yield stress 

𝜔𝜔,𝜔𝜔𝑅𝑅 (Normalized) imperfection amplitude 𝜔𝜔 = 𝑎𝑎 𝑡𝑡⁄ , 𝜔𝜔𝑅𝑅 = 𝑎𝑎 𝑅𝑅⁄  
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NOTATION 
Standard notation is used throughout the thesis. Bold face symbols denote tensors whose 

order is indicated by the context, while normal letters refer to scalars. Let 𝐚𝐚,𝐛𝐛 be vectors, 

𝐀𝐀,𝐁𝐁 be second order tensors and 𝐂𝐂 a fourth order tensor, with their respective cartesian 

components 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝐴𝐴𝑖𝑖𝑖𝑖, 𝐵𝐵𝑖𝑖𝑖𝑖, 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒. 

The inner product operator has the following meaning depending on the types of variables 

it is applied on: 

 𝐚𝐚 ⋅ 𝐛𝐛 = 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖  

 𝐀𝐀 ⋅ 𝐁𝐁 = 𝐴𝐴𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖  

The norm operator is defined as 

 ‖𝐀𝐀‖ = √𝐀𝐀 ⋅ 𝐀𝐀 = �𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑖𝑖  

and 

 𝐛𝐛 = 𝐀𝐀𝐚𝐚 → 𝑏𝑏𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖  

 𝐁𝐁 = 𝐂𝐂𝐀𝐀 → 𝐵𝐵𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝐴𝐴𝑖𝑖𝑒𝑒  

The dyad product operator has the following meaning depending on the types of variables 

it is applied on: 

 𝐀𝐀 = 𝐚𝐚⊗ 𝐛𝐛 → 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖    

 𝐗𝐗 = 𝐀𝐀⊗ 𝐛𝐛 → 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖  

 𝐘𝐘 = 𝐀𝐀⊗𝐁𝐁 → 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 = 𝐴𝐴𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑒𝑒  

Additionally, it is useful to note that any symmetric second order tensor can be split into 

two components: a volumetric (or spherical) and a deviatoric, as follows 

 𝐀𝐀 = 𝐈𝐈𝑠𝑠𝑠𝑠𝑠𝑠𝐀𝐀 = [𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒 + 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣]𝐀𝐀 = 𝐀𝐀𝑣𝑣𝑜𝑜𝑒𝑒 + 𝐀𝐀𝑑𝑑𝑒𝑒𝑣𝑣   

Two important identities for operations with symmetric second order tensors 𝐀𝐀,𝐁𝐁 are: 

 𝐀𝐀𝑣𝑣𝑜𝑜𝑒𝑒 ⋅ 𝐁𝐁𝑑𝑑𝑒𝑒𝑣𝑣 = 0  

 𝐀𝐀     ⋅ 𝐁𝐁𝑑𝑑𝑒𝑒𝑣𝑣 = 𝐀𝐀𝑑𝑑𝑒𝑒𝑣𝑣 ⋅ 𝐁𝐁𝑑𝑑𝑒𝑒𝑣𝑣 = ‖𝐀𝐀𝑑𝑑𝑒𝑒𝑣𝑣‖‖𝐁𝐁𝑑𝑑𝑒𝑒𝑣𝑣‖ cos 𝜃𝜃  

where 𝜃𝜃  represents an angle, formed between the two tensors in the deviatoric 

hyperspace. 
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1 INTRODUCTION 

Elastic-plastic instability of structures is a broad field of study with a range of applications 

in civil, mechanical engineering and marine structures. In particular, the structural 

performance of cylindrical metal shells under compressive loads is a classic problem of 

mechanics, with numerous applications that include tubular structures, nuclear power 

plant piping components, offshore and onshore pipelines transporting oil, natural gas, 

hydrocarbons, water.  

Operation and shut-down-for-maintenance conditions of pipelines can lead to 

considerable axial loads, due to temperature changes, combined with high pressure loads 

(Limam et al., 2010). The deep-water installation process of offshore pipelines induces 

high bending loads, into the plastic range of the material, combined with tension and 

external pressure (Kyriakides & Corona, 2007). Severe loading events, earthquakes, 

ground movements, landslides, subsidence, faulting, can further cause significant bending 

and axial loading in tubular sections (Kaya et al., 2017).  

The resulting high compressive stresses and strains in the shell wall may lead to cross-

sectional distortion, local buckling and failure. For a safe and economic design, it is 

desirable to estimate reasonably closely the circumstances that lead tubulars to buckle, 

when subjected to compressive loads. So, continuous research attention is directed 

towards the cross section capacity of thick-walled shells, e.g. (Fatemi & Kenny, 2017; 

Takla, 2018; Tabeshpour et al., 2019; Meng et al., 2020) 

The behaviour of thick-walled tubulars is governed by the interaction of nonlinearities in 

the metal material properties and inherent geometric nonlinearities (e.g., cross section 
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ovalization in bending) which are further exacerbated by the occurrence local buckling. 

Beam theory approaches that are sufficient for designing most steel members, cannot 

capture the structural behaviour of tubular members when bifurcation-type instabilities 

(local buckling) occur, which involve sudden changes in geometry (cross section shape) 

leading to loss of structural strength. Additionally, for thick-walled cylinders, the 

bifurcation from the primary equilibrium path (buckling) takes place into the inelastic 

range of the material, which complicates estimations, as predictions are reportedly 

sensitive to the elastoplastic constitutive model that is employed. 

1.1 State of the art 
Inelastic constitutive models based on associative plasticity can accurately simulate metal 

material behaviour and are suitable for general-purpose analyses of metal components 

and structures. However, in problems of plastic buckling and strain localization, which 

occur well into the inelastic range of the material, the use of the J2 flow theory (J2FT) 

often results in bifurcation load predictions significantly higher than those observed 

experimentally. On the other hand, approaches that use the J2 deformation theory (J2DT) 

provide estimates more consistent with the experimental data e.g. (Batdorf, 1949; Gerard 

& Becker, 1957). 

In structural instability problems, it is quite difficult to identify accurately the onset of 

bifurcation, mainly because of its tangential (non-abrupt) character (Kyriakides & 

Corona, 2007). Furthermore, end support effects and, most importantly, the presence of 

inevitable small geometric and other imperfections do not allow for clear interpretation 

of experimental buckling results. In this perspective, the introduction of imperfections in 

modelling using J2FT may suffice to predict maximum buckling loads observed in 

buckling experiments e.g. (Shamass et al., 2014). Nonetheless, to obtain good predictions 

in terms of bucking load and, more markedly, in terms of the corresponding deformation, 

the necessary imperfection amplitudes can become unrealistically high, particularly in 

thick-walled shells or materials with considerable hardening (Hutchinson & Budiansky, 

1976; Ore & Durban, 1992) 

The documented superiority of J2DT in estimating the bifurcation point (Tuğcu, 1991; 

Blachut et al., 1996; Wang, et al., 2001) can be explained by the material stiffness moduli 

that J2DT employs, which are less stiff compared to the J2FT. As a result, plastic strain 

increments may develop in directions tangent to the Von Mises yield surface, not 

exclusively perpendicular to it. This more compliant material behaviour can be attributed 
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to the development of corners in the yield surface of real materials (Batdorf & Budiansky, 

1949) when abrupt changes in stress direction occur, which was investigated in the 60s 

(Hecker, 1972) and was observed experimentally more recently (Kuroda & Tvergaard, 

1999; Kuwabara et al., 2000). 

Budiansky (1959) argued for the applicability of J2DT for a range of problems with load 

paths which do not involve unloading, as the J2DT does not have such a condition. It has 

been used to trace the prebuckling and instability of cylinders under compression and 

bending e.g. (Gellin, 1979; Gellin, 1980; Kyriakides & Shaw, 1982). However, in the 

post-buckling, parts of the shell may unload, so the use of J2DT may not be an appropriate 

material model e.g.(Guarracino & Simonelli, 2018). A hybrid approach has been 

suggested to overcome this issue: using the J2FT for tracing the primary equilibrium path 

of the structures, and the J2DT material moduli for estimating bifurcation. This method 

has been suggested in early works (Batdorf, 1949; Bushnell, 1974, 1982) and used 

successfully in problems of structural instability of tubes under compressive loads (Ju & 

Kyriakides, 1991, 1992; Bardi et al., 2006; Corona et al., 2006; Peek & Hilberink, 2013). 

Still, it requires the use of two distinct constitutive laws for the same material within the 

analysis, while it might not allow for tracing consistently the post-buckling behaviour, as 

it might not lead to an instantaneous jump to the non-trivial post-buckling branch. 

Alternatively, the adoption of more elaborate constitutive models has been suggested for 

predicting accurately the buckling of thick-walled metal shells loaded into the plastic 

range. Advanced constitutive models have been proposed by (Christoffersen & 

Hutchinson, 1979; Gotoh, 1985; Goya & Ito, 1991) incorporating a yield surface with a 

vertex; a detailed overview is given in Schurig (2006). These models can account for less 

stiff behaviour for non-proportional loading 1 and higher plastic deformations, when 

compared to J2FT. In particular, the J2 corner theory, developed by Christoffersen & 

Hutchinson (1979), employs the rate form of the J2DT for a range of strain rate directions, 

elastic unloading within a conical yield surface, and partial loading in between. It has 

been employed successfully in problems of shear band formation (Christoffersen & 

Hutchinson, 1979; Needleman & Tvergaard, 1984) and in structural instability 

investigations of compressed cylinders and cylindrical panels (Tvergaard, 1983a, 1983b; 

Giezen, 1988; Tvergaard & Needleman, 2000). However, the calibration and 

 
1 Proportional are loading paths during which the stress components increase in constant ratio to each other, 

e.g. uniaxial loading 
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implementation of such models in an implicit finite element environment may become 

quite cumbersome, making their use unattractive for structural computations. 

To circumvent the complexity and the computational cost of corner theories, simpler 

plasticity models were suggested which employ flow rules that mimic the increased 

plastic flow caused by yield surface corners, while maintaining the smooth shape of a 

Von Mises yield surface. Hughes & Shakib (1986) developed an associative flow rule 

with increased plastic flow, based on a hardening modulus dependent on the direction of 

the strain increment. Yet, it demands significant hardening and no application in structural 

stability problems has been identified by the author. Simo (1987) presented a non-

associative flow rule which mimics the effect of a yield surface corner, applicable 

independently of the level of hardening. However, the corresponding instantaneous and 

linearized stiffness moduli were not presented, neither was the model implementation for 

nonlinear hardening materials. This model was used by Rønning et al. (2010) for 

modelling the torsional buckling of cruciform columns, and it was the basis for the non-

associative models by (Kuroda & Tvergaard, 2001; Kuroda, 2004, 2015; Yoshida, 2017). 

To inherit the effectiveness of J2DT in buckling predictions, some models were 

developed that employ its rate form, along with a smooth Von Mises yield surface. 

However, in this approach, accounting for elastic unloading creates a discontinuity in the 

production of plastic flow in directions tangent to the yield surface. To eliminate this 

discrepancy, Peek (2000) relaxed the demand for elastic unloading, allowing for some 

plastic deformation to take place for stress paths directed inward the yield surface. Pappa 

& Karamanos (2016) employed a different tactic: they maintained elastic unloading but 

modified the J2DT flow for a range of strain directions close to the yield-surface tangent, 

so that plastic production is smoothly zeroed for tangent directions. Yet, the ensuing 

strain-direction dependency was not fully incorporated in the presented formulation. 

These models were used to investigate the buckling response of metal tubes under 

compression. 

1.1.1 Research needs 
The above constitutive models were incrementally developed to approach problems of 

inelastic instability in an effective and progressively simpler manner. Each exhibits 

advantages and drawbacks mainly related to the implementation and application aspect 

of the model. Their adoption within modern implicit finite element algorithms is not 

trivial and has not been discussed thoroughly, while their particular, non-standard 
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properties demand special consideration. Additionally, rather limited reported application 

in practical investigations has been identified for several of these models, so their 

effectiveness in inelastic instability calculations and convergence performance in 

simulations may demand further examination. These observations are a starting point to 

the present research directed to studying structural instability of metal shells in the 

inelastic range, by accounting for ‘corner effects’ in the constitutive law. 

1.2 Aims and objectives 
This research aims to develop and implement efficient numerical (finite element) tools to 

reliably simulate the structural behaviour of thick-walled metal shells loaded in the 

inelastic range. Accounting for non-standard material behaviours, the present 

investigation aspires to further the understanding on instabilities and other factors that 

influence the structural performance of inelastic shells under compressive loads. 

Considering the disparity between buckling estimates employing the J2FT and 

experimental data, an examination is undertaken of alternative, advanced constitutive 

laws that may offer the capability to both (a) trace accurately the equilibrium path of 

inelastic metal shells and (b) to estimate instability in a consistent manner, using 

established computational tools. The variety and complexities of these material models 

motivates the development of a framework for systematically studying and implementing 

non-associative, ‘pseudo-corner’ models in implicit algorithms. Focusing on simplicity 

and direct applicability in FE simulations, a new special-purpose constitutive law is 

synthesised. It is introduced as an efficient extension of modern structural analysis 

software, to investigate the structural response of inelastic metal shells, accurately tracing 

their equilibrium paths and consistently assessing stability. 

Motivated by offshore and pipeline engineering, several aspects of the instability of thick-

walled cylindrical metal shells are examined, under a range of demanding loading 

conditions of practical interest. Verification of the performance and the extend of 

applicability of the constitutive model within large scale finite element calculations is 

pursued and validation of its capacity to accurately simulate structural performance of 

shells, well into the post buckling. 

Key objectives of the research are: 

• Investigating the methods used in modelling the behaviour of thick-walled shells 

under compressive loads. 
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• Reviewing the literature to pinpoint the role of material constitutive laws in

modelling the instability in the inelastic range.

• Selecting an appropriate constitutive model to reliably simulate the structural

behaviour and instabilities of inelastic shells under compressive loads and

implementing it within available computational finite element tools in an efficient

manner

• Collecting appropriate experimental data from the literature and performing

numerical simulations to validate and calibrate the model

• Verifying the extend of applicability of the constitutive model, considering

various load scenarios that lead to inelastic buckling and validating its capability

to accurately simulate structural performance of shells well into the post-buckling

range

• Testing the model performance in big scale finite element analyses, to thoroughly

investigate its convergence in demanding structural calculations characterized by

structural instabilities and load path changes

• Assessing the influence of constitutive modelling in shell instability (primary

equilibrium, bifurcation post-buckling paths) and the imperfection sensitivity in

the inelastic range, in comparison with J2FT

• Elucidating aspects of inelastic instability of shells, the sequence of events from

buckling to failure of sections, accounting for geometry, material and various

loadings

1.3 Methodology 
Advanced material models-candidates for inelastic buckling calculations are identified 

and used as a starting point for developing a new simplified constitutive model that can 

be efficiently implemented in available computational tools. This model maintains the 

basic features of the J2FT plasticity and introduces key enhancements to effectively 

account for non-standard material behaviours. A smooth Von Mises yield surface is 

adopted, along with a two-branch non-associative flow rule, that employs material 

stiffness lower than J2FT, mimicking the influence of a vertex forming in the yield 

surface. Followingly, this model is referred to as J2 Non-Associative (J2NA). 

Based on considerations of previous ‘corner’ and ‘pseudo-corner’ models, the first branch 

of J2NA is activated for moderate deviations from proportional loading, and it employs 

the rate form of the J2DT, to inherit its effectiveness in structural instability predictions 
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in the plastic range. The second branch is activated for larger deviations from proportional 

loading, and it is used for strain increment directions approaching the yield-surface-

tangent. It is an extension of the approach by Simo (1987), mimicking the effect of a yield 

surface corner of semi-angle denoted as 𝜃𝜃𝑐𝑐, and it is adopted for its robustness and natural 

geometric interpretation. Fully elastic unloading is employed for strain-increment 

directions tangent and inward to the yield surface, as suggested in the model by Pappa & 

Karamanos (2016). The model’s behaviour can vary between the stiffer J2FT and the 

more compliant J2DT, based on the model’s material parameter (𝜃𝜃𝑐𝑐) and the direction of 

the strain rate. 

Nonlinear isotropic hardening is considered to address monotonic loading problems in 

inelastic cylindrical shells. A small-strain formulation is presented, and a detailed 

backward-Euler numerical integration scheme is developed for three-dimensional 

elements. An enhanced version is presented for shell elements analyses, accounting for 

zero stress across the shell thickness. Care is taken to rigorously account for the strain-

increment-direction dependence in the numerical integration and consistent linearization 

of J2NA, an issue commonly overlooked in previous approaches. The developed 

integration scheme is general enough to allow for implementing behaviours from various 

other models in the literature, and it may be used as a work frame for implementing non-

associative and ‘pseudo-corner’ constitutive laws within implicit algorithms. The model 

is tested extensively in large-scale cylinder instability analyses and several non-trivial 

loading scenarios, involving non-proportional loading, to examine its effectiveness and 

range of application. 

Motivated by the offshore pipeline installation processes and the structural behaviour of 

offshore tubular members, the present research investigates the local buckling and post-

buckling resistance of long thick-walled cylindrical metal shells under various 

compressive loads and the ensuing types of instabilities.  

Numerical simulations are conducted using the commercial general-purpose finite 

element code Abaqus. Carefully constructed three dimensional (3D) models are used to 

study the structural behaviour of cylinders subjected to uniform compression, bending 

and the pressure loads, which represent a range of important load cases. Shell finite 

elements are employed in analyses considering non-linear geometry, inelastic material 

properties and initial geometric imperfections. The developed non-associative plasticity 

model is coded in Fortran and implemented as a material user subroutine (UMAT) in 

Abaqus/Standard.  
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J2NA is employed in numerical analyses to investigate the structural behaviour of elastic-

plastic cylinders under compressive loads. Using a single constitutive model, it is possible 

to trace the prebuckling and the post-buckling equilibrium path of the cylinders and 

consistently estimate instability, utilizing the capabilities of the finite element software. 

A generalized version of Hill’s ‘comparison solid’ concept is used to identify the onset 

of instability, and a semi-analytical method is considered for simplified buckling 

calculations. The influence of the model’s features and of initial geometric imperfections 

on the simulated behaviour of thick-walled tubes is demonstrated, and comparisons are 

made with respect to J2FT. Imperfection is introduced in the form of the shell’s buckling 

modes. Structural behaviours and bifurcation estimates obtained employing J2NA 

compared well with predictions and with experimental works from the literature. 

1.4 Practical applications 
The present research focuses on the structural performance and instabilities of thick-

walled cylinders under compressive loads, which experience local instability and 

ultimately fail while loaded into the inelastic range of the material. These shells have 

important applications in onshore and offshore structures where high compressive loads 

need to be carried, but also in piping components and pipelines that are subjected to severe 

compressive loads during installation, operation, maintenance and in severe loading 

events. Accurately estimating their instability, post-buckling capacity and performance 

allow for optimal use of the structural properties of the thick-walled sections, where 

bifurcation does not immediately imply failure, leading to a more economic design. This 

can be of importance particularly in applications of pipelines, where their large scale 

implies that material economy can have a significant impact. Other, structural 

applications include e.g. offshore platforms (indeterminate systems) where ultimate limit 

state design can be more economic by accounting for the post-buckling capacity of 

isolated structural members, as local instability might not be detrimental for the global 

stability of the structure. Simulating reasonably closely the buckling and post-buckling 

behaviour of inelastic shells can allow for more efficient use of the material strength and 

the structural capabilities of the members, which can be of particular interest for members 

of high strength steel.  

Despite focusing this investigation on stability calculations of cylindrical shells with 

application in offshore and pipeline engineering, this research addresses the critical 

subject of inelastic buckling of shells. Thus, the developed tools and methodologies may 
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be extended and applied to investigate the structural behaviour and buckling of inelastic 

shells of various cross sections and different geometries and further compressive 

loadings, with applications including e.g., compressed plates and spherical shells 

subjected to external pressure in vessel components. Besides inelastic shell buckling, 

metal forming process simulations comprise a domain where the non-associative models 

are being investigated, offering an extensive range of industrial applications, but also 

problems of strain localization, metal sheet necking. From a research perspective, this 

work treats ‘pseudo-corner’ and non-associative models in a unified manner and outlines 

their implementation process in finite element codes, so, it can be used as a guide to 

develop several flow rules that exhibit similar effects, which may be used to investigate 

various aspects of the aforementioned problems. 

1.5 Outline of the thesis 
This thesis is divided in 10 chapters, including the present introduction. A short 

description of the following chapters is given below.  

Chapter 2: A brief introduction in plasticity theory is offered, with special reference to 

non-standard constitutive laws - candidates for modelling instability in the inelastic range. 

Motivated by complexities and limitations of these models, a special purpose J2 non-

associative (J2NA) constitutive law is developed for structural stability calculations of 

thick-walled shells. The model’s formulation is meticulously described and its relation to 

previous ‘corner’ and ‘pseudo-corner’ constitutive models is explained.  

Chapter 3: A numerical integration scheme is presented in detail, towards the 

implementation of the model in implicit finite element tools. An enhanced version is 

developed to account for plane stress conditions, applicable in shell elements analyses. 

Special attention is paid in addressing thoroughly the intricacies of the model, which stem 

from the reduced material stiffness when changes in the strain path occur. The material 

behaviour under non-proportional strain paths is demonstrated. The numerical accuracy 

of the developed integration scheme is discussed. 

Chapter 4: The buckling of thick-walled metal cylindrical shells under uniform 

compression is considered as a classic problem of instability in the inelastic range. It 

showcases the effectiveness of shell element models employing J2NA in addressing 

structural instability problems. Finite element analyses are performed, producing 

behaviours in agreement with the experimental work by Bardi et al. (2006). Aspects of 

buckling and the relevant modes are considered, with focus in uniform wrinkling and its 
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localization leading to loss of structural rigidity. The role of geometric imperfection in 

the structural response of the shells is examined. 

Chapter 5: Investigation is extended to problems of pure bending, which entail non-trivial 

prebuckling equilibrium paths. The structural response of various thick-walled metal 

cylinders is investigated with respect to their diameter-to-thickness ratios (𝐷𝐷/𝑡𝑡). The limit 

states due to ovalization and bifurcation instabilities are examined, along with their 

interactions and prevalence of either, depending on the shell’s geometry, imperfection 

and boundary conditions. Structural behaviours from numerical simulation are in line 

with experiments and remarks by Kyriakides & Ju (1992), illustrating the range of 

application of J2NA.  

Chapters 6-7: The capabilities of the model are further evaluated in problems of bending 

under pressure loads, which are characterized by inherently non-proportional loading 

conditions. The key features of buckling in pressurized cylinders are addressed using the 

J2NA in finite element analyses. Simulations accurately describe the experimental 

behaviours reported by Limam et al. (2010) and Ju & Kyriakides (1991). A simplified 

buckling estimation method is developed for pressurized cylinders under bending, by 

considering similarities with buckling behaviours of cylinders under compression. 

Chapter 8: A general closure is offered, and the main conclusions of the present research 

are summarized. Key findings are highlighted, and future directions of the research are 

indicated. 

Chapters 9-10: References are provided, and three appendices are enclosed. Appendices 

1, 2 provide additional information and details on the implementation of J2NA and 

relevant constitutive laws from the literature. In Appendix 3, the formulas for cylinder 

buckling under axial load and pressure are derived analytically and discussed. 
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2 CONSTITUTIVE MODELLING 

In this chapter, a brief introduction is made to the fundamentals of metal plasticity. An 

overview is given of plasticity models suggested for addressing problems of instability in 

the inelastic range, before immersing into the formulation of the non-associative model, 

developed here, for efficiently simulating the buckling of inelastic shells. 

2.1 Uniaxial material behaviour 
The primary features of the idealized elastic-plastic behaviour of metals, used in structural 

analyses, are summarized in the uniaxial stress-strain-curve in Figure 2.1. For small 

deformations, material behaves elastically, so stress 𝜎𝜎  and strain 𝜀𝜀  values are 

proportional, related through the elasticity (or Young’s) modulus 𝜎𝜎 = 𝐸𝐸𝜀𝜀. Upon removal 

of the load, the strain is fully recoverable. Material behaves elastically up until the elastic 

limit is reached (point A) when its yield strength 𝜎𝜎𝑠𝑠 is exceeded. 

Additional deformations have a plastic part which is permanent. Strain beyond the yield 

point may lead to an increase in the material strength 𝜎𝜎 (strain or work hardening), as in 

the cases of high strength steel, stainless steel, aluminium etc., or a plateau may appear, 

with no increase of strength for a range of deformations before hardening onsets, as in 

mild streel. The slope 𝐸𝐸𝑡𝑡  of the stress-strain curve after yielding, also called tangent 

material modulus, is usually significantly lower than the elasticity modulus (𝐸𝐸𝑡𝑡 ≪ 𝐸𝐸). 
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Upon removal of the axial load (path BC), only the elastic part 𝜀𝜀𝑒𝑒 of the deformation is 

recovered. The residual plastic part of the deformation 𝜀𝜀𝑝𝑝 is permanent and the material 

does not return to its initial state. Unloading follows path BC, having a slope equal to the 

elasticity modulus 𝐸𝐸. 

Figure 2.1: Elastic-plastic behaviour under uniaxial loading 

2.2 Fundamentals of metal plasticity 
Plasticity models replicate this material behaviour under uniaxial loading and 

appropriately generalize it to multiaxial stress and strain conditions. The following 

fundamental attributes are shared by plasticity models: 

i. the total strain is decomposed into elastic and plastic parts

ii. a yield criterion is adopted in the form of a yield surface in the stress space, that

defines the conditions under which inelastic material behaviour initiates

iii. a hardening law defines the evolution of the yield surface with plastic deformation

iv. a flow rule determines the plastic deformation induced by applied stress or strain

increments.

These key elements of plasticity are briefly introduced below. For a detailed treatment of 

plasticity, the reader is referred to the book by de Souza Neto et al. (2008). 

2.2.1 Additive decomposition of strain 
Under uniaxial loading (Figure 2.1), when the elastic limit is exceeded, the total strain is 

split into elastic and plastic parts as  
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 𝜀𝜀 = 𝜀𝜀𝑒𝑒 + 𝜀𝜀𝑝𝑝 (2.1) 

And the stress is calculated as: 

𝜎𝜎 = 𝐸𝐸𝜀𝜀𝑒𝑒 = 𝐸𝐸(𝜀𝜀 − 𝜀𝜀𝑝𝑝) (2.2) 

In the framework of incremental small-strain metal plasticity, this principle is extended 

in multiaxial stress rates and strain rates. The rate of total strain tensor �̇�𝛆 is split into elastic 

(�̇�𝛆𝑒𝑒) and plastic (�̇�𝐞𝑝𝑝) parts as: 

 �̇�𝛆 = �̇�𝛆𝑒𝑒 + �̇�𝐞𝑝𝑝 (2.3) 

and the linear isotropic Hook’s law relates the stress rate �̇�𝛔 to the elastic strain rate �̇�𝛆𝑒𝑒 as: 

 �̇�𝛔 = 𝐃𝐃�̇�𝛆𝑒𝑒 = 𝐃𝐃(�̇�𝛆 − �̇�𝐞𝑝𝑝) = 𝐃𝐃�̇�𝛆 − 𝐃𝐃�̇�𝐞𝑝𝑝 (2.4) 

The fourth-order elastic stiffness tensor 𝐃𝐃 is: 

𝐃𝐃 = 3𝐾𝐾 𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒 + 2𝐺𝐺 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 (2.5) 

where 𝐺𝐺 is the shear modulus of the material, 𝐾𝐾 is the bulk modulus and 𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒, 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 are the 

volumetric and deviatoric fourth-order unit tensors, whose Cartesian components are 

expressed using the Kronecker delta 𝛿𝛿𝑖𝑖𝑖𝑖 as:  

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑑𝑑𝑒𝑒𝑣𝑣 =
1
2
�𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑒𝑒 + 𝛿𝛿𝑖𝑖𝑒𝑒𝛿𝛿𝑖𝑖𝑖𝑖� −

1
3
𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑒𝑒 (2.6) 

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑣𝑣𝑜𝑜𝑒𝑒 =
1
3
𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑒𝑒 (2.7) 

2.2.2 Yield criterion 
The yield criterion is used to identify whether the material behaviour is elastic or inelastic 

under the current stress state, for any subsequent stress or strain increment. In the uniaxial 

case, yielding initiates simply when a yield stress is reached (𝜎𝜎 − 𝜎𝜎𝑠𝑠 = 0). In the three-

dimensional case, this principle is expressed through the yield function, which, in 

classical metal plasticity, takes the form: 

𝐹𝐹 = 𝐹𝐹(𝛔𝛔, 𝑙𝑙𝑖𝑖) = 0 (2.8) 

𝐹𝐹 is a scalar function of the stress tenson 𝛔𝛔 and a number of material and load history 

(tensor and scalar) parameters 𝑙𝑙𝑖𝑖. Eq. (2.8) defines the yield surface, which is a convex 

hypersurface in the stress space, enclosing all stress states for which the material behaves 

elastically. During plastic deformation, changes in the geometry of the yield surface may 

occur that are determined by the evolution of the internal parameters 𝑙𝑙𝑖𝑖 and the hardening 
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rule. 

A fundamental assumption in plasticity is that function 𝐹𝐹 is non-positive (𝐹𝐹 ≤ 0): (a) 𝐹𝐹 

is negative when the stress state is enclosed by the yield surface, in which case any 

infinitesimal deformation is elastic, while (b) 𝐹𝐹 is zero when the stress state is on the yield 

surface and plastic flow is imminent. Assuming the yield surface is smooth, the gradient 

(outward normal) 𝜕𝜕𝐹𝐹 𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖⁄  at any point of the yield surface is defined. Considering a 

stress rate �̇�𝜎𝑖𝑖𝑖𝑖, all possible loading conditions are summarized as: 

• 𝐹𝐹 = 0     &  𝜕𝜕𝐹𝐹 𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖⁄ �̇�𝜎𝑖𝑖𝑖𝑖 > 0 → plastic loading

• 𝐹𝐹 = 0      &  𝜕𝜕𝐹𝐹 𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖⁄ �̇�𝜎𝑖𝑖𝑖𝑖 < 0 → elastic unloading

• 𝐹𝐹 = 0      &  𝜕𝜕𝐹𝐹 𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖⁄ �̇�𝜎𝑖𝑖𝑖𝑖 = 0 → neutral loading (tangent to the yield

surface - no plastic deformation)

• 𝐹𝐹 < 0     →   the material behaves elastically for any stress rate �̇�𝜎𝑖𝑖𝑖𝑖

• 𝐹𝐹 > 0     →     is an invalid state. When the material deforms plastically, internal

variables 𝑙𝑙𝑖𝑖 update so that 𝐹𝐹 = 0 at the new stress state.

2.2.3 Hardening 
Strain hardening, or work hardening, is the strengthening of a metal as a result of plastic 

deformation, instigated by the changes in the material microstructure. The hardening law 

or hardening rule describes the evolution of material strength under plastic deformation, 

which is represented through changes in the geometry or translations of the yield surface, 

expressed by the internal parameters 𝑙𝑙𝑖𝑖.  

Isotropic hardening is the simplest hardening rule. It postulates that plastic deformation 

leads to expansion of the yield surface uniformly in all directions, when yielding initiates 

(Figure 2.2). The shape of the yield surface is preserved, without any distortion or 

translation and its size is directly related to the amount of accumulated plastic strain. For 

specialized plasticity problems, more elaborate constitutive models may be used, further 

involving translations and/or distortions of the yield surface with plastic deformation. 

2.2.4 Plastic flow rule 
The plastic flow rule determines the increment of plastic strain that is caused by an 

increment of stress during elastoplastic loading. The plastic strain rate �̇�𝐞𝑝𝑝 is classically 

obtained by the differentiation of a smooth convex plastic potential Ω: 
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�̇�𝐞𝑝𝑝 = �̇�𝜆
𝜕𝜕Ω
𝜕𝜕𝛔𝛔

(2.9) 

Hence, plastic strain rate is coaxial with the gradient of plastic potential 𝜕𝜕Ω 𝜕𝜕𝛔𝛔⁄ , 

(perpendicular to the hypersurface Ω = 0). Parameter �̇�𝜆 is a non-negative scalar called 

plastic multiplier, and its value is determined from the consistency condition (�̇�𝐹 = 0), 

accounting for any changes in the yield surface due to the hardening law. Consistency 

demands that upon yielding the stress point must remain on the yield surface, if no 

unloading occurs. Plastic strain is accumulated as  

𝐞𝐞𝑝𝑝 = � �̇�𝐞𝑝𝑝 𝑑𝑑𝑡𝑡 (2.10) 

Followingly, a few important plasticity models are briefly introduced. Their particular 

features and properties outline the process towards the development of the J2 non-

associative model for inelastic buckling calculations. 

2.3 J2 flow theory 
For a wide range of applications, the J2 flow theory (J2FT) can accurately model the metal 

material behaviour and has been used extensively in the literature and in commercial 

software. For most metals, the pressure does not affect yielding, so the Von Mises yield 

criterion and an isotropic hardening law suffice to analyse problems of monotonic 

loading, considered here. The yield function is expressed as: 

𝐹𝐹�𝛔𝛔, 𝜀𝜀𝑞𝑞� = �3𝐽𝐽2 − 𝑑𝑑�𝜀𝜀𝑞𝑞� = �3 2⁄ ‖𝐬𝐬‖ − 𝑑𝑑�𝜀𝜀𝑞𝑞� = 0 (2.11) 

where 𝐬𝐬 = 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣𝛔𝛔 is the deviatoric part of the stress tensor and ‖𝐬𝐬‖ = √𝐬𝐬 ⋅ 𝐬𝐬 is the norm 

of 𝐬𝐬. Function 𝑑𝑑 expresses the yield strength of the material as a function of the equivalent 

(accumulated) plastic strain 𝜀𝜀𝑞𝑞: a monotonic increasing parameter relating the multi-axial 

plastic strain history to the behaviour of the material under a uniaxial stress, which is 

defined as 

𝜀𝜀𝑞𝑞 = �𝜀𝜀�̇�𝑞 𝑑𝑑𝑡𝑡 = ��2 3⁄ √�̇�𝐞𝑝𝑝 ⋅ �̇�𝐞𝑝𝑝 𝑑𝑑𝑡𝑡  (2.12) 

It is noted that under uniaxial load 𝜎𝜎, the equivalent Von Mises stress is 𝑞𝑞 = �3 2⁄ ‖𝐬𝐬‖ =

𝜎𝜎 and the equivalent plastic strain is equal to the plastic deformation of the material 𝜀𝜀𝑞𝑞 =

𝜀𝜀𝑝𝑝 (see Figure 2.1).  

The Von Mises yield surface is presented for plane stress conditions in Figure 2.2a, when 
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it takes the form of an ellipse, together with its relation to the material stress-strain curve 

under uniaxial loading. In the deviatoric stress space and in the principal three-

dimensional stress space (𝜋𝜋-plane), the Von Mises takes the form of a circle with radius 

𝑑𝑑�𝜀𝜀𝑞𝑞�, which is further shown in Figure 2.2b. 

Figure 2.2: Schematic representation of the yield surface evolution considering isotropic 
hardening and relation to the stress-strain curve of the material. 

This flow rule is called associated or associative, because the plastic potential function Ω 

is chosen to coincide with the yield function 𝐹𝐹. As 𝛺𝛺 = 𝐹𝐹, the flow relates to the stress 

tenson only through the invariant 𝐽𝐽2 = 𝐬𝐬 ⋅ 𝐬𝐬 2⁄ , after which the model is named. The 

plastic strain rate is expressed as: 

�̇�𝐞𝑝𝑝 = �̇�𝜆
𝜕𝜕𝐹𝐹
𝜕𝜕𝛔𝛔

= �3 2⁄ �̇�𝜆𝐧𝐧 (2.13) 

where 𝐧𝐧 = 𝐬𝐬 ‖𝐬𝐬‖⁄  is the unit tensor in the direction of the deviatoric stress, which is 

perpendicular to the Von Mises yield surface. This implies that the plastic strain rate 

tensor is deviatoric (�̇�𝐞𝑝𝑝 = 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣�̇�𝐞𝑝𝑝) , meaning it has no volumetric component (it is 

accompanied by no change in material volume). This is consistent with plastic flow being 

Initial Y.S.

ε

σ

Expanded Y.S.

σ1

σ2

σ3= 0

σ3 σ1

σ2

ε

σ

Expanded Y.S.

plane

Initial Y.S.



Chapter 2: Constitutive modelling 

Apostolos Nasikas - July 2022 35 

incompressible for most metallic materials, as it is primarily caused by plastic slip. Eq. 

(2.13) further implies that �̇�𝜆 = �2 3⁄ √�̇�𝐞𝑝𝑝 ⋅ �̇�𝐞𝑝𝑝 = 𝜀𝜀�̇�𝑞 , and, finally, the consistency 

equation (�̇�𝐹 = 0) allows for expressing �̇�𝜆 as: 

�̇�𝜆 = 𝜀𝜀�̇�𝑞 =
1

1 + 𝐻𝐻 3𝐺𝐺⁄
(𝐧𝐧 ⋅ �̇�𝐞) (2.14) 

where 𝐻𝐻 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝜀𝜀𝑞𝑞⁄ = (𝐸𝐸𝑇𝑇−1 − 𝐸𝐸−1)−1  is the material hardening modulus, directly 

related to the material tangent and elasticity moduli (Figure 2.1). The plastic strain rate 

�̇�𝐞𝑝𝑝 produced by a total strain rate �̇�𝛆 is: 

�̇�𝐞𝑝𝑝 =
1

1 + 𝐻𝐻 3𝐺𝐺⁄  (𝐧𝐧⊗ 𝐧𝐧)�̇�𝐞 (2.15) 

and the material elastoplastic rigidity tensor (𝐃𝐃𝑒𝑒𝑝𝑝 = 𝜕𝜕𝛔𝛔 𝜕𝜕𝛆𝛆⁄ ) expressing the changes in 

stress induced by a strain rate and the flexibility or compliance tensor 𝐂𝐂𝑒𝑒𝑝𝑝 = 𝐃𝐃𝑒𝑒𝑝𝑝
−1, take 

the from: 

𝐃𝐃𝑒𝑒𝑝𝑝 = 3𝐾𝐾𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒 + 2𝐺𝐺[𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧] +
2𝐺𝐺

1 + 3𝐺𝐺 𝐻𝐻⁄
(𝐧𝐧⊗ 𝐧𝐧) (2.16) 

𝐂𝐂𝑒𝑒𝑝𝑝 =
1

3𝐾𝐾
𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒 +

1
2𝐺𝐺

[𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧] +
1 + 3𝐺𝐺 𝐻𝐻⁄

2𝐺𝐺
(𝐧𝐧⊗ 𝐧𝐧) (2.17) 

Despite accurately modelling material behaviour, the J2FT was found to estimate 

buckling loads that are considerably higher than ones obtained experimentally in 

problems of buckling of inelastic shells. Oppositely, the simpler J2DT produced buckling 

estimates in better agreement with experimental values (Batdorf, 1949).  

2.4 J2 Deformation Theory 
The J2 deformation theory (J2DT), or total strain theory (Chakrabarty, 2006), was 

proposed by (Hencky, 1924) and postulates the existence of a one-to-one a relationship 

between total strain and total stress. The resulting simplification in calculations was 

important in the 70s-80s and allowed for numerically investigating plasticity problems 

including instability e.g. (Gellin, 1979, 1980; Kyriakides & Shaw, 1982), which showed 

favourable comparisons with experimental results in buckling, but had the side effect of 

neglecting any load history influence in the post-buckling. 

The J2DT adopts the additive decomposition of strain, and Hook’s law relates stress and 

elastic strain. The model postulates that the deviatoric stress 𝐬𝐬  at any stage of the 

deformation fully and uniquely defines the direction and size of the total plastic strain 𝐞𝐞𝑝𝑝, 
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which is expressed by. 

𝐞𝐞𝑝𝑝 = 𝜆𝜆 𝐬𝐬 (2.18) 

The plastic strain 𝐞𝐞𝑝𝑝 is assumed to be codirectional with the deviatoric stress 𝐬𝐬 and its 

size ‖𝐞𝐞𝑝𝑝‖ is determined by the proportionality scalar 𝜆𝜆, which accounts for the plastic 

properties of the material, obtained from a uniaxial stress-strain curve. Parameter 𝜆𝜆 is a 

function of the equivalent Von Mises stress 𝑞𝑞 and the equivalent plastic strain 𝜀𝜀𝑞𝑞, which 

are defined as: 

 𝑞𝑞 = �3𝐽𝐽2 = �3 2⁄ ‖𝐬𝐬‖ (2.19) 

𝜀𝜀𝑞𝑞 = �2 3⁄ √𝐞𝐞𝑝𝑝 ⋅ 𝐞𝐞𝑝𝑝 = �2 3⁄  ‖𝐞𝐞𝑝𝑝‖ (2.20) 

This definition of 𝜀𝜀𝑞𝑞 is similar to the one in J2FT -eq.(2.12)-, except it relates to the total 

plastic strain tensor 𝐞𝐞𝑝𝑝, not the history of plastic strain increments �̇�𝐞𝑝𝑝. Under uniaxial 

loading, the two definitions are equivalent, and the behaviour of J2DT is identical to that 

of J2FT.  

The Von Mises yield function (2.11) is used to calculate the equivalent plastic strain for 

a stress state based on the uniaxial material stress-strain curve. The proportionality scalar 

𝜆𝜆 is used to calculate the plastic strain tensor, expressed as: 

𝜆𝜆 =
3
2
𝜀𝜀𝑞𝑞
𝑞𝑞

=
3
2

1
ℎ (2.21) 

where ℎ = (𝐸𝐸𝑆𝑆−1 − 𝐸𝐸−1)−1 is the secant modulus of material curve 𝑑𝑑(𝜀𝜀𝑞𝑞) (Figure 2.1). 

As the plastic strain is fully defined by the final stress state, it is independent on the 

loading history of the material, and J2DT may be unsuitable for describing the plastic 

behaviour of metals experiencing complicated loading histories. A major issue in J2DT 

refers to unloading (𝜕𝜕𝐹𝐹 𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖⁄ �̇�𝜎𝑖𝑖𝑖𝑖 < 0): it is followed by a reduction of the equivalent 

plastic strain 𝜀𝜀𝑞𝑞 and a contraction of the yield surface in the stress space so that (𝐹𝐹 = 0). 

Permanent plastic strain would lead to two stress states (before and after unloading) 

having the same plastic strain, violating the fundamental postulate of J2DT: a one-to-one 

relation between stress and strain.  

This means that in uniaxial loading the J2DT demands unloading to take place 

tangentially to the stress-strain curve, following the path BAO in Figure 2.1. Thus, plastic 

strain is fully recoverable, which is a characteristic of a nonlinear elasticity model. In 

contrast, incremental plasticity accounts for elastic unloading, following path BC, which 
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accurately reflects metal material behaviour. In loading scenarios where no unloading 

takes place, the J2DT may be used as a plasticity model. Such are proportional load paths, 

in which the components of the deviatoric stress 𝑠𝑠𝑖𝑖𝑖𝑖 increase monotonically, in constant 

ratio with respect to each other, e.g. in uniaxial loading. Budianski (1959) argued for the 

applicability of J2DT in a range of load paths that show deviations from proportional 

loading but satisfy a number of requirements that ensure plastic strain is irreversible. 

The rate equations of the J2DT are of interest in buckling problems, as they are proven to 

produce accurate instability estimates, while they further form the basis of more elaborate 

‘corner’ models, suggested for instability calculations (Christoffersen & Hutchinson, 

1979; Peek, 2000; Pappa & Karamanos, 2016), and the non-associative model developed 

in the present work. 

The rate of plastic strain in J2DT is obtained by differentiating equation (2.18): 

�̇�𝒆𝑝𝑝 =
3
2
𝜀𝜀𝑞𝑞
𝑞𝑞
�̇�𝐬 +

3
2
�
𝜀𝜀�̇�𝑞
𝑞𝑞
−
𝜀𝜀𝑞𝑞�̇�𝑞
𝑞𝑞2

� 𝐬𝐬 

 =
3
2

1
ℎ
�̇�𝐬 +

3
2
�

1
𝐻𝐻
−

1
ℎ
�
�̇�𝑞
𝑞𝑞
𝐬𝐬 

(2.22) 

Accounting for definitions (2.19), (2.20), the codirectional deviatoric stress and plastic 

strain tensors and for additive strain decomposition -eq.(2.3)-, the following rates are 

calculated: 

𝜀𝜀�̇�𝑞 = �2 3⁄ 𝐧𝐧 ⋅ �̇�𝐞𝑝𝑝 (2.23) 

�̇�𝑞 = �3 2⁄ 𝐧𝐧 ⋅ �̇�𝐬 (2.24) 

�̇�𝐬 = 2𝐺𝐺(�̇�𝐞 − �̇�𝐞𝑝𝑝 ) (2.25) 

And when inserted in (2.22), the plastic strain rate can be rewritten in the form: 

�̇�𝐞𝑝𝑝 =
1

1 + ℎ 3𝐺𝐺⁄
(𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧) �̇�𝐞 +

1
1 + 𝐻𝐻 3𝐺𝐺⁄  (𝐧𝐧⊗ 𝐧𝐧)�̇�𝐞 (2.26) 

This shows the similarity to the plastic strain rate in J2FT in eq.(2.15), but also an 

additional component, along the component of �̇�𝐞  which is perpendicular to 𝐧𝐧 , 

demonstrating that non-proportional loading leads to higher plastic deformations in J2DT. 

Finally, the tangent material moduli of the J2DT are expressed as: 

𝐃𝐃𝑒𝑒𝑝𝑝 = 3𝐾𝐾 𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒 +
2𝐺𝐺

1 + 3𝐺𝐺/ℎ
[𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧] +

2𝐺𝐺
1 + 3𝐺𝐺 𝐻𝐻⁄

 (𝐧𝐧⊗ 𝐧𝐧) (2.27) 
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and the compliance tensor: 

𝐂𝐂𝑒𝑒𝑝𝑝 =
1

3𝐾𝐾
𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒 +

1 + 3𝐺𝐺 ℎ⁄  
2𝐺𝐺

[𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧] +
1 + 3𝐺𝐺 𝐻𝐻⁄  

2𝐺𝐺
(𝐧𝐧⊗ 𝐧𝐧) (2.28) 

The J2DT employs the same moduli with the J2FT for proportional strain rates (�̇�𝐞 = 𝑑𝑑𝐧𝐧), 

while for non-proportional paths ( �̇�𝐞 ≠ 𝑑𝑑𝐧𝐧 ), the effective shear modulus 𝐺𝐺𝑆𝑆 =

𝐺𝐺 (1 + 3𝐺𝐺 ℎ⁄ )⁄  is lower. This reduced material stiffness governs the material response in 

abrupt changes in the strain path, which may occur at buckling. 

As noted by (Christoffersen & Hutchinson, 1979), the prebuckling and bifurcation of 

structures can be estimated using J2DT, but the post buckling, and indeed the nonlinear 

response of imperfect structures near the critical point involve strongly non-proportional 

loading. Under these conditions, the possibility of unloading should not be excluded 

which limits the use of J2DT. Addressing bifurcation and consistently investigating the 

post-bifurcation response of structures, accounting for the influence of imperfection, 

demands more sophisticated material models.  

2.5 Corner theories 
Early studies of (Batdorf, 1949) and (Sanders, 1954) suggested this challenge could be 

addressed with a plastic flow model where the smooth yield surface is discarded, and a 

sharp corner develops in the yield surface at the loading point. Batdorf & Budiansky 

(1949) developed a sophisticated slip theory based on observations on metal plasticity 

mechanisms, which allowed the formation of yield surface corners. Yet, the simplest form 

of this theory may still be too complicated for local instability calculations. However, it 

was shown that a flow theory with a sharp corner developed at the loading point in the 

yield surface could lead to material stiffness similar to the J2DT, for a range of loading 

paths, which further supported the use of J2DT in instability analyses.  

This was the starting point for several simpler phenomenological ‘corner’ theories which 

employed J2DT stiffness for a range of loading paths and introduced modifications to 

incorporate a yield surface corner (Figure 2.3) and elastic unloading for stress rates 

directed within it, thus overcoming a significant limitation of J2DT. The resulting yield 

function, assuming it exists, is not smooth, so it cannot be differentiated. Hence the yield 

criterion as described in paragraph 2.2.2 cannot be used to identify whether the material 

behaves elastically or plastically for a given stress rate �̇�𝛔. Instead, some measure of non-

proportionality is employed which relates the direction of the stress increment in 
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comparison with the geometry of the yield surface corner. This is a key component of 

corner and pseudo-corner models, and various candidate measures have been suggested. 

Some measures with clear geometric meaning are the angles formed between the axis of 

the corner and the stress rate (𝛽𝛽), or the strain rate (𝜃𝜃) or even the plastic strain rate (𝜃𝜃𝑝𝑝), 

all schematically shown in Figure 2.3. 

Figure 2.3: Yield surface with conical vertex; direction of plastic strain rate dependent 
on the total strain rate. 

Christoffersen & Hutchinson (1979) developed a phenomenological plasticity theory 

called J2 Corner Theory (J2CT). The elastic domain is initially bounded by a Von Mises 

yield surface, but when yielding initiates, at the point of loading a conical vertex develops, 

rather than the yield surface expanding, and the axis of the cone is in the direction defined 

by tensor 𝐧𝐧 = 𝐬𝐬 ‖𝐬𝐬‖⁄ . As the yield surface is not smooth, plastic strain rates in several 

directions are possible, depending on the direction of the strain or stress rate. All such 

directions are enclosed by the vertex’s forward cone of normals: this is a surface defined 

by the normal tensors to the conical yield surface at the point of loading, shown in Figure 

2.3. This demand comes from Drucker’s postulate that in stable materials the plastic work 

is non-negative positive (�̇�𝛔 ⋅ �̇�𝐞𝑝𝑝 ≥ 0)  

Without going into detail, the J2CT postulates the existence of a plastic potential 𝛺𝛺𝐶𝐶𝐻𝐻 of 

the stress rate �̇�𝛔, which can be differentiated to obtain the plastic strain rate. 

�̇�𝐞𝑝𝑝 =
𝜕𝜕𝛺𝛺𝐶𝐶𝐻𝐻
𝜕𝜕�̇�𝛔

(2.29) 

After some tensor algebra, the plastic strain rate can be expressed is a format remarkably 

similar to the J2DT, as: 

�̇�𝐞𝑝𝑝 =
1

1 + ℎ𝐶𝐶𝐻𝐻 3𝐺𝐺⁄
(𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧) �̇�𝐞 +

1
1 + 𝐻𝐻𝐶𝐶𝐻𝐻 3𝐺𝐺⁄  (𝐧𝐧⊗ 𝐧𝐧) �̇�𝐞 (2.30) 

In place of hardening moduli 𝐻𝐻, ℎ augmented functions 𝐻𝐻𝐶𝐶𝐻𝐻,ℎ𝐶𝐶𝐻𝐻 are defined: 
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Loading Path

Loading Point

Cone of 
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𝐻𝐻𝐶𝐶𝐻𝐻 =
𝐻𝐻

𝑓𝑓(𝜃𝜃𝐶𝐶𝐻𝐻) − 𝑓𝑓′(𝜃𝜃𝐶𝐶𝐻𝐻) tan(𝜃𝜃𝐶𝐶𝐻𝐻) 2⁄
 (2.31) 

ℎ𝐶𝐶𝐻𝐻 =
ℎ

𝑓𝑓(𝜃𝜃𝐶𝐶𝐻𝐻) + 𝑓𝑓′(𝜃𝜃𝐶𝐶𝐻𝐻) cot(𝜃𝜃𝐶𝐶𝐻𝐻) 2⁄
 (2.32) 

They are connected to and angular measure 𝜃𝜃𝐶𝐶𝐻𝐻 and they can be expressed in relation to 

direction of the stress rate (angle 𝛽𝛽) and the material properties as 

tan𝜃𝜃𝐶𝐶𝐻𝐻 = �𝐻𝐻 ℎ⁄  tan𝛽𝛽 (2.33) 

The purpose of 𝜃𝜃𝐶𝐶𝐻𝐻 is to define the direction of the stress rate relative to the yield surface 

and use it to control the stiffness of the model, through an explicit function 𝑓𝑓(𝜃𝜃𝐶𝐶𝐻𝐻). Two 

types of function 𝑓𝑓 are given in Table 2.4. The main features of this function are: 

• 𝑓𝑓 = 1  for a range of ‘near’ proportional stress rates (𝜃𝜃𝐶𝐶𝐻𝐻 ≤ 𝜃𝜃0), so that the

plastic strain rate and the material stiffness are identical to the J2DT.

• 𝑓𝑓  reduces smoothly for increasing values of 𝜃𝜃𝐶𝐶𝐻𝐻  (relating to increasing non-

proportionality in the loading)

• 𝑓𝑓 = 0 for strain rates directed tangent to or inward the cone vertex. As a result,

moduli 𝐻𝐻𝐶𝐶𝐻𝐻,ℎ𝐶𝐶𝐻𝐻 → ∞  and no plastic strain is produced, ensuring elastic

unloading is implemented

The stiffness and compliance moduli of the J2CT can be expressed by eq.(2.27), (2.28), 

respectively, by substituting the hardening moduli 𝐻𝐻,ℎ with their modified counterparts 

𝐻𝐻𝐶𝐶𝐻𝐻,ℎ𝐶𝐶𝐻𝐻.  

The J2CT was successfully used in problems of shear band development (Christoffersen 

& Hutchinson, 1979; Needleman & Tvergaard, 1984). This model was, later, used for 

buckling problems and problems of structural instability of cylinders under axial 

compression and pressure loads (Tvergaard, 1983a, 1983b; Giezen, 1988; Tvergaard & 

Needleman, 2000). It was found to produce good bifurcation load estimates and was used 

to investigate the post-buckling of shells.  

The formulation of J2CT is mathematically elegant but introduces several complexities 

in modelling the material behaviour, which is clear already from the overly simplified 

description offered above. A main difficulty in J2CT refers to the calibration of material 

parameters that control the corner behaviour. The model’s stiffness is governed by the 

angular parameter 𝜃𝜃𝐶𝐶𝐻𝐻 which relates to both the material hardening and the direction of 

the stress rate. The difficultly directly controlling 𝜃𝜃𝐶𝐶𝐻𝐻 in an experimental setup creates 
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challenges in the calibration of function 𝑓𝑓, which has not been thoroughly clarified. 

Less complicated corner models were developed by Gotoh (1985), Goya & Ito (1991) 

who adopted the flow rule of J2DT and elastic unloading within the yield surface vertex, 

but eliminated the complications of 𝑓𝑓(𝜃𝜃𝐶𝐶𝐻𝐻), and directly used the direction of the stress 

rate (angle 𝛽𝛽) to explicitly define the direction 𝜃𝜃𝑝𝑝 of the plastic strain rate and its size. 

Similar to the J2CT, the plastic strain rate and the material moduli can be expressed in a 

form akin to (2.26) and (2.27), by appropriate defining stress-rate-dependent functions 

for the modified hardening moduli 𝐻𝐻,ℎ. Additionally, Gotoh (1985) introduced a plastic 

strain history variable, similar to 𝜀𝜀𝑞𝑞 in J2FT, which permitted consideration of materials 

with no strain hardening. The model by Goya & Ito (1991) was a generalization of 

previously proposed corner models (Christoffersen & Hutchinson, 1979; Gotoh, 1985) 

and was extended to account for kinematic hardening (translations of the yield surface).  

Figure 2.4: Yield surface and flow rules for associative plasticity, pseudo-corner and 
corner models 

Nevertheless, the implementation of the corner models in an implicit finite element 

environment (integration and linearization -see Chapter 4-) is non-trivial. Ambiguities in 

the loading/unloading conditions arise in the lack of traditional yield criterion. 

Incorporating the conical yield surface poses challenges in efficiently monitoring the 
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evolution of all corners that form under complex loading histories, where several stress 

paths changes occur.  

2.6 Pseudo-corner models 
A simpler solution is offered in pseudo corner models, which mimic the effect of a yield 

surface corner by reducing the stiffness of the material, but employ a smooth Von Mises 

yield surface which can be implemented efficiently. A schematic comparison between 

these types of models is made in Figure 2.4. 

Hughes & Shakib (1986) developed a ‘pseudo-corner’ model, which adopts an associative 

flow rule -eq. (2.15)- and a modified hardening modulus 𝐻𝐻� explicitly dependent on the 

direction of the strain rate (angle 𝜃𝜃 in Figure 2.3). Appropriate definition of 𝐻𝐻� allows for 

lower material stiffness and increased plastic flow for non-proportional loading paths 

compared to J2FT, having an effect similar to a corner forming in the yield surface. 

However, Appendix 2 shows that this model allows for very small increase in plastic 

flow, and it is not applicable for materials without strain hardening, while no instance of 

its application is identified in the literature. 

A key contribution is the model by Simo (1987), who postulated that a defined conical 

vertex of semi angle 𝜃𝜃𝑐𝑐 forms in the yield surface, and plastic strain rates may occur in 

any direction within this vertex, but not outside it. Simo argued that for any strain rate 

directed within this simulated vertex (𝜃𝜃 ≤ 𝜃𝜃𝑐𝑐), plastic strain will be codirectional to the 

strain rate, while for strain rates directed outside the vertex, the respective plastic strains 

would lie along the cone of the vertex (forming an angle 𝜃𝜃𝑐𝑐 with the yield surface normal 

𝐧𝐧). This behaviour is demonstrated in Figure 2.5. As a Von Mises yield surface is adopted, 

for strain directions tangent and inward the yield surface, no plastic strain is produced. 

Figure 2.5: Plastic strain rate depending on the direction of the strain rate in the flow rule 
by Simo (1987) 
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This flow rule is non-associative, in the sense that the plastic strain rate has a component 

perpendicular to the yield surface, in the direction 𝐧𝐧, and one tangent to the yield surface, 

in a direction 𝐦𝐦, defined by the strain rate. The plastic flow rule is expressed as: 

�̇�𝐞𝑝𝑝 = �3 2⁄   𝜀𝜀�̇�𝑞�𝐧𝐧 + 𝛿𝛿 𝐦𝐦� (2.34) 

The behaviour of the ‘vertex’ is simply implemented using a function 𝛿𝛿, which is equal 

to the tangent of angle 𝜃𝜃𝑝𝑝 formed by the plastic strain rate and the yield surface normal 

𝐧𝐧, and it takes the form: 

𝛿𝛿 = � tan𝜃𝜃 
tan𝜃𝜃𝑐𝑐

 
,
,

   0 ≤ 𝜃𝜃 ≤ 𝜃𝜃𝑐𝑐
 𝜃𝜃𝑐𝑐 ≤ 𝜃𝜃 ≤ 𝜋𝜋/2 (2.35) 

An immediate advantage of Simo’s approach is the clear and direct definition of material 

behaviour, based on natural arguments, not indirectly through abstract functions as in 

corner theories. This may facilitate the identification of the material corner parameter 𝜃𝜃𝑐𝑐, 

though experimental investigations. Additionally, the material behaviour relates to the 

direction of the strain rate (angle 𝜃𝜃 ), not the stress rate (angle 𝛽𝛽 ), and (Kuroda & 

Tvergaard, 2001; Yoshida, 2017) argued that this may be more representative as plasticity 

is strain driven. As a result, the vertex effect persists in materials without strain hardening, 

for which 𝛽𝛽 = 𝜋𝜋 2⁄  for all non-proportional strain paths, given the Von Mises yield 

function. Indeed, this model is applicable independent of the material hardening rule, 

contrary to the J2CT or the model by Hughes & Shakib (1986).  

The elastoplastic rigidity of this model was not discussed in the original publication, but 

accounting for consistency (�̇�𝐹 = 0) and after some tensor algebra, it may be expressed 

as: 

𝐃𝐃𝑒𝑒𝑝𝑝 = 3𝐾𝐾𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒 + 2𝐺𝐺 �1 −
𝛿𝛿 tan𝜃𝜃⁄

1 + 𝐻𝐻/3𝐺𝐺
� [𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗𝐧𝐧] +

2𝐺𝐺
1 + 𝐻𝐻/3𝐺𝐺

(𝐧𝐧⊗ 𝐧𝐧) (2.36) 

And it can be rewritten in the form (2.27) with 

ℎ𝑆𝑆𝑆𝑆 = 𝐻𝐻 tan𝜃𝜃 𝛿𝛿⁄ + 3𝐺𝐺�tan𝜃𝜃 𝛿𝛿⁄ − 1�,  𝐻𝐻𝑆𝑆𝑆𝑆 = 𝐻𝐻 (2.37) 

Simo’s model predicts material stiffness that is lower than all mentioned ‘corner’ models 

that are based on the J2DT: assuming small deviations from proportionality (𝜃𝜃 ≤ 𝜃𝜃𝑐𝑐), for 

Simo’s model eq. (2.37) defines hardening parameter ℎ𝑆𝑆𝑆𝑆 = 𝐻𝐻  , while in J2DT this 

hardening parameter is ℎ = 𝑑𝑑 𝜀𝜀𝑞𝑞⁄ > 𝑑𝑑𝑑𝑑 𝑑𝑑𝜀𝜀𝑞𝑞⁄ = 𝐻𝐻 . The difference in stiffness is 

particularly pronounced at first yield (𝜀𝜀𝑞𝑞 = 0), where ℎ → ∞. This behaviour of Simo’s 

model may be interpreted as the yield surface corner being fully formed, instantly at first 
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yield. In J2DT stiffness parameter ℎ is the secant modulus of the 𝑑𝑑�𝜀𝜀𝑞𝑞� curve, which 

reduces gradually.  

2.6.1 Pseudo-corner models for buckling 
The above types of models were suggested as candidates for investigating material and 

structural instability that occurs in the inelastic rage of the material. The corner theories 

offered the advantage of a J2DT stiffness, while accounting for unloading within a yield 

surface vertex, with a drawback of a difficult implementation and calibration. Pseudo-

corner models offered a more direct implementation and calibration, but the suggested 

flow rules have been overly compliant for buckling calculations.  

For inelastic instability of shells, plasticity models were proposed sharing the attractive 

features of both ‘corner’ and ‘pseudo-corner’ models: the stiffness of J2DT found to lead 

to realistic buckling estimates, and the applicability of a smooth yield surface. 

Nevertheless, this combination creates a discontinuity in the material behaviour for strain 

rates directed tangent to the yield surface (neutral loading): strain rates directed slightly 

inwards the yield surface would lead to a purely elastic material response, while ones 

directed slightly outwards would lead to elastic-plastic behaviour (Figure 2.6). This 

introduces a discontinuity in the material stiffness which is not representative for the 

material behaviour and can lead to numerical instability when such loading conditions 

occur in simulations. Two methods for addressing this issue are identified below. 

Figure 2.6: Discontinuity of plastic production for straining directions tangent to the 
yield surface 

Peek (2000) developed an “incrementally continuous” deformation theory with unloading 

(ICUDT), which addressed this issue by relaxing the yield criterion, so that some amount 

of plastic strain can be produced for strain rates directed tangent to and inward the yield 

surface. Hence, continuity was established, but as a result, unloading is not elastic. This 

model is comparable to a ‘corner’ theory, with a very sharp corner formed in the yield 
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surface, but the relaxed yield criterion doesn’t accurately describe the unloading 

behaviour of the material and complicates implementation. 

In a different approach, Pappa & Karamanos (2016) eliminated the aforementioned 

discontinuity, and fully accounted for elastic unloading within the Von Mises yield 

surface. They modified the flow rule of J2DT, so that no plastic strain is produced for 

strain directions tangent to the yield surface. This effect was implemented by introducing 

a new measure 𝐸𝐸�𝑆𝑆, which is equal to the material secant modulus 𝐸𝐸𝑆𝑆 for a wide range of 

direction angles, effectively mimicking the behaviour of J2DT, and it increases for higher 

levels of non-proportionality (higher angles 𝜃𝜃) up to 𝐸𝐸 for strain directions tangent to the 

yield surface, thus inhibiting production of plastic strain for such strain directions. 

Function 𝐸𝐸�𝑆𝑆 is defined as: 

𝐸𝐸�𝑆𝑆 = 𝐸𝐸𝑆𝑆[1 − 𝑥𝑥(𝜃𝜃)] + 𝐸𝐸𝑥𝑥(𝜃𝜃) (2.38) 

where 𝑥𝑥(𝜃𝜃) = sin𝑚𝑚 𝜃𝜃 , 𝑛𝑛 = 250 − 300, so that the model follows the rate form of J2DT 

for angles 𝜃𝜃 ≤ 𝜃𝜃𝑐𝑐 = 75° (approximately) and is transitions to zero plastic production at 

𝜃𝜃 = 90°. The plastic strain rate was expressed as: 

�̇�𝒆𝑝𝑝 =
3
2
�

1
𝐸𝐸
−

1
𝐸𝐸�𝑆𝑆
� �̇�𝐬 +

3
2
�̇�𝑞
𝑞𝑞
�

1
𝐸𝐸𝑇𝑇

−
1
𝐸𝐸�𝑆𝑆
� 𝐬𝐬 (2.39) 

which closely resembles eq.(2.22)b, accounting for the definitions of 𝐻𝐻,ℎ. This model 

was considered a starting point for the present research due to its simplicity and 

comprehensiveness, incorporating elastic unloading and producing good buckling 

estimates. However, its numerical integration and linearization (see Chapter 4) are not 

trivial, and the originally suggested scheme did not fully account for the influence of 

angle 𝜃𝜃 in its implementation. This adversely affected the convergence of the FE model 

simulations, when it was examined in preliminary stages of the present research. 

Additionally, using function 𝑥𝑥(𝜃𝜃) to zero plastic strains for loading directions tangent to 

the yield surface may be effective, but other approaches may equally be adopted, more 

aligned with the definitions of hardening moduli in ‘corner’ theories, or the more 

geometric approach by Simo.  

Incorporating such models motivates the development of a framework to systematically 

address non-associative and pseudo-corner behaviours. This is the aim for the 

development of the J2 non-associative (J2NA) model, and care is taken to fully account 

for the influence of the strain rate direction angle 𝜃𝜃 , throughout the development. 

Focusing on simplicity and direct applicability in FE simulations, a specific behaviour is 



Non-associative plasticity for structural instability of cylindrical shells in the inelastic range 

46 Apostolos Nasikas - July 2022 

considered, to allow for efficiently investigating the structural response of inelastic shells 

under compressive loads, accurately tracing their equilibrium paths and consistently 

assessing stability. 

2.7 J2 non-associative model 
A framework is presented for developing non-associative metal plasticity models, 

employing a smooth Von Mises yield surface. Modifying the rate form of the J2DT and 

introducing a non-associative hardening function ℎ� dependent on the loading history and 

the direction of the strain rate, different amounts of allowable non-associative plastic 

straining can be implemented, resulting in stiffer or more compliant material behaviour, 

without negating the requirement of elastic unloading. 

For simulating the structural behaviour and instability of thick-walled metal shells, a two 

branched definition is proposed for the function ℎ�, so that the model can reliably trace the 

equilibrium path of compressed shells and consistently estimate bifurcation. The rate 

form of the J2DT is employed for small deviations from proportional loading (Peek, 2000; 

Pappa & Karamanos, 2016), to capitalize on the good bifurcation predictions of this 

model, which are in agreement with available experimental data. In addition, a branch 

following the approach by (Simo, 1987) is used to moderate the non-associative straining 

for more pronounced deviations from proportional loading. It is chosen due to its 

simplicity and geometric interpretation, that mimics the development of a yield surface 

vertex, and because it allows for fully elastic unloading for straining directions tangent to 

the yield surface.  

Preliminary calculations indicated that the direct use of either the J2DT or Simo’s model 

individually may not result in both: (a) estimating instability and (b) tracing post-buckling 

behaviour of thick-walled cylinders, an issue to be extensively discussed in paragraph 

4.1. By combining both models, as presented in the following, their desirable attributes 

are endowed into the J2 non-associative (J2NA) model. 

2.7.1 Model description - rate form 
In the framework of incremental small-strain metal plasticity, the rate of stress �̇�𝛔 is related 

to the elastic strain rate �̇�𝛆𝑒𝑒 as: 

 �̇�𝛔 = 𝐃𝐃�̇�𝛆𝑒𝑒 = 𝐃𝐃(�̇�𝛆 − �̇�𝐞𝑝𝑝) = 𝐃𝐃�̇�𝛆 − 𝐃𝐃�̇�𝐞𝑝𝑝 (2.40) 

where 𝐃𝐃 is the fourth-order elastic stiffness tensor, �̇�𝛆 is the rate of total strain, and �̇�𝐞𝑝𝑝 is 
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the (deviatoric) plastic strain rate, which for J2DT takes the following form - see eq. 

(2.22) & (Chakrabarty; 2006) -: 

�̇�𝐞𝑝𝑝 =
3
2
𝜀𝜀𝑞𝑞
𝑞𝑞
�̇�𝐬 +

3
2
�
𝜀𝜀�̇�𝑞
𝑞𝑞
−
𝜀𝜀𝑞𝑞�̇�𝑞
𝑞𝑞2

� 𝐬𝐬 (2.41) 

where 𝐬𝐬 = 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣𝛔𝛔  is the deviatoric part of the stress tensor, 𝜀𝜀𝑞𝑞  is the (accumulated) 

equivalent plastic strain, 𝑞𝑞 = �3 2⁄ ‖𝐬𝐬‖ is the equivalent Von Mises stress, with ‖𝐬𝐬‖ =

√𝐬𝐬 ⋅ 𝐬𝐬 being the norm of 𝐬𝐬, and their rates, indicated by a superimposed dot: �̇�𝐬, 𝜀𝜀�̇�𝑞 and �̇�𝑞.

By further enforcing consistency with a Von Mises yield surface in (2.41), which implies

(𝜀𝜀�̇�𝑞 = �̇�𝑞/𝐻𝐻), the flow rule of the J2DT as presented by (Goya & Ito, 1991; Pappa &

Karamanos, 2016) can be obtained.

Considering these definitions, one may readily show that �̇�𝑞 = �3/2 𝐬𝐬 ⋅ �̇�𝐬/‖𝐬𝐬‖, and �̇�𝐬 =

2𝐺𝐺(�̇�𝐞 − �̇�𝐞𝑝𝑝) with �̇�𝐞 = 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣�̇�𝛆. Inserting those in (2.41) and rearranging, the plastic strain 

rate can be expressed as: 

�̇�𝐞𝑝𝑝 = �3/2 𝜀𝜀�̇�𝑞𝐧𝐧 +
[𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧]�̇�𝐞

1 + ℎ/3𝐺𝐺
(2.42) 

where 𝐧𝐧 = 𝐬𝐬/‖𝐬𝐬‖ is the unit tensor in the direction of 𝐬𝐬 and ℎ = 𝑞𝑞/𝜀𝜀𝑞𝑞 is a non-associative 

hardening function representing the secant modulus of the stress-plastic strain curve. The 

plastic strain rate comprises two components: one in the direction of the tensor 𝐧𝐧 and one 

in the direction [𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧]�̇�𝐞, which is perpendicular to 𝐧𝐧, in the direction defined by 

the strain rate. This consideration is employed in the previous paragraphs to develop a 

uniform expression for the rigidity tensor of the referenced models. 

The present model adopts this form of plastic strain rate �̇�𝐞𝑝𝑝, but replaces ℎ with a different 

explicitly chosen function ℎ�: 

�̇�𝐞𝑝𝑝 = �3/2 𝜀𝜀�̇�𝑞𝐧𝐧 +
[𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧]�̇�𝐞

1 + ℎ� 3𝐺𝐺⁄
(2.43) 

The function ℎ� is a non-associative-hardening parameter, whose definition is discussed 

in paragraph 2.7.2, that moderates the amount of plastic straining perpendicular to 𝐧𝐧. In 

(2.43), the rate of equivalent plastic strain is defined as 𝜀𝜀�̇�𝑞 = �2 3⁄ 𝐧𝐧 ⋅ �̇�𝐞𝑝𝑝, a definition 

also adopted by Simo (1987), which is equivalent to its counterpart in J2FT (𝜀𝜀�̇�𝑞 =

�2 3⁄ √�̇�𝐞𝑝𝑝 ⋅ �̇�𝐞𝑝𝑝) for proportional loading. The flow rule (2.43) can be rewritten in the 

following, more convenient, geometric form, which is similar to the one used by Simo 
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(1987) and is used more extensively in the numerical integration of the model, described 

in Chapter 3: 

�̇�𝐞𝑝𝑝 = �3 2⁄ 𝜀𝜀�̇�𝑞 𝐧𝐧 +
‖�̇�𝐞‖ sin𝜃𝜃
1 + ℎ� 3𝐺𝐺⁄

𝐦𝐦 (2.44) 

In (2.44), 𝜃𝜃 is the angle defined by the strain rate �̇�𝐞 and the tensor 𝐧𝐧, shown in Figure 2.7, 

analytically expressed as: 

cos 𝜃𝜃 =
𝐧𝐧 ⋅ �̇�𝐞
‖�̇�𝐞‖

 (2.45) 

and 𝐦𝐦 is the unit deviatoric tensor perpendicular to 𝐧𝐧, in the direction of the strain rate 

𝐦𝐦 =
(𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧)�̇�𝐞
‖(𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧)�̇�𝐞‖

=
(𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧)�̇�𝐞

‖�̇�𝐞‖ sin 𝜃𝜃
 (2.46) 

Figure 2.7: Schematic representation of the yield surface in the deviatoric plane, the 
normal tensor 𝐧𝐧, the tangential tensor 𝐦𝐦 in the direction of the strain rate �̇�𝐞 and the plastic 
strain rate �̇�𝐞𝑝𝑝, with components in both directions normal and tangent to the yield surface. 

Yielding is defined with respect to a Von Mises yield function with nonlinear isotropic 

hardening: 

𝐹𝐹�𝛔𝛔, 𝜀𝜀𝑞𝑞� =
�2 3⁄

2𝐺𝐺
�𝑞𝑞 − 𝑑𝑑�𝜀𝜀𝑞𝑞�� =

‖𝐬𝐬‖
2𝐺𝐺

−
�2 3⁄ 𝑑𝑑�𝜀𝜀𝑞𝑞�

2𝐺𝐺
 = 0 (2.47) 

where 𝑑𝑑(𝜀𝜀𝑞𝑞) is the material yield stress in uniaxial tension, that defines the size of the 

yield surface as a function of the (accumulated) equivalent plastic strain 𝜀𝜀𝑞𝑞. The above 

expression for the Von Mises yield criterion is chosen because it scales down the yield 

surface to the deviatoric strain space, so that all the strain components, the shape of the 

𝐬𝐬/2𝐺𝐺 
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yield surface and their relative size and geometry can be presented in the same graph (e.g. 

Figures 2.7, 3.1, 3.2). Hence, tensors 𝐧𝐧, 𝐦𝐦 are the unit tensors normal and tangent to the 

Von Mises yield surface respectively, and (2.43) demonstrates the non-associative nature 

of the present model, with the increased plastic flow moderated by ℎ�. 

Enforcing consistency ��̇�𝐹 = 0�, and using (2.4) and (2.43), the equivalent plastic strain 

rate is expressed similarly with the J2FT: 

𝜀𝜀�̇�𝑞 = �2 3⁄
1

1 + 𝐻𝐻 3𝐺𝐺⁄
(𝐧𝐧 ⋅ �̇�𝐞) (2.48) 

where 𝐻𝐻 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝜀𝜀𝑞𝑞 is the material isotropic hardening modulus. Ultimately, accounting 

for consistency (�̇�𝐹 = 0), the plastic strain rate is expressed as: 

�̇�𝐞𝑝𝑝 = �
𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧

1 + ℎ� 3𝐺𝐺⁄
+

𝐧𝐧⊗ 𝐧𝐧
1 + 𝐻𝐻 3𝐺𝐺⁄ � �̇�𝐞 (2.49) 

Using equations (2.4), (2.43) and (2.48), the instantaneous rigidity tensor (continuum 

tangent moduli) for this material model is readily calculated as  

𝐃𝐃𝑒𝑒𝑝𝑝 = 3𝐾𝐾 𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒 +
2𝐺𝐺

1 + 3𝐺𝐺 ℎ�⁄
 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − �

2𝐺𝐺
1 + 𝐻𝐻 3𝐺𝐺⁄ −

2𝐺𝐺
1 + ℎ� 3𝐺𝐺⁄

�  (𝐧𝐧⊗ 𝐧𝐧) (2.50) 

or 

𝐃𝐃𝑒𝑒𝑝𝑝 = 3𝐾𝐾 𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒 +
2𝐺𝐺

1 + 3𝐺𝐺 ℎ�⁄
[𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧] +

2𝐺𝐺
1 + 3𝐺𝐺 𝐻𝐻⁄

(𝐧𝐧⊗ 𝐧𝐧) (2.51) 

It may be rewritten equivalently as in (2.52), a more familiar form, akin to the rigidity 

tensor of the J2FT. However, it employs a reduced shear modulus �̅�𝐺, combined with an 

increased hardening modulus 𝐻𝐻�, which are dependent on the non-associative hardening 

parameter ℎ�  and account for the straining-direction-dependency, characteristic of the 

model. As a result, the elastic-plastic instantaneous moduli of non-associative model are 

less stiff than the corresponding moduli of the J2FT, ultimately leading to a more 

compliant material behaviour under non-proportional strain paths. 

𝐃𝐃𝑒𝑒𝑝𝑝 = 3𝐾𝐾 𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒 + 2�̅�𝐺(𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧) +
2�̅�𝐺

1 + 3�̅�𝐺 𝐻𝐻�⁄
 (𝐧𝐧⊗ 𝐧𝐧) 

 = 3𝐾𝐾 𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒 + 2�̅�𝐺𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 −
2�̅�𝐺

1 + 𝐻𝐻� 3�̅�𝐺⁄
 (𝐧𝐧⊗ 𝐧𝐧)

(2.52) 

where 
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�̅�𝐺 =
𝐺𝐺

1 + 3𝐺𝐺 ℎ�⁄  
(2.53) 

𝐻𝐻� =  
1

1/𝐻𝐻 − 1 ℎ�⁄
(2.54) 

Finally, the material compliance tensor 𝐂𝐂𝑒𝑒𝑝𝑝 = 𝐃𝐃𝑒𝑒𝑝𝑝
−1 can be readily calculated as: 

𝐂𝐂𝑒𝑒𝑝𝑝 =
𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒

3𝐾𝐾
+

 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣

2G�
+

3
2𝐻𝐻�

(𝐧𝐧⊗ 𝐧𝐧) (2.55) 

2.7.2 Definition of the function ℎ� 
The choice of ℎ� is of key importance in this model, leading to stiffer or more compliant 

material behaviour. Table 2.2 shows that the appropriate selection of ℎ�, allows the model 

to mimic different material models available in the literature. 

To incorporate elastic unloading together with the selected non-associative flow rule, 

continuity of the production of plastic strain must be ensured, as noted by Peek (2000) 

and Pappa & Karamanos (2016). Without this provision, strain rates directed slightly 

inwards the yield surface would lead to elastic response, while ones directed slightly 

outwards would cause for elastoplastic straining, thus introducing an artificial numerical 

instability when such loading occurs (Figure 2.6). This implies that no plastic strain may 

be produced for strain rates directed tangent to the yield surface (𝜃𝜃 → 𝜋𝜋/2), which created 

demand (2.56) for function ℎ� in J2NA: 

lim
𝜃𝜃→�𝜋𝜋2�

− ‖�̇�𝐞𝑝𝑝‖ ‖�̇�𝐞‖⁄ = 0  ⇒ lim
𝜃𝜃→�𝜋𝜋2�

−ℎ� → +∞ (2.56) 

Therefore, ℎ� must depend on the direction of the strain rate (𝜃𝜃), which implies that the 

rigidity tensor (2.50) at a material point is not fully defined by its loading history, but the 

strain rate direction must also be known. This is a manifestation of the nonlinear 

dependence of the stress rate on the strain rate, characteristic in all mentioned corner and 

pseudo-corner models. 
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Table 2.1: Summary of the non-associative model 

(1) Linear isotropic stress/strain relations
𝐬𝐬 = 2𝐺𝐺[𝐞𝐞 − 𝐞𝐞𝑝𝑝] 
𝑡𝑡𝑡𝑡 𝛔𝛔 = 3𝐾𝐾 𝑡𝑡𝑡𝑡 𝛆𝛆 

(2) Yield condition

𝐹𝐹�𝛔𝛔, 𝜀𝜀𝑞𝑞� =
1

2𝐺𝐺 �
‖𝐬𝐬‖ − �2 3⁄ 𝑑𝑑�𝜀𝜀𝑞𝑞�� 

𝜀𝜀�̇�𝑞 = �2/3 𝐧𝐧 ⋅ �̇�𝐞𝑝𝑝 
𝐧𝐧 = 𝐬𝐬/‖𝐬𝐬‖ 

(3) Flow rule

�̇�𝐞𝑝𝑝 = �3 2⁄ 𝜀𝜀�̇�𝑞 𝐧𝐧 +
‖�̇�𝐞‖ sin𝜃𝜃
1 + ℎ� 3𝐺𝐺⁄

𝐦𝐦 

𝐦𝐦 =
�𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧��̇�𝐞
‖(𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧⊗ 𝐧𝐧)�̇�𝐞‖

 

cos𝜃𝜃 = 𝐧𝐧 ⋅ �̇�𝐞/‖�̇�𝐞‖ 
cos𝜃𝜃𝑝𝑝 = 𝐧𝐧 ⋅ �̇�𝐞𝑝𝑝/‖�̇�𝐞𝑝𝑝‖ 
ℎ = 𝑑𝑑�𝜀𝜀𝑞𝑞� 𝜀𝜀𝑞𝑞�  
1st branch: ℎ�    = ℎ    &    𝜃𝜃𝑝𝑝(ℎ�) ≤ 𝜃𝜃𝑐𝑐 
2nd branch: 𝜃𝜃𝑝𝑝 = 𝜃𝜃𝑐𝑐 →  ℎ�(𝜃𝜃𝑐𝑐) > ℎ  

(4) Kuhn-Tucker loading/unloading conditions
𝜀𝜀�̇�𝑞 ≥ 0,  𝐹𝐹�𝛔𝛔, 𝜀𝜀𝑞𝑞� ≤ 0,       𝜀𝜀�̇�𝑞𝐹𝐹�𝛔𝛔, 𝜀𝜀𝑞𝑞� = 0 

(5) Plastic consistency in loading (𝜀𝜀�̇�𝑞 > 0)

𝜀𝜀�̇�𝑞 = �2 3⁄
1

1 + 𝐻𝐻/3𝐺𝐺
(𝐧𝐧 ⋅ �̇�𝐞) 

The present model (J2NA) adopts a two-branch definition for the non-associative 

hardening parameter ℎ� . For small deviations from proportional loading, ℎ� = ℎ =

𝑑𝑑�𝜀𝜀𝑞𝑞� 𝜀𝜀𝑞𝑞� , and the model’s flow rule coincides with the flow of the J2DT, aspiring to 

inherit its superiority in estimating bifurcation. A second branch is necessary to comply 

with the limitations imposed by elastic unloading, so for larger deviations from 

proportional loading, up to loading tangent to the yield surface, the model is chosen to 

follow the flow proposed by Simo (1987). This branch mimics the effect of a conical yield 

surface vertex of semi-angle 𝜃𝜃𝑐𝑐 in the direction of the stress deviator: it constrains the 

plastic strain rate to lie within the forward cone of normals of the vertex, as shown in 

Figure 2.9. This is interpreted as (𝜃𝜃𝑝𝑝 ≤ 𝜃𝜃𝑐𝑐), where 𝜃𝜃𝑝𝑝 is the angle formed by the yield 

surface normal and the plastic strain rate (Figure 2.7), analytically expressed as: 

cos 𝜃𝜃𝑝𝑝 =
𝐧𝐧 ⋅ �̇�𝐞𝑝𝑝

‖�̇�𝐞𝑝𝑝‖
 (2.57) 

From (2.43) and (2.57), it is deduced that 𝜃𝜃𝑝𝑝 is a decreasing function of ℎ�, which allows 

for the two branches of the model to be reduced to the following definition.  
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�ℎ� ≥ ℎ =  𝑑𝑑�𝜀𝜀𝑞𝑞� 𝜀𝜀𝑞𝑞�        so that       𝜃𝜃𝑝𝑝 ≤ 𝜃𝜃𝑐𝑐} (2.58) 

A summary of the model is given in Table 2.1. In the rate form of the model, the definition 

of ℎ� in equation (2.58), can be equivalently expressed in the form presented in Table 2.2, 

which demonstrates its compliance with requirement for continuity of plastic production 

(2.56). This definition of ℎ� is computationally attractive, as it simplifies the 

implementation of the model in a finite element environment, and it is calibrated using a 

single scalar parameter. It further provides versatility in the range of behaviours that the 

model can represent, leading to stiffer or more compliant material responses.  

Determining the value of parameter 𝜃𝜃𝑐𝑐 is a challenge, similar to ‘corner’ theories. This 

may be achieved conducting experiments that involve non-proportional loading, as the 

ones described by (Rønning et al., 2010; Yoshida & Tsuchimoto, 2018). In those 

experiments, axial deformation is applied to a tubular specimen beyond the yield point, 

e.g. up to strain 1%, followed by combined increments of axial strain (𝛥𝛥𝜀𝜀) and twist

increments (𝛥𝛥𝛥𝛥), producing a non-proportional strain path. This path forms an angle 𝜓𝜓

with the preloading path, which is calculated as 𝜓𝜓 = atan�√3𝛥𝛥𝛥𝛥 𝛥𝛥𝜎𝜎⁄ �, where 𝛥𝛥𝜎𝜎,𝛥𝛥𝛥𝛥 are

calculated from the measured axial force and torque load increments. From the strain and

load increments and using eq.(2.49), the values for 𝐻𝐻,ℎ� are estimated (Figure 2.9). In a

preliminary approach, the model’s angle parameter can be approximated as 𝜃𝜃𝑐𝑐 ≈

atan (𝐻𝐻 ℎ�⁄ tan𝜓𝜓). It is noted that pure twisting (𝜓𝜓 = 90𝑜𝑜) may be inappropriate for

calibrating 𝜃𝜃𝑐𝑐 , as the very small size of the resulting plastic strain increments may

disallow reliably estimating their direction.

In an analogous manner, the parameter 𝜃𝜃𝑐𝑐 can also be calculated from biaxial experiments 

on cruciform specimens (Kuwabara, et al., 2000; Kuwabara, 2007), in which, after a 

proportional preloading stage, non-proportionality is induced in the second loading stage 

by applying different strain increments in the two directions. 

Figure 2.8: (a) Yield surface corner models and (b) Pseudo-corner model 

(a) (b)Corner
Theory

Pseudo-corner 
model

Conical Y.S. 
vertex Y.S.

Forward cone
of normals
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Figure 2.9: Model calibration under non-proportional loading (𝜓𝜓 = 67. 5𝑜𝑜) 

Table 2.2: Expressing different models* from the literature using parameter ℎ� 

J2 Flow – Associative model ℎ� → +∞
J2 Deformation Theory  ℎ� = ℎ = 𝑑𝑑�𝜀𝜀𝑞𝑞� 𝜀𝜀𝑞𝑞�
Pappa & Karamanos (2016) ℎ� = [𝐸𝐸 sin𝑚𝑚 𝜃𝜃 + ℎ] [1− sin𝑚𝑚 𝜃𝜃]⁄
Simo (1987) ℎ� = 𝐻𝐻𝐻𝐻 + 3𝐺𝐺(𝐻𝐻 − 1), 𝐻𝐻 = tan𝜃𝜃 𝛿𝛿⁄ (𝜃𝜃), 

𝛿𝛿(𝜃𝜃) = tan(max(𝜃𝜃,𝜃𝜃𝑐𝑐)) 

Present model ℎ� = max� 𝑑𝑑�𝜀𝜀𝑞𝑞� 𝜀𝜀𝑞𝑞�
𝐻𝐻𝐻𝐻 + 3𝐺𝐺(𝐻𝐻 − 1)

� , 𝐻𝐻 = tan𝜃𝜃 / tan𝜃𝜃𝑐𝑐 

*rate form

2.7.3 Plastic production, comparisons with literature 
A qualitative comparison between various corner and pseudo-corner models can be made 

using the plastic production 𝑤𝑤∗(𝜃𝜃, 𝜀𝜀𝑞𝑞) and the plastic angle 𝜃𝜃𝑝𝑝(𝜃𝜃, 𝜀𝜀𝑞𝑞) associated with 

each model. The first, introduced by Hughes & Shakib (1986), expresses the amount of 

plastic strain produced by a strain rate �̇�𝐞 depending on its direction (angle 𝜃𝜃). It is defined 

as: 

𝑤𝑤∗(𝜃𝜃, 𝜀𝜀𝑞𝑞) =
‖�̇�𝐞𝑝𝑝‖
‖�̇�𝐞‖

1 + 𝐻𝐻 3𝐺𝐺⁄  
(2.59) 

The plastic angle 𝜃𝜃𝑝𝑝 is an additional measure for describing the behaviour of a model, 

stemming from the non-associative nature of the majority of the considered flow rules. It 

F

T
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expresses the angle the plastic strain rate �̇�𝐞𝑝𝑝 forms with the deviatoric stress 𝐬𝐬, defined in 

(2.57) depending on the direction 𝜃𝜃 of the (total) strain rate �̇�𝛆. Analytical expressions for 

these measures, are provided in Table 2.4, for several flow rules in the literature. 

The behaviour of each model is influenced by the loading history of the material; 

therefore, for the following comparison, a specific material point is considered, loaded 

well into the inelastic range to its current stress state. The material stress-strain behaviour 

is assumed to follow a Ramberg-Osgood (R-O) curve -eq.(2.60)- whose parameters are 

provided in Table 2.3, together with material properties and state variables of the point 

under consideration. 

𝜀𝜀 =
𝜎𝜎
𝐸𝐸

 �1 +
3
7
�
𝜎𝜎
𝜎𝜎�
�
𝑚𝑚−1

� (2.60) 

Table 2.3: Material properties and state 
variables at considered loading state 

Young’s Modulus  𝐸𝐸  = 194 𝐺𝐺𝐺𝐺𝑎𝑎 
Poisson’s Ratio 𝜈𝜈  = 0.3 
R-O stress parameter 𝜎𝜎�   = 572 𝑀𝑀𝐺𝐺𝑎𝑎 
R-O exponent 𝑛𝑛  = 10.8 
Equivalent plastic strain 𝜀𝜀𝑞𝑞 = 1.6% 
Hardening modulus 𝐻𝐻 𝐸𝐸⁄ = 2% 
Angle parameter* 𝜃𝜃𝑐𝑐 = 𝜋𝜋/4 

*Applicable for the models by Simo (1987), Hughes
& Shakib (1986) and the J2NA 

In Figures 2.10, 2.11 the plastic production and plastic angles are plotted with respect to 

the angle 𝜃𝜃 for the J2NA and several other models from the literature 2. For proportional 

loading (𝜃𝜃 = 0), all models predict the same plastic production as the J2FT, since all 

models must be able to replicate identically a proportional loading experiment, e.g. a 

uniaxial test. As non-proportionality increases, plastic production in all models is higher 

than the one predicted by the J2FT, corresponding to more compliant responses. All 

models that account for fully elastic unloading produce zero plastic strain for strain rates 

directed tangent to their respective yield surfaces. Those directions correspond to 𝜃𝜃 =

𝜋𝜋/2 for the models employing a Von Mises yield surface, and to 𝜃𝜃 = 𝜋𝜋 − 𝜃𝜃𝑐𝑐.𝐶𝐶𝑚𝑚𝐻𝐻 for the 

models which incorporate a yield surface vertex, such as the J2 corner theory 3. 

2 For the J2 corner theory two curves are plotted, each one representing a family of flow rules proposed by 

Christoffersen & Hutchinson (1979) 
3 The value of 𝜃𝜃𝑐𝑐.𝐶𝐶𝑚𝑚𝐻𝐻 is given in Table 2.4 
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The J2 corner theory, the models by Peek (2000) and Pappa & Karamanos (2016) and the 

J2NA, all exhibit a response similar with the J2DT for a certain range of strain rate 

directions (𝜃𝜃). Each of them employs a dedicated branch with the purpose of gradually 

suppressing plastic production for strain rate directions that approach the tangent to the 

yield surface. This is a key feature that differentiates each model with respect to the 

others. All models incorporate a maximum allowable angle 𝜃𝜃𝑝𝑝 which the plastic strain 

rate may not exceed, but its value and the range of strain-rate directions 𝜃𝜃 for which this 

angle is activated vary for each model.  

Figure 2.12 shows that, at first yield the J2DT has an essentially associative behaviour, 

allowing for plastic straining only in the direction of the deviatoric stress. Progressively, 

as plastic deformation accumulates, increasing amounts of non-associative plastic strain 

are produced for a given angle 𝜃𝜃, meaning that both plastic production and plastic angle 

increase. For large values of accumulated plastic strain 𝜀𝜀𝑞𝑞 this behaviour becomes similar 

to the first branch of the model proposed by Simo (1987). This gradually more compliant 

behaviour of the J2DT leads to lower bifurcation estimates for thick-walled shells and 

explains its use in several constitutive models aiming at inheriting its capability for 

providing reliable buckling predictions. 
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Figure 2.10: Plastic production ratio (𝑤𝑤∗) with respect to the direction of the strain rate 
(angle 𝜃𝜃) 

Figure 2.11: Direction of plastic strain rate (angle 𝜃𝜃𝑝𝑝) with respect to the direction of the 
total strain rate (angle θ) 

Figure 2.12: (a) Evolution of plastic production with increasing plastic deformation, (b) 
Evolution of angle 𝜃𝜃𝑝𝑝, with increasing plastic deformation 
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Table 2.4: Plastic production and plastic angle for different models 

Plastic Production 
𝑤𝑤∗(𝜃𝜃, 𝜀𝜀𝑞𝑞) 

Plastic Angle 
tan𝜃𝜃𝑝𝑝(𝜃𝜃, 𝜀𝜀𝑞𝑞) 

Details 

J2 Flow theory 
(associative model) cos𝜃𝜃 0 

Hughes and Shakib 
(1987) cos𝜓𝜓 0 𝜓𝜓 = max �0, 

𝜋𝜋
2

(𝜃𝜃 − 𝜃𝜃𝐻𝐻)
(𝜋𝜋 2⁄ − 𝜃𝜃𝐻𝐻)� 

Simo (1987) cos𝜃𝜃�1 + 𝛿𝛿2 𝛿𝛿(𝜃𝜃) 𝛿𝛿(𝜃𝜃) = tan(min{𝜃𝜃,𝜃𝜃𝐻𝐻}) 

J2 Deform. Theory 
(Total Strain Theory) �cos2 𝜃𝜃 + 𝐻𝐻2 sin2 𝜃𝜃 𝐻𝐻 tan𝜃𝜃 

𝐻𝐻 = [1 + 𝐻𝐻 3𝐺𝐺⁄ ]  [1 + ℎ 3𝐺𝐺⁄ ]⁄  
𝐻𝐻 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝜀𝜀𝑞𝑞⁄ ,   ℎ = 𝑑𝑑 𝜀𝜀𝑞𝑞⁄  

Pappa & Karamanos 
(2016) �cos2 𝜃𝜃 + 𝐻𝐻2 sin2 𝜃𝜃 𝐻𝐻 tan𝜃𝜃 

𝐻𝐻 = [1 + 𝐻𝐻 3𝐺𝐺⁄ ]  [1 + ℎ𝐺𝐺𝑛𝑛𝐾𝐾 3𝐺𝐺⁄ ]⁄  
ℎ𝐺𝐺𝑛𝑛𝐾𝐾 = [𝐸𝐸 sin𝑛𝑛 𝜃𝜃 + ℎ] [1 − sin𝑛𝑛 𝜃𝜃]⁄  

Peek (2000) �cos2 𝜓𝜓 + 𝐻𝐻2 sin2 𝜃𝜃 𝐻𝐻 tan𝜓𝜓 
𝐻𝐻 = [1 + 𝐻𝐻 3𝐺𝐺⁄ ]  [1 + ℎ 3𝐺𝐺⁄ ]⁄  

𝜓𝜓 = min(𝜃𝜃,𝜋𝜋/2) 

J2 Corner Theory �cos2 𝜃𝜃 + 𝐻𝐻2 sin2 𝜃𝜃 𝐻𝐻 tan𝜃𝜃 𝐻𝐻 = [1 + 𝐻𝐻𝐶𝐶𝐻𝐻 3𝐺𝐺⁄ ]  [1 + ℎ𝐶𝐶𝐻𝐻 3𝐺𝐺⁄ ]⁄  
with 

𝐻𝐻𝐶𝐶𝐻𝐻 = 𝐻𝐻 [𝑓𝑓 − 𝑓𝑓′ tan𝜃𝜃𝐶𝐶𝐻𝐻]⁄  
ℎ𝐶𝐶𝐻𝐻 = ℎ [𝑓𝑓 + 𝑓𝑓′ cot𝜃𝜃𝐶𝐶𝐻𝐻]⁄  

tan𝜃𝜃𝐶𝐶𝐻𝐻 = �𝐻𝐻 ℎ⁄
ℎ𝐶𝐶𝐻𝐻
𝐻𝐻𝐶𝐶𝐻𝐻

𝐻𝐻 tan𝜃𝜃 

tan𝜃𝜃𝐻𝐻 = −�𝐻𝐻/ℎ
𝜎𝜎0

�𝑞𝑞𝑒𝑒2 − 𝜎𝜎0
2 

where 𝜎𝜎0 is the yield stress of the material 
and 𝑞𝑞𝑒𝑒  is the current mises stress of the 
material and 𝜃𝜃0 ≤ 𝜃𝜃𝐻𝐻 − 𝜋𝜋 2⁄  is the angle 
cutoff, following which the model ceases 
to follow the flow rule of J2DT 

Family 1 . 
 𝑓𝑓 = �

1
cos2 𝜓𝜓

0
,   𝜃𝜃𝐶𝐶𝐻𝐻 ∈

[
[
[

0
𝜃𝜃𝑜𝑜
𝜃𝜃𝐻𝐻

,
,
,
 
𝜃𝜃𝑜𝑜
𝜃𝜃𝐻𝐻
𝜋𝜋

)
)
]

 𝜓𝜓 = 𝜋𝜋 2⁄ [(𝜃𝜃𝐶𝐶𝐻𝐻 − 𝜃𝜃𝐻𝐻) (𝜋𝜋 2⁄ − 𝜃𝜃𝐻𝐻)⁄ ] 
Family 2 .   𝑓𝑓(𝜃𝜃𝐶𝐶𝐻𝐻) = �𝑔𝑔(𝜙𝜙𝐶𝐶𝐻𝐻)[1 + 𝑙𝑙(𝜙𝜙𝐶𝐶𝐻𝐻)]�−1

  with 

 𝑔𝑔(𝜙𝜙𝐶𝐶𝐻𝐻) = � 1
(1 − 𝜙𝜙�𝑚𝑚)−2,  𝜙𝜙𝐶𝐶𝐻𝐻 ∈ [

[
0
𝜃𝜃0

,
, 
𝜃𝜃0
𝜃𝜃𝜋𝜋

)
] 

 𝜙𝜙� = (𝜙𝜙𝐶𝐶𝐻𝐻 − 𝜃𝜃0) (𝜃𝜃𝜋𝜋 − 𝜃𝜃0)⁄ , 𝑚𝑚 ≥ 2 
 𝑙𝑙(𝜙𝜙𝐶𝐶𝐻𝐻) = 𝑔𝑔′ (2𝑔𝑔)⁄  

J2 Non-Associative 
Model (J2NA) �cos2 𝜃𝜃 + 𝐻𝐻2 sin2 𝜃𝜃 min �𝐻𝐻 tan𝜃𝜃

tan𝜃𝜃𝐻𝐻
�

𝐻𝐻 = [1 + 𝐻𝐻 3𝐺𝐺⁄ ]  �1 + ℎ� 3𝐺𝐺⁄ �⁄  
ℎ� ≤ ℎ so that 𝜃𝜃𝑝𝑝 ≤ 𝜃𝜃𝐻𝐻  



58  Apostolos Nasikas - July 2022 

3 NUMERICAL 
IMPLEMENTATION 

Towards the implementation of the presented special-purpose plasticity model (J2NA) in 

a finite element environment, a stress update algorithm (or integration scheme) is 

developed, accounting for the particular features of the non-associative flow. A geometric 

approach, similar to the one developed by Simo (1987), is adopted for the integration of 

the governing equations, while key modifications are introduced, intended to account for 

nonlinear material hardening, and for the dependence on the direction of the strain 

increment that J2NA exhibits. Appropriate mathematical manipulations reduce the 

integration of the model to the solution of a single manageable equation of a scalar 

unknown, irrespective of the material hardening rule, as in the case of J2FT. The resulting 

solution scheme is less complicated and more versatile compared to earlier approaches 

(Simo, 1987; Rønning et al., 2010; Pappa & Karamanos, 2016), while it fully accounts 

for the influence of the strain rate direction and for non-linear hardening, both in the 

integration and in the linearization scheme. The constitutive integration scheme is 

developed for brick elements and an extension for shell element analysis is included. The 

generalization to implement other benchmark models from the literature is discussed. 

3.1 Backward-Euler stress update algorithm 
For any material integration point at pseudo-time 𝑡𝑡𝑚𝑚  the stress 𝛔𝛔𝑚𝑚  and strain 𝛆𝛆𝑚𝑚  are 

known, as well as the equivalent plastic strain 𝜀𝜀𝑞𝑞|𝑚𝑚 (internal variable). At pseudo-time 

𝑡𝑡𝑚𝑚+1 = 𝑡𝑡𝑚𝑚 + 𝛥𝛥𝑡𝑡 , a strain increment 𝛥𝛥𝛆𝛆 = 𝛆𝛆𝑚𝑚+1 − 𝛆𝛆𝑚𝑚  leads to changes in the material 



Chapter 3: Numerical implementation 

Apostolos Nasikas - July 2022 59 

stress state 𝛔𝛔𝑚𝑚+1 and internal variable 𝜀𝜀𝑞𝑞|𝑚𝑚+1 , which are calculated by integrating the 

plasticity constitutive model in the pseudo-time increment 𝛥𝛥𝑡𝑡.  

An elastic predictor–plastic corrector scheme (Simo & Taylor, 1986) is adopted: an 

elastic-predictor step, leading to a stress state outside the yield surface, is followed by a 

plastic-corrector step, which enforces consistency and returns the stress to the updated 

yield surface. The elastic predictor 𝛔𝛔𝑒𝑒 assumes a purely elastic trial stress and is split as 

follows: 

 𝛔𝛔𝑒𝑒 = 𝛔𝛔𝑚𝑚 + 𝐃𝐃𝛥𝛥𝛆𝛆 = −𝑝𝑝𝑒𝑒𝐈𝐈 + 𝐬𝐬𝑒𝑒 (3.1) 

where 

𝑝𝑝𝑒𝑒 = −1 3⁄ (𝐈𝐈 ⋅ 𝛔𝛔𝑒𝑒) = 𝑝𝑝𝑚𝑚 − 𝐾𝐾(𝐈𝐈 ⋅ 𝛥𝛥𝛆𝛆) (3.2) 

𝐬𝐬𝑒𝑒 = 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣𝛔𝛔𝑒𝑒 = 𝐬𝐬𝑚𝑚 + 2𝐺𝐺𝛥𝛥𝐞𝐞 (3.3) 

Furthermore, 𝛥𝛥𝐞𝐞 = 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣𝛥𝛥𝛆𝛆 is the deviatoric part of the strain increment, 𝑝𝑝𝑚𝑚 and 𝐬𝐬𝑚𝑚  are 

respectively the hydrostatic pressure and the deviatoric stress at the beginning of the 

increment (𝛔𝛔𝑚𝑚 = 𝐬𝐬𝑚𝑚 − 𝑝𝑝𝑚𝑚𝐈𝐈). 

The Von Mises stress at the beginning of the strain increment (𝑞𝑞𝑚𝑚) and at the elastic 

predictor state (𝑞𝑞𝑒𝑒) are respectively defined as: 

𝑞𝑞𝑚𝑚 = �3 2⁄ �𝐬𝐬𝑚𝑚 ⋅ 𝐬𝐬𝑚𝑚 = �3 2⁄ ‖𝐬𝐬𝑚𝑚‖ (3.4) 

and 

𝑞𝑞𝑒𝑒 = �3 2⁄ √𝐬𝐬𝑒𝑒 ⋅ 𝐬𝐬𝑒𝑒 = �3 2⁄ ‖𝐬𝐬𝑒𝑒‖ (3.5) 

If the trial stress violates the yield condition, elastic-plastic straining is accounted for, and 

the new stress state is calculated by including the plastic correction phase 

𝛔𝛔𝑚𝑚+1 = 𝛔𝛔𝑚𝑚 + 𝐃𝐃 (𝛥𝛥𝛆𝛆 − 𝛥𝛥𝐞𝐞𝑝𝑝) = 𝛔𝛔𝑒𝑒 − 2𝐺𝐺𝛥𝛥𝐞𝐞𝑝𝑝 (3.6) 

The final stress 𝛔𝛔𝑚𝑚+1 at pseudo-time 𝑡𝑡𝑚𝑚+1 is split into hydrostatic and deviatoric parts 

𝛔𝛔𝑚𝑚+1 = −𝑝𝑝𝑚𝑚+1𝐈𝐈 + 𝐬𝐬𝑚𝑚+1 (3.7) 

where 𝑝𝑝𝑚𝑚+1 is the hydrostatic pressure and 𝐬𝐬𝑚𝑚+1 is the deviatoric stress defined as: 

𝑝𝑝𝑚𝑚+1 = −
1
3

(𝐈𝐈 ⋅ 𝛔𝛔𝑚𝑚+1) = 𝑝𝑝𝑒𝑒 (3.8) 

 𝐬𝐬𝑚𝑚+1 = 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣𝛔𝛔𝑚𝑚+1 = 𝐬𝐬𝑒𝑒 − 2G𝛥𝛥𝐞𝐞𝑝𝑝 (3.9) 

Enforcing the consistency condition (2.47) at the end of the increment (𝑡𝑡𝑚𝑚+1): 
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𝐹𝐹�𝛔𝛔𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞� =

�𝐬𝐬𝑚𝑚+1 ⋅ 𝐬𝐬𝑚𝑚+1
2𝐺𝐺

−
�2 3⁄ 𝑑𝑑�𝜀𝜀𝑞𝑞|𝑚𝑚 + 𝛥𝛥𝜀𝜀𝑞𝑞�

2𝐺𝐺
 

                          = �2 3⁄
𝑞𝑞𝑚𝑚+1 − 𝑑𝑑𝑚𝑚+1

2𝐺𝐺
= 0 

(3.10) 

where 𝛥𝛥𝜀𝜀𝑞𝑞 is the equivalent plastic strain increment. The corresponding plastic strain 

increment 𝛥𝛥𝐞𝐞𝑝𝑝 is calculated using a backward-Euler integration of equation (2.43): 

 𝛥𝛥𝐞𝐞𝑝𝑝 = �3 2⁄ 𝛥𝛥𝜀𝜀𝑞𝑞 𝐧𝐧𝑚𝑚+1 +
‖𝛥𝛥𝐞𝐞‖ sin𝜃𝜃

1 + ℎ�𝑚𝑚+1 3𝐺𝐺⁄  
𝐦𝐦𝑚𝑚+1 (3.11) 

where the index 𝑛𝑛 + 1 was dropped for the direction angle 𝜃𝜃 = 𝜃𝜃𝑚𝑚+1 for simplicity. The 

unit deviatoric tensor normal to the yield surface and the one tangential to it, in the 

direction of the strain increment, at the beginning and at the end of the increment (see 

Figure 3.1) are respectively defined as: 

 𝐧𝐧𝑚𝑚 =
𝐬𝐬𝑚𝑚
‖𝐬𝐬𝑚𝑚‖

,                 𝐦𝐦𝑚𝑚 =
[𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧𝑚𝑚 ⊗ 𝐧𝐧𝑚𝑚] 𝛥𝛥𝐞𝐞 
‖[𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧𝑚𝑚 ⊗ 𝐧𝐧𝑚𝑚] 𝛥𝛥𝐞𝐞 ‖

 (3.12) 

 𝐧𝐧𝑚𝑚+1 =
𝐬𝐬𝑚𝑚+1
‖𝐬𝐬𝑚𝑚+1‖

, 𝐦𝐦𝑚𝑚+1 =
[𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧𝑚𝑚+1 ⊗ 𝐧𝐧𝑚𝑚+1] 𝛥𝛥𝐞𝐞 
‖[𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧𝑚𝑚+1 ⊗ 𝐧𝐧𝑚𝑚+1] 𝛥𝛥𝐞𝐞 ‖

 (3.13) 

while the unknown tensors 𝐧𝐧𝑚𝑚+1, 𝐦𝐦𝑚𝑚+1 can be expressed in terms of 𝐧𝐧𝑚𝑚, 𝐦𝐦𝑚𝑚 using the 

following geometric relation identified by Simo (1987): 

 𝐧𝐧𝑚𝑚+1 =     cos 𝜁𝜁 𝐧𝐧𝑚𝑚 + sin 𝜁𝜁𝐦𝐦𝑚𝑚 (3.14) 

 𝐦𝐦𝑚𝑚+1 = − sin 𝜁𝜁 𝐧𝐧𝑚𝑚 + cos 𝜁𝜁𝐦𝐦𝑚𝑚 (3.15) 

In the above expression, the angle 𝜁𝜁 is represented geometrically in Figure 3.1, together 

with angles 𝜁𝜁∗, 𝜁𝜁𝑒𝑒, 𝜃𝜃, 𝜃𝜃𝑚𝑚, 𝜃𝜃𝑒𝑒, 𝜃𝜃𝑝𝑝, that are formed by the key tensors and are involved in 

subsequent operations. Furthermore, geometry dictates: 

 𝜁𝜁 = 𝜁𝜁𝑒𝑒 − 𝜁𝜁∗ (3.16) 

 𝜃𝜃 = 𝜃𝜃𝑚𝑚+1 = 𝜃𝜃𝑒𝑒 + 𝜁𝜁∗ = 𝜃𝜃𝑚𝑚 − 𝜁𝜁 (3.17) 

where 

 cos 𝜁𝜁𝑒𝑒 =
𝐬𝐬𝑚𝑚 ⋅  𝐬𝐬𝑒𝑒

‖𝐬𝐬𝑚𝑚‖‖𝐬𝐬𝑒𝑒‖
,         cos 𝜃𝜃𝑒𝑒 =

𝛥𝛥𝐞𝐞 ⋅  𝐬𝐬𝑒𝑒

‖𝛥𝛥𝐞𝐞‖‖𝐬𝐬𝑒𝑒‖
 (3.18) 

Multiplying (3.9) by 𝐧𝐧𝑚𝑚+1 and 𝐦𝐦𝑚𝑚+1, the following relations are obtained: 

 𝑞𝑞𝑒𝑒cos 𝜁𝜁∗ = 𝑞𝑞𝑚𝑚+1 + 3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞 (3.19) 
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 𝑞𝑞𝑒𝑒sin 𝜁𝜁∗ = �2 3⁄
3𝐺𝐺‖𝛥𝛥𝐞𝐞‖ sin𝜃𝜃
1 + ℎ�𝑚𝑚+1 3𝐺𝐺⁄

 (3.20) 

Equations (3.10), (3.17), (3.19), (3.20) constitute a system of 4 equations with 5 

unknowns: 𝑞𝑞𝑚𝑚+1, 𝛥𝛥𝜀𝜀𝑞𝑞, 𝜁𝜁∗, 𝜃𝜃, and ℎ�𝑚𝑚+1. The extra equation necessary for the solution is 

the definition of ℎ�, which is different in each branch of the J2NA model. The solution 

procedure for the system is described in the next paragraphs for each branch. The 

implementation of the above formulation for an explicitly chosen function ℎ�(𝜀𝜀𝑞𝑞,𝜃𝜃) , 

which may mimic the behaviour of various models in the literature, is further considered 

in Appendix 1. An enhancement of this solution procedure for implementation in shell 

elements is presented in paragraph 3.3. 

 
Figure 3.1: Geometric representation of the return mapping of a non-associative model 

It should be noted that, at the beginning of the integration algorithm (𝑡𝑡 = 𝑡𝑡𝑚𝑚) the value 

of 𝜃𝜃𝑝𝑝  is unknown, and either branch of the model may be activated. In the proposed 

implementation, the first branch is assumed to be activated, and the respective plastic 

corrector is calculated. If the calculated plastic strain angle 𝜃𝜃𝑝𝑝 is smaller than the angle 

𝜃𝜃𝑐𝑐 , the assumption was correct, and the integration procedure is complete. If not, the 

θ

=0

=0
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solution is discarded, and the integration scheme of the second branch is used. A summary 

of this integration procedure is given in Table 3.1. 

3.1.1 First branch of the model 
In the first branch of the model, the parameter ℎ� = ℎ�(𝛥𝛥𝜀𝜀𝑞𝑞), independent of angle 𝜃𝜃, is 

defined as:  

ℎ�𝑚𝑚+1 = 𝑑𝑑𝑚𝑚+1 𝜀𝜀𝑞𝑞|𝑚𝑚+1⁄  (3.21) 

Thus, equation (3.20) together with (3.21) can be used to express 𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞� as a function 

of the equivalent plastic strain 𝛥𝛥𝜀𝜀𝑞𝑞, as follows: 

tan 𝜁𝜁∗ −
sin𝜃𝜃𝑒𝑒

‖𝐬𝐬𝑒𝑒‖
2𝐺𝐺‖𝛥𝛥𝐞𝐞‖ �1 + ℎ𝑚𝑚+1

3𝐺𝐺 � − cos 𝜃𝜃𝑒𝑒
= 0 (3.22) 

Treating 𝛥𝛥𝜀𝜀𝑞𝑞 as the only primary unknown, equations (3.10) and (3.21) can be used to 

eliminate 𝑞𝑞𝑚𝑚+1 , 𝜁𝜁∗  from (3.20) resulting in a single scalar equation (3.23) of the 

equivalent plastic strain increment 𝐹𝐹𝑝𝑝1�𝛥𝛥𝜀𝜀𝑞𝑞� = 0, as in the case of J2FT. 

𝐹𝐹𝑝𝑝1�𝛥𝛥𝜀𝜀𝑞𝑞� = 1 + �
sin𝜃𝜃𝑒𝑒

‖𝐬𝐬𝑒𝑒‖
2𝐺𝐺‖𝛥𝛥𝐞𝐞‖ �1 + ℎ𝑚𝑚+1

3𝐺𝐺 � − cos 𝜃𝜃𝑒𝑒
�

2

− �
𝑞𝑞𝑒𝑒

𝑑𝑑𝑚𝑚+1 + 3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞
�
2

= 0 

(3.23) 

The above equation (3.23) can be solved using a local Newton scheme and all necessary 

derivatives are provided in Appendix 1. When 𝛥𝛥𝜀𝜀𝑞𝑞  is found, equations (3.21), (3.22), 

(3.16), (3.14) and (3.15) give respectively ℎ𝑚𝑚+1, 𝜁𝜁∗, 𝜁𝜁, 𝐧𝐧𝑚𝑚+1, and 𝐦𝐦𝑚𝑚+1, and the plastic 

corrector is readily computed from (3.11). Next, it is checked whether the result of this 

branch satisfies the flow rule restriction 𝜃𝜃𝑏𝑏𝑏𝑏1
𝑝𝑝 ≤ 𝜃𝜃𝑐𝑐, and the solution proceeds accordingly. 

3.1.2 Second branch of the model 
In cases where the first branch of the model leads to plastic strain increment angle 𝜃𝜃𝑏𝑏𝑏𝑏1

𝑝𝑝  

greater than the semi-angle 𝜃𝜃𝑐𝑐 of the simulated vertex (𝜃𝜃𝑏𝑏𝑏𝑏1
𝑝𝑝 > 𝜃𝜃𝑐𝑐), the second branch is 

activated. In this case, the plastic strain increment is constrained to form an angle 𝜃𝜃𝑝𝑝 =

𝜃𝜃𝑐𝑐 with the deviatoric stress in the converged state, so that: 

tan𝜃𝜃𝑝𝑝 =
𝐦𝐦𝑚𝑚+1 ⋅ 𝛥𝛥𝐞𝐞𝑝𝑝

𝐧𝐧𝑚𝑚+1 ⋅ 𝛥𝛥𝐞𝐞𝑝𝑝
= tan𝜃𝜃𝑐𝑐 (3.24) 
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Using (3.11), the above equation can be rewritten as 

 
‖𝛥𝛥𝐞𝐞‖ sin𝜃𝜃

1 + ℎ�𝑚𝑚+1
3𝐺𝐺

= �3 2⁄ 𝛥𝛥𝜀𝜀𝑞𝑞 tan𝜃𝜃𝑐𝑐 (3.25) 

Substituting (3.25) into equation (3.20), the angle 𝜃𝜃  is eliminated and an explicit 

expression is found for 𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞�: 

 sin 𝜁𝜁∗ =
�3 2⁄ 𝛥𝛥𝜀𝜀𝑞𝑞 tan𝜃𝜃𝑐𝑐

‖𝐬𝐬𝑒𝑒‖ 2𝐺𝐺⁄ =
3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞 tan𝜃𝜃𝑐𝑐

𝑞𝑞𝑒𝑒
 (3.26) 

Equation (3.26) may be used to eliminate 𝜁𝜁∗ from (3.19), resulting in a scalar equation of 

the equivalent plastic strain increment 𝛥𝛥𝜀𝜀𝑞𝑞: 

 𝐹𝐹𝑝𝑝2�𝛥𝛥𝜀𝜀𝑞𝑞� = �𝛥𝛥𝜀𝜀𝑞𝑞 +
𝑑𝑑𝑚𝑚+1(𝛥𝛥𝜀𝜀𝑞𝑞)

3𝐺𝐺
�
2

+ �𝛥𝛥𝜀𝜀𝑞𝑞 tan𝜃𝜃𝑐𝑐�
2
− �

𝑞𝑞𝑒𝑒

3𝐺𝐺
�
2

= 0 (3.27) 

which can be solved numerically. When the equivalent plastic strain increments 𝛥𝛥𝜀𝜀𝑞𝑞 is 

calculated, equations (3.26), (3.16), (3.17), (3.14), (3.15) are used to calculate 𝜁𝜁∗ , 𝜁𝜁 , 

𝜃𝜃, 𝐧𝐧𝑚𝑚+1, 𝐦𝐦𝑚𝑚+1, respectively, and ultimately the plastic strain increment 𝛥𝛥𝐞𝐞𝑝𝑝 and the new 

stress state 𝛔𝛔𝑚𝑚+1 are calculated using (3.11) and (3.6). Notably, in the presence of linear 

hardening, equation (3.27) reduces to a second-order polynomial of 𝛥𝛥𝜀𝜀𝑞𝑞, which has a 

single positive solution given by (3.28), which coincides with the analytical solution 

obtained by Simo (1987), given below:  

 𝛥𝛥𝜀𝜀𝑞𝑞 =
𝑞𝑞𝑒𝑒

3𝐺𝐺
1

1 + 𝐻𝐻
3𝐺𝐺

 
�1 + 𝑎𝑎2(1 − 𝑡𝑡2) − 𝑡𝑡

1 + 𝑎𝑎2
 (3.28) 

with 

 𝑎𝑎 =
tan𝜃𝜃𝑐𝑐

1 + 𝐻𝐻/3𝐺𝐺
 (3.29) 

 𝑡𝑡 =
𝑑𝑑𝑚𝑚
𝑞𝑞𝑒𝑒

 < 1.0  (3.30) 

In Figure 3.2 a qualitative comparison is made for the integration process using the 

classical J2FT and the J2NA model. For a given stress state 𝐬𝐬𝑚𝑚  and non-proportional 

strain increment 𝛥𝛥𝐞𝐞, when employing the J2FT the converged state corresponds to a 

greater rotation of the stress deviator and a larger expansion of the yield surface than 

when using the J2NA, which denote the comparatively less stiff behaviour of J2NA. 
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Figure 3.2: Comparison of the return mapping in J2FT and J2NA 

Remark: In equation (3.25), the parameter ℎ��𝜃𝜃, 𝜀𝜀𝑞𝑞 , ‖𝛥𝛥𝐞𝐞‖�  is defined for the second 

branch of the model, by demanding 𝜃𝜃𝑝𝑝 = 𝜃𝜃𝑐𝑐. This is not interchangeable with the form 

ℎ��𝜃𝜃, 𝜀𝜀𝑞𝑞� given in Table 2.2, which refers only to infinitesimal strain increments (rate 

form), obtained by further demanding ‖𝛥𝛥𝐞𝐞‖ → 0+.  

Nevertheless, it is possible to develop models which employ an explicit expression for 

the function ℎ��𝜃𝜃, 𝜀𝜀𝑞𝑞�, as in the case of by Pappa & Karamanos (2016). In these models 

the integration algorithm cannot be reduced to a single equation as above, in the general 

case. Instead, the system of equations (3.14), (3.15), (3.16), (3.17), (3.26) needs to be 

solved. However, using (3.10), (3.17), the unknowns 𝑞𝑞𝑚𝑚+1 and 𝜃𝜃 can be eliminated from 

(3.19) and (3.20) resulting in a system of two equations with two unknowns (𝛥𝛥𝜀𝜀𝑞𝑞 and 𝜁𝜁∗) 

to be solved numerically: 

𝐹𝐹𝑝𝑝ℎ��𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗� = 𝑞𝑞𝑒𝑒 cos 𝜁𝜁∗ − �𝑑𝑑𝑚𝑚+1 + 3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞� = 0 (3.31) 

𝐿𝐿𝑝𝑝ℎ��𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗� = 𝑞𝑞𝑒𝑒 sin 𝜁𝜁∗ − �2 3⁄
3𝐺𝐺‖𝛥𝛥𝐞𝐞‖ sin(𝜃𝜃𝑒𝑒 + 𝜁𝜁∗)

1 + ℎ�𝑚𝑚+1 3𝐺𝐺⁄
= 0 (3.32) 

with 

ℎ�𝑚𝑚+1 = ℎ��𝛥𝛥𝜀𝜀𝑞𝑞 ,𝜃𝜃 = 𝜃𝜃𝑒𝑒 + 𝜁𝜁∗� (3.33) 

J2 flow
(J2FT)

Present Model
(J2NA)
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Table 3.1: Integration algorithm for three-dimensional element analysis 

1.   Compute trial elastic stress (elastic prediction) 
 𝛔𝛔𝑒𝑒 = 𝛔𝛔𝑚𝑚 + 𝐃𝐃𝛥𝛥𝛆𝛆   , 𝐬𝐬𝑒𝑒 = 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣𝛔𝛔𝑒𝑒  , 𝑝𝑝𝑒𝑒 = −1 3⁄ (𝐈𝐈 ⋅ 𝛔𝛔𝑒𝑒) 

𝑞𝑞𝑒𝑒 = �3 2⁄ ‖𝐬𝐬𝑒𝑒‖ , 𝑑𝑑𝑚𝑚 = 𝑑𝑑�𝜀𝜀𝑞𝑞|𝑚𝑚�, 𝐹𝐹𝑚𝑚+1𝑡𝑡𝑏𝑏𝑖𝑖𝑚𝑚𝑒𝑒 =
1

2𝐺𝐺 �
‖𝐬𝐬𝑒𝑒‖ − �2 3⁄ 𝑑𝑑𝑚𝑚� 

2.   IF 𝐹𝐹𝑚𝑚+1𝑡𝑡𝑏𝑏𝑖𝑖𝑚𝑚𝑒𝑒 ≤ 0 THEN   
 𝛥𝛥𝐞𝐞𝑝𝑝 = 𝟎𝟎                , 𝛥𝛥𝜀𝜀𝑞𝑞 = 0 
      ELSE  (𝐹𝐹𝑚𝑚+1𝑡𝑡𝑏𝑏𝑖𝑖𝑚𝑚𝑒𝑒 > 0)   
 

𝐧𝐧𝑚𝑚 =
𝐬𝐬𝑚𝑚
‖𝐬𝐬𝑚𝑚‖

           , 𝐦𝐦𝑚𝑚 =
[𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧𝑚𝑚 ⊗ 𝐧𝐧𝑚𝑚] 𝛥𝛥𝐞𝐞

‖[𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧𝑚𝑚 ⊗ 𝐧𝐧𝑚𝑚] 𝛥𝛥𝐞𝐞 ‖
 

cos𝜃𝜃𝑚𝑚 =
𝐧𝐧𝑚𝑚 ⋅ 𝛥𝛥𝐞𝐞
‖𝛥𝛥𝐞𝐞‖

, cos𝜃𝜃𝑒𝑒 =
𝛥𝛥𝐞𝐞 ⋅  𝐬𝐬𝑒𝑒

‖𝛥𝛥𝐞𝐞‖‖𝐬𝐬𝑒𝑒‖
, cos 𝜁𝜁𝑒𝑒 =

𝐬𝐬𝑚𝑚 ⋅  𝐬𝐬𝑒𝑒

‖𝐬𝐬𝑚𝑚‖‖𝐬𝐬𝑒𝑒‖
 

      (2a)  Assume 1st branch is activated 
 To calculate 𝛥𝛥𝜀𝜀𝑞𝑞 solve: 

𝐹𝐹𝑝𝑝1�𝛥𝛥𝜀𝜀𝑞𝑞� = 1 + tan2 𝜁𝜁∗ − �
𝑞𝑞𝑒𝑒

𝑑𝑑𝑚𝑚+1 + 3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞
�
2

 

with 

𝜁𝜁∗(𝛥𝛥𝜀𝜀𝑞𝑞) = tan−1 �
sin𝜃𝜃𝑒𝑒

‖𝐬𝐬𝑒𝑒‖
2𝐺𝐺‖𝛥𝛥𝐞𝐞‖ �1 + ℎ𝑚𝑚+1

3𝐺𝐺 � − cos𝜃𝜃𝑒𝑒
� 

Compute: 
ℎ�𝑚𝑚+1 = ℎ𝑚𝑚+1   , 𝜃𝜃 = 𝜃𝜃𝑒𝑒 + 𝜁𝜁∗   

𝜃𝜃𝑝𝑝 = tan−1

⎣
⎢
⎢
⎡
‖𝛥𝛥𝐞𝐞‖ sin𝜃𝜃

1 + ℎ�𝑚𝑚+1/3𝐺𝐺
�3 2⁄ 𝛥𝛥𝜀𝜀𝑞𝑞

⎦
⎥
⎥
⎤
 

      (2b)  If 𝜃𝜃𝑝𝑝 > 𝜃𝜃𝑐𝑐 :  the second branch is activated 
 To calculate 𝛥𝛥𝜀𝜀𝑞𝑞 solve: 

𝐹𝐹𝑝𝑝2�𝛥𝛥𝜀𝜀𝑞𝑞� = �𝛥𝛥𝜀𝜀𝑞𝑞 +
𝑑𝑑𝑚𝑚+1�𝛥𝛥𝜀𝜀𝑞𝑞�

3𝐺𝐺
�
2

+ �𝛥𝛥𝜀𝜀𝑞𝑞 tan𝜃𝜃𝑐𝑐�
2 − �

𝑞𝑞𝑒𝑒

3𝐺𝐺�
2

= 0 

Compute: 

𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞� = sin−1 �
3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞 tan𝜃𝜃𝑐𝑐

𝑞𝑞𝑒𝑒 � , 𝜃𝜃 = 𝜃𝜃𝑒𝑒 + 𝜁𝜁∗, 𝜃𝜃𝑝𝑝 = 𝜃𝜃𝑐𝑐 

ℎ�𝑚𝑚+1 = 3𝐺𝐺 �
‖𝛥𝛥𝐞𝐞‖ sin𝜃𝜃

�3 2⁄ 𝛥𝛥𝜀𝜀𝑞𝑞 tan𝜃𝜃𝑐𝑐
− 1� 

      (2c)  Calculate the plastic strain increment 
 𝜁𝜁 = 𝜁𝜁𝑒𝑒 − 𝜁𝜁∗ 

𝐧𝐧𝑚𝑚+1 =     cos 𝜁𝜁 𝐧𝐧𝑚𝑚 + sin 𝜁𝜁𝐦𝐦𝑚𝑚, 𝐦𝐦𝑚𝑚+1 = − sin 𝜁𝜁 𝐧𝐧𝑚𝑚 + cos 𝜁𝜁 𝐦𝐦𝑚𝑚 

𝛥𝛥𝐞𝐞𝑝𝑝 = �3 2⁄ 𝛥𝛥𝜀𝜀𝑞𝑞 𝐧𝐧𝑚𝑚+1 +
‖𝛥𝛥𝐞𝐞‖ sin𝜃𝜃

1 + ℎ�𝑚𝑚+1/3𝐺𝐺
𝐦𝐦𝑚𝑚+1 

3.   Update stress tensor and state variables 
 𝛔𝛔𝑚𝑚+1 = 𝛔𝛔𝑒𝑒 − 2𝐺𝐺𝛥𝛥𝐞𝐞𝑝𝑝 

𝜀𝜀𝑞𝑞|𝑚𝑚+1 = 𝜀𝜀𝑞𝑞|𝑚𝑚 + 𝛥𝛥𝜀𝜀𝑞𝑞 
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3.2 Consistent algorithmic moduli 
To preserve Newton’s quadratic rate of convergence in finite element codes, material 

stiffness operators that are consistent with the developed integration scheme must be 

implemented for the constitutive models. In this paragraph, the basis for obtaining the 

consistent algorithmic moduli is presented for the chosen radial return integration scheme, 

based on the procedure proposed by (Simo & Taylor, 1985), enhanced to account for the 

particular characteristics of models incorporating strain angle dependent behaviours. 

The consistent (algorithmic) material stiffness moduli, are computed from the following 

fundamental equation: 

𝐃𝐃𝑒𝑒𝑝𝑝
𝑐𝑐 =

𝜕𝜕𝛔𝛔𝑚𝑚+1
𝜕𝜕𝛆𝛆𝑚𝑚+1

(3.34) 

In the context of pressure-independent metal plasticity, it is convenient to isolate the 

volumetric and the deviatoric part of stress and strain and treat them separately: 

𝐃𝐃𝑒𝑒𝑝𝑝
𝑐𝑐 = 3𝐾𝐾 𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒  +

𝜕𝜕𝐬𝐬𝑚𝑚+1
𝜕𝜕𝐞𝐞𝑚𝑚+1

(3.35) 

The fourth-order tensor 𝜕𝜕𝐬𝐬𝑚𝑚+1/𝜕𝜕𝐞𝐞𝑚𝑚+1 is obtained for each model branch, by expressing 

the differential of the stress deviator as a function of the differential of the strain 

increment: 

𝑑𝑑𝐬𝐬𝑚𝑚+1 =
𝜕𝜕𝐬𝐬𝑚𝑚+1
𝜕𝜕𝐞𝐞𝑚𝑚+1

𝑑𝑑𝛥𝛥𝐞𝐞 (3.36) 

The stress deviator at the converged state is expressed as follows: 

𝐬𝐬𝑚𝑚+1 = 𝐬𝐬𝑚𝑚+1�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗,𝛥𝛥𝐞𝐞� = �2 3⁄ 𝑑𝑑𝑚𝑚+1𝐧𝐧𝑚𝑚+1 

         = �2 3⁄ 𝑑𝑑𝑚𝑚+1[cos(𝜁𝜁𝑒𝑒 − 𝜁𝜁∗)𝐧𝐧𝑚𝑚 + sin(𝜁𝜁𝑒𝑒 − 𝜁𝜁∗)𝐦𝐦𝑚𝑚] 
(3.37) 

Therefore, differentiating using the chain rule, one obtains:  

𝑑𝑑𝐬𝐬𝑚𝑚+1 = 𝐬𝐬𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞𝑑𝑑𝛥𝛥𝜀𝜀𝑞𝑞 + 𝐬𝐬𝑚𝑚+1,𝜁𝜁∗𝑑𝑑𝜁𝜁∗ + 𝐬𝐬𝑚𝑚+1,𝛥𝛥𝐞𝐞𝑑𝑑𝛥𝛥𝐞𝐞 (3.38) 

where a comma followed by a variable implies partial derivative with respect to that 

variable, e.g., 𝐬𝐬𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞 = 𝜕𝜕𝐬𝐬𝑚𝑚+1/𝜕𝜕𝛥𝛥𝜀𝜀𝑞𝑞 . Variables 𝛥𝛥𝜀𝜀𝑞𝑞  and 𝜁𝜁∗  are expressed differently 

for each model branch, but in all cases are calculated for a given strain increment (𝛥𝛥𝐞𝐞) 

by solving the system of equations 𝐹𝐹1, 𝐹𝐹2:  

𝐹𝐹1�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗,𝛥𝛥𝐞𝐞� = 0 (3.39) 
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 𝐹𝐹2�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗,𝛥𝛥𝐞𝐞� = 0 (3.40) 

The functions 𝐹𝐹1,𝐹𝐹2 are given in Table 3.2 for the two branches of the model. The 

dependence of the internal variables 𝑑𝑑𝛥𝛥𝜀𝜀𝑞𝑞 ,𝑑𝑑𝜁𝜁∗ in (3.38) on the strain increment in the 

converged state can be found by linearizing functions 𝐹𝐹1and 𝐹𝐹2, as follows. 

 �𝑑𝑑𝐹𝐹1𝑑𝑑𝐹𝐹2
� = �00� (3.41) 

This is equivalent to 

 �
𝐹𝐹1,𝛥𝛥𝜀𝜀𝑞𝑞 𝐹𝐹1,𝜁𝜁∗

𝐹𝐹2,𝛥𝛥𝜀𝜀𝑞𝑞 𝐹𝐹2,𝜁𝜁∗
 � �
𝑑𝑑𝛥𝛥𝜀𝜀𝑞𝑞
𝑑𝑑𝜁𝜁∗ � + �

𝐹𝐹1,𝛥𝛥𝐞𝐞
𝐹𝐹2,𝛥𝛥𝐞𝐞

� 𝑑𝑑𝛥𝛥𝐞𝐞 = �00� (3.42) 

so that 

 �
𝑑𝑑𝛥𝛥𝜀𝜀𝑞𝑞
𝑑𝑑𝜁𝜁∗ � = �

𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝐞𝐞
𝜁𝜁∗,𝛥𝛥𝐞𝐞

� 𝑑𝑑𝛥𝛥𝐞𝐞 (3.43) 

where 

 �
𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝐞𝐞
𝜁𝜁∗ ,𝛥𝛥𝐞𝐞

� = −�
𝐹𝐹1,𝛥𝛥𝜀𝜀𝑞𝑞 𝐹𝐹1,𝜁𝜁∗

𝐹𝐹2,𝛥𝛥𝜀𝜀𝑞𝑞 𝐹𝐹2,𝜁𝜁∗
 �
−1

�
𝐹𝐹1,𝛥𝛥𝐞𝐞
𝐹𝐹2,𝛥𝛥𝐞𝐞

� (3.44) 

Expressions for all the above derivatives are provided in Appendix 1. Ultimately, 

equation (3.38) may be rewritten as: 

 𝑑𝑑𝐬𝐬𝑚𝑚+1 = �𝐬𝐬𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞 ⊗ 𝛥𝛥𝜀𝜀𝑞𝑞,𝛥𝛥𝐞𝐞 + 𝐬𝐬𝑚𝑚+1,𝜁𝜁∗ ⊗ 𝜁𝜁∗,𝛥𝛥𝐞𝐞 + 𝐬𝐬𝑚𝑚+1,𝛥𝛥𝐞𝐞� 𝑑𝑑𝛥𝛥𝐞𝐞 (3.45) 

and therefore 

 
𝜕𝜕𝐬𝐬𝑚𝑚+1
𝜕𝜕𝐞𝐞𝑚𝑚+1

= 𝐬𝐬𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞 ⊗ 𝛥𝛥𝜀𝜀𝑞𝑞,𝛥𝛥𝐞𝐞 + 𝐬𝐬𝑚𝑚+1,𝜁𝜁∗ ⊗ 𝜁𝜁∗,𝛥𝛥𝐞𝐞 + 𝐬𝐬𝑚𝑚+1,𝛥𝛥𝐞𝐞 (3.46) 

The tensor 𝜕𝜕𝐬𝐬𝑚𝑚+1 𝜕𝜕𝐞𝐞𝑚𝑚+1⁄ may be expressed in terms of 𝐧𝐧𝑚𝑚+1,𝐦𝐦𝑚𝑚+1 as follows: 

 

𝜕𝜕𝐬𝐬𝑚𝑚+1
𝜕𝜕𝐞𝐞𝑚𝑚+1

= 𝐷𝐷𝑑𝑑𝑒𝑒𝑣𝑣𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 + 𝐷𝐷𝑚𝑚𝑚𝑚 (𝐧𝐧𝑚𝑚+1 ⊗ 𝐧𝐧𝑚𝑚+1)  + 𝐷𝐷𝑚𝑚𝑠𝑠 (𝐧𝐧𝑚𝑚+1 ⊗𝐦𝐦𝑚𝑚+1) 

                                    +𝐷𝐷𝑠𝑠𝑚𝑚 (𝐦𝐦𝑚𝑚+1 ⊗ 𝐧𝐧𝑚𝑚+1) + 𝐷𝐷𝑠𝑠𝑠𝑠 (𝐦𝐦𝑚𝑚+1 ⊗𝐦𝐦𝑚𝑚+1) 

(3.47) 

where  

 𝐷𝐷𝑑𝑑𝑒𝑒𝑣𝑣 = �2/3 𝑑𝑑𝑚𝑚+1
sin 𝜁𝜁

‖𝛥𝛥𝐞𝐞‖ sin𝜃𝜃𝑚𝑚
 (3.48) 

and 
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�𝐷𝐷
𝑚𝑚𝑚𝑚 𝐷𝐷𝑚𝑚𝑠𝑠

𝐷𝐷𝑠𝑠𝑚𝑚 𝐷𝐷𝑠𝑠𝑠𝑠 � = �𝐴𝐴𝑚𝑚𝑚𝑚 𝐴𝐴𝑚𝑚𝑠𝑠
𝐴𝐴𝑠𝑠𝑚𝑚 𝐴𝐴𝑠𝑠𝑠𝑠

 �

− �
𝐬𝐬𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞
𝐧𝐧 𝐬𝐬𝑚𝑚+1,𝜁𝜁∗

𝐧𝐧

𝐬𝐬𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞
𝐦𝐦 𝐬𝐬𝑚𝑚+1,𝜁𝜁∗

𝐦𝐦  � �
𝐹𝐹1,𝛥𝛥𝜀𝜀𝑞𝑞 𝐹𝐹1,𝜁𝜁∗

𝐹𝐹2,𝛥𝛥𝜀𝜀𝑞𝑞 𝐹𝐹2,𝜁𝜁∗
 �
−1

�
𝐹𝐹1,𝛥𝛥𝐞𝐞
𝐧𝐧 𝐹𝐹1,𝛥𝛥𝐞𝐞

𝐦𝐦

𝐹𝐹2,𝛥𝛥𝐞𝐞
𝐧𝐧 𝐹𝐹2,𝛥𝛥𝐞𝐞

𝐦𝐦  �
(3.49) 

In the above expression 𝐗𝐗𝐧𝐧 = 𝐧𝐧𝑚𝑚+1 ⋅ 𝐗𝐗, and 𝐗𝐗𝐦𝐦 = 𝐦𝐦𝑚𝑚+1 ⋅ 𝐗𝐗, are the components in the 

directions of tensors 𝐧𝐧𝑚𝑚+1  and 𝐦𝐦𝑚𝑚+1  respectively of a tensor 𝐗𝐗 which belongs on the 

(𝐧𝐧,𝐦𝐦) hyperplane, hence: 

�
𝐬𝐬𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞
𝐧𝐧 𝐬𝐬𝑚𝑚+1,𝜁𝜁∗

𝐧𝐧

𝐬𝐬𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞
𝐦𝐦 𝐬𝐬𝑚𝑚+1,𝜁𝜁∗

𝐦𝐦 � = �2/3 𝑑𝑑𝑚𝑚+1 �
𝐻𝐻𝑚𝑚+1/𝑑𝑑𝑚𝑚+1 0

0 −1 � (3.50) 

and 

�𝐴𝐴𝑚𝑚𝑚𝑚 𝐴𝐴𝑚𝑚𝑠𝑠
𝐴𝐴𝑠𝑠𝑚𝑚 𝐴𝐴𝑠𝑠𝑠𝑠

 � = 𝐷𝐷𝑑𝑑𝑒𝑒𝑣𝑣 � −1 0
−𝐵𝐵 sin 𝜁𝜁∗ −1 + 𝐵𝐵 cos 𝜁𝜁∗ � ,

𝐵𝐵 =
2𝐺𝐺‖𝛥𝛥𝐞𝐞‖ sin𝜃𝜃𝑚𝑚
‖𝐬𝐬𝑒𝑒‖ sin 𝜁𝜁

(3.51) 

The above linearized moduli are non-symmetric, as the multipliers 𝐷𝐷𝑠𝑠𝑚𝑚and 𝐷𝐷𝑚𝑚𝑠𝑠 of the 

non-symmetric terms 𝐦𝐦𝑚𝑚+1 ⊗ 𝐧𝐧𝑚𝑚+1  and 𝐧𝐧𝑚𝑚+1 ⊗𝐦𝐦𝑚𝑚+1  respectively, are not equal. 

Thus, 𝐷𝐷𝑒𝑒𝑝𝑝(𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒)
𝑐𝑐 ≠ 𝐷𝐷𝑒𝑒𝑝𝑝(𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖)

𝑐𝑐 , while the symmetries 𝐷𝐷𝑒𝑒𝑝𝑝(𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒)
𝑐𝑐 = 𝐷𝐷𝑒𝑒𝑝𝑝(𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖)

𝑐𝑐 = 𝐷𝐷𝑒𝑒𝑝𝑝(𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒)
𝑐𝑐 =

𝐷𝐷𝑒𝑒𝑝𝑝(𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖)
𝑐𝑐  are preserved. In the limit ‖𝛥𝛥𝐞𝐞‖ → 0 , the linearized moduli reduce to the 

material tangent moduli. 

Table 3.2: Functions necessary to define internal variables 𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗ 

model / branch 𝐹𝐹1 = 0 𝐹𝐹2 = 0 
1st branch     -      ℎ�   = 𝑑𝑑�𝜀𝜀𝑞𝑞� 𝜀𝜀𝑞𝑞�  Eq. (3.23) Eq. (3.22) 
2nd branch    -      𝜃𝜃𝑝𝑝 = 𝜃𝜃𝑐𝑐 Eq. (3.27) Eq. (3.26) 
Explicit choice:  ℎ�   = ℎ��𝜃𝜃,𝛥𝛥𝜀𝜀𝑞𝑞� Eq. (3.32) Eq. (3.31) 

3.3 Algorithm for shell element analysis 
In shell element analysis, for a given strain increment 𝛥𝛥𝛆𝛆�  (which has no 𝛥𝛥𝜀𝜀33 

component), the stress at the converged state 𝛔𝛔�𝑚𝑚+1 (which has no 𝜎𝜎�𝑚𝑚+1(33) component) 

must be calculated, accounting for the traction component perpendicular to the shell 

laminae (assumed to be direction 3 in Figure 3.3) to be zero throughout the analysis: 

𝜎𝜎𝑚𝑚+1(33) = 0 (3.52) 
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Figure 3.3: Representation of a shell element and the direction perpendicular to its 
laminae 

The constraint (3.52), is used to calculate the unknown component of the strain increment 

perpendicular to the shell laminae 𝛥𝛥𝜀𝜀33. The total strain increment 𝛥𝛥𝛆𝛆, is decomposed as 

follows: 

 𝛥𝛥𝛆𝛆 = 𝛥𝛥𝛆𝛆� + 𝛥𝛥𝜀𝜀33𝐚𝐚 (3.53) 

where 𝐚𝐚 = 𝒆𝒆�3 ⊗ 𝒆𝒆�3. Enforcing (3.52), at the end of the strain increment, one obtains: 

 𝐚𝐚 ⋅ 𝐬𝐬𝑚𝑚+1 − 𝑝𝑝𝑚𝑚+1𝐚𝐚 ⋅ 𝐈𝐈 = 0 (3.54) 

Herein, (3.54) is updated using (3.37): 

 
𝐹𝐹𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗,𝛥𝛥𝜀𝜀33� = 

         �2 3⁄ 𝑑𝑑𝑚𝑚+1�cos(𝜁𝜁𝑒𝑒 − 𝜁𝜁∗) 𝑛𝑛𝑚𝑚(33) + sin(𝜁𝜁𝑒𝑒 − 𝜁𝜁∗)𝑚𝑚𝑚𝑚(33)� − 𝑝𝑝𝑚𝑚+1 = 0 
(3.55) 

The internal variables �𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗,𝛥𝛥𝜀𝜀33�  are computed by solving the system of three 

equations (3.39), (3.40), (3.55) (defined in Table 3.2 depending on the model branch). 

This system can be reduced to a 2x2 system since for either model branch, equation (3.40) 

can easily be rewritten as an analytic expression 𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33� and used for eliminating 

𝜁𝜁∗ from the remaining two equations. This results in a system of nonlinear equations 

𝐹𝐹�1�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33� = 0 and 𝐹𝐹�𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33� = 0. More details on the solution of this system 

are given in Table 3.3.  

The above formulation can be easily adjusted to account for plane stress conditions by 

additionally demanding zero out-of-plane shear stresses (𝜎𝜎13 = 𝜎𝜎23 = 0), which directly 

translates to 𝛥𝛥𝜀𝜀13 = 𝛥𝛥𝜀𝜀23 = 0. Under plane stress conditions, the above algorithm is 

directly applicable.  
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Table 3.3: Integration algorithm for shell element analysis – 𝜎𝜎33 = 0 

1. Compute trial elastic stress (elastic prediction)
𝛔𝛔𝑒𝑒 = 𝛔𝛔𝑚𝑚 + 𝐃𝐃𝑐𝑐𝑜𝑜𝑚𝑚𝛥𝛥𝛆𝛆�, 𝐬𝐬𝑒𝑒 = 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣𝛔𝛔𝑒𝑒  ,       𝑝𝑝𝑒𝑒 = −1 3⁄ (𝐈𝐈 ⋅ 𝛔𝛔𝑒𝑒) 

𝑞𝑞𝑒𝑒 = �3 2⁄ ‖𝐬𝐬𝑒𝑒‖    ,  𝑑𝑑𝑚𝑚 = 𝑑𝑑�𝜀𝜀𝑞𝑞|𝑚𝑚� ,      𝐹𝐹𝑚𝑚+1𝑡𝑡𝑏𝑏𝑖𝑖𝑚𝑚𝑒𝑒 =
1

2𝐺𝐺 �
‖𝐬𝐬𝑒𝑒‖ − �2 3⁄ 𝑑𝑑𝑚𝑚� 

2. IF 𝐹𝐹𝑚𝑚+1𝑡𝑡𝑏𝑏𝑖𝑖𝑚𝑚𝑒𝑒 ≤ 0 THEN 
𝛥𝛥𝐞𝐞𝑝𝑝 = 𝟎𝟎  , 𝛥𝛥𝜀𝜀𝑞𝑞 = 0 

     ELSE  (𝐹𝐹𝑚𝑚+1𝑡𝑡𝑏𝑏𝑖𝑖𝑚𝑚𝑒𝑒 > 0) 
𝐧𝐧𝑚𝑚 = 𝐬𝐬𝑚𝑚/‖𝐬𝐬𝑚𝑚‖  

      (2a)  Assume 1st branch is activated 
Find 𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33, solving the following 2x2 system (details in Table 10.1): 
𝐹𝐹�1�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33�       = 𝐹𝐹𝑝𝑝1�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33�,𝛥𝛥𝜀𝜀33�     = 0 
𝐹𝐹�𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33� = 𝐹𝐹𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33�,𝛥𝛥𝜀𝜀33� = 0 
with 

tan 𝜁𝜁∗ =
sin𝜃𝜃𝑒𝑒

‖𝐬𝐬𝑒𝑒‖
2𝐺𝐺‖𝛥𝛥𝐞𝐞‖ �1 + ℎ𝑚𝑚+1

3𝐺𝐺 � − cos𝜃𝜃𝑒𝑒

Calculate: 
𝛥𝛥𝛆𝛆 = 𝛥𝛥𝛆𝛆� + 𝛥𝛥𝜀𝜀33𝐚𝐚,  𝛔𝛔𝑒𝑒 = 𝛔𝛔𝑚𝑚 + 𝐃𝐃𝛥𝛥𝛆𝛆,       𝐬𝐬𝑒𝑒 = 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣𝛔𝛔𝑒𝑒 = 𝐬𝐬𝑚𝑚 + 2𝐺𝐺𝛥𝛥𝐞𝐞 

cos𝜃𝜃𝑒𝑒 =
𝛥𝛥𝐞𝐞 ⋅  𝐬𝐬𝑒𝑒

‖𝛥𝛥𝐞𝐞‖‖𝐬𝐬𝑒𝑒‖
, ℎ�𝑚𝑚+1 = ℎ𝑚𝑚+1,             𝜃𝜃 = 𝜃𝜃𝑒𝑒 + 𝜁𝜁∗ 

tan𝜃𝜃𝑝𝑝 =
‖𝛥𝛥𝐞𝐞‖ sin𝜃𝜃

1 + ℎ�𝑚𝑚+1 3𝐺𝐺⁄
��3 2⁄ 𝛥𝛥𝜀𝜀𝑞𝑞��

      (2b)  If 𝜃𝜃𝑝𝑝 > 𝜃𝜃𝑐𝑐 :  the second branch is activated 
Find 𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33, solving the following 2x2 system (details in Table 10.1): 
𝐹𝐹�1�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33�       = 𝐹𝐹𝑝𝑝2�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33�,𝛥𝛥𝜀𝜀33�       = 0 
𝐹𝐹�𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33� = 𝐹𝐹𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33�,𝛥𝛥𝜀𝜀33� = 0 
with 

𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞� = sin−1 �
3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞 tan𝜃𝜃𝑐𝑐

𝑞𝑞𝑒𝑒 � 

Calculate: 
𝛥𝛥𝛆𝛆 = 𝛥𝛥𝛆𝛆� + 𝛥𝛥𝜀𝜀33𝐚𝐚, 𝛔𝛔𝑒𝑒 = 𝛔𝛔𝑚𝑚 + 𝐃𝐃𝛥𝛥𝛆𝛆, 𝐬𝐬𝑒𝑒 = 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣𝛔𝛔𝑒𝑒 = 𝐬𝐬𝑚𝑚 + 2𝐺𝐺𝛥𝛥𝐞𝐞 

cos𝜃𝜃𝑒𝑒 =
𝛥𝛥𝐞𝐞 ⋅  𝐬𝐬𝑒𝑒

‖𝛥𝛥𝐞𝐞‖‖𝐬𝐬𝑒𝑒‖
,    𝜃𝜃 = 𝜃𝜃𝑒𝑒 + 𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝐞𝐞(𝛥𝛥𝜀𝜀33)� 

ℎ�𝑚𝑚+1 = 3𝐺𝐺 �
‖𝛥𝛥𝐞𝐞‖ sin𝜃𝜃

�3 2⁄ 𝛥𝛥𝜀𝜀𝑞𝑞 tan𝜃𝜃𝑐𝑐
− 1�

      (2c)  Calculate the plastic strain increment 

𝐦𝐦𝑚𝑚 =
[𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧𝑚𝑚 ⊗ 𝐧𝐧𝑚𝑚] 𝛥𝛥𝐞𝐞

‖[𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧𝑚𝑚 ⊗ 𝐧𝐧𝑚𝑚] 𝛥𝛥𝐞𝐞 ‖
,   cos 𝜁𝜁𝑒𝑒 =

𝐬𝐬𝑚𝑚 ⋅  𝐬𝐬𝑒𝑒

‖𝐬𝐬𝑚𝑚‖‖𝐬𝐬𝑒𝑒‖
, 𝜁𝜁 = 𝜁𝜁𝑒𝑒 − 𝜁𝜁∗ 

𝐧𝐧𝑚𝑚+1 =     cos 𝜁𝜁 𝐧𝐧𝑚𝑚 + sin 𝜁𝜁𝐦𝐦𝑚𝑚, 𝐦𝐦𝑚𝑚+1 = − sin 𝜁𝜁 𝐧𝐧𝑚𝑚 + cos 𝜁𝜁 𝐦𝐦𝑚𝑚 

𝛥𝛥𝐞𝐞𝑝𝑝 = �3 2⁄ 𝛥𝛥𝜀𝜀𝑞𝑞 𝐧𝐧𝑚𝑚+1 +
‖𝛥𝛥𝐞𝐞‖ sin𝜃𝜃

1 + ℎ�𝑚𝑚+1/3𝐺𝐺
𝐦𝐦𝑚𝑚+1 

3. Update stress tensor and state variables:
𝛔𝛔𝑚𝑚+1 = 𝛔𝛔𝑒𝑒 − 2𝐺𝐺𝛥𝛥𝐞𝐞𝑝𝑝               Note: at this stage it is  𝜎𝜎𝑚𝑚+1(33) = 0 
𝜀𝜀𝑞𝑞|𝑚𝑚+1 = 𝜀𝜀𝑞𝑞|𝑚𝑚 + 𝛥𝛥𝜀𝜀𝑞𝑞 
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3.3.1 Consistent moduli for shell element analysis 
For shells, an equivalent three-dimensional integration scheme was presented above 

which accounts for the constraint (3.52) to calculate the dependent strain increment 

component 𝛥𝛥𝜀𝜀33(𝛥𝛥𝛆𝛆�). It follows that the total strain increment is readily available after 

the integration, and the consistent moduli 𝐷𝐷𝑒𝑒𝑝𝑝|𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅
𝑐𝑐  for an equivalent ‘brick’ element can 

be found as in paragraph 3.2, disregarding the dependence 𝛥𝛥𝜀𝜀33(𝛥𝛥𝛆𝛆�). For shell elements 

this dependence needs to be reintroduced in the algorithmic moduli, and the know stress 

component 𝜎𝜎33  needs to be eliminated by static condensation. The shell algorithmic 

moduli are expressed as: 

 𝐃𝐃𝑒𝑒𝑝𝑝
𝑐𝑐,𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 =

𝑑𝑑𝛔𝛔�
𝑑𝑑𝛆𝛆�

=
𝜕𝜕𝛔𝛔�
𝜕𝜕𝛆𝛆�

+
𝜕𝜕𝛔𝛔�

𝜕𝜕𝛥𝛥𝜀𝜀33
𝜕𝜕𝛥𝛥𝜀𝜀33
𝜕𝜕𝛆𝛆�

 (3.56) 

The derivative 𝜕𝜕𝛥𝛥𝜀𝜀33/𝜕𝜕𝛆𝛆� is obtained by demanding the differential of constraint (3.52) 

to be zero: 

 𝑑𝑑𝛥𝛥𝜀𝜀33 = −
𝜕𝜕𝜎𝜎𝑚𝑚+1(33)/𝜕𝜕𝛆𝛆�

𝜕𝜕𝜎𝜎𝑚𝑚+1(33)/𝜕𝜕𝛥𝛥𝜀𝜀33
𝑑𝑑𝛆𝛆� (3.57) 

and finally, the condensed material moduli, employed in shell analyses can be calculated 

as: 

 𝐷𝐷𝑒𝑒𝑝𝑝𝑐𝑐.𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒�
𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅

= 𝐷𝐷𝑒𝑒𝑝𝑝𝑐𝑐 𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅
−
𝐷𝐷𝑒𝑒𝑝𝑝𝑐𝑐 𝜅𝜅𝜅𝜅33

𝐷𝐷𝑒𝑒𝑝𝑝𝑐𝑐 33𝜅𝜅𝜅𝜅

𝐷𝐷𝑒𝑒𝑝𝑝𝑐𝑐 3333
 (3.58) 

where 𝜅𝜅, 𝜆𝜆, 𝜇𝜇, 𝜈𝜈 = 1,2,3 but not 𝜅𝜅 = 𝜆𝜆 = 3 or 𝜇𝜇 = 𝜈𝜈 = 3. In equation (3.58), one should 

note that 𝐷𝐷𝑒𝑒𝑝𝑝|𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅
𝑐𝑐 ≠ 𝐷𝐷𝑒𝑒𝑝𝑝|𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅

𝑐𝑐  so that the algorithmic moduli for shells are non-

symmetric. For plane stress elements the rigidity moduli can be expressed by (3.58), with 

𝜅𝜅, 𝜆𝜆, 𝜇𝜇, 𝜈𝜈 = 1,2, and they are also non-symmetric. 
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3.4 Theoretical testing of the model properties 
In this paragraph, using benchmark tools from the literature, key features of the behaviour 

and properties of the developed non-associative constitutive model are illustrated.  

3.4.1 Behaviour under non-proportional strain paths 
Various loading scenarios are employed to demonstrate the behaviour of the J2NA model 

juxtaposed with the results adopting J2FT, J2DT and the model by Simo (1987). The 

three-dimensional element formulation is presented first, demonstrating the more 

compliant behaviour of the non-associative models with respect to J2FT and their relation 

with J2DT, depending on the strain angle 𝜃𝜃. The J2NA model exhibits a somewhat stiffer 

response than Simo’s model when the strain angle is small enough (𝜃𝜃 ≤ 𝜃𝜃𝑐𝑐), while the 

two models have the same behaviour in load strain histories where 𝜃𝜃 > 𝜃𝜃𝑐𝑐 , shown in 

Figure 3.5. A further demonstration of the two models is offered for plane stress 

conditions (Figure 3.6), which exhibit behaviours akin to their three-dimensional 

counterparts.  

3.4.1.1 Three-dimensional formulation 
To illustrate the behaviour of the models, the loading scenarios introduced by Hughes and 

Shakib (1987) and further used by Simo (1987) are adopted. A one-parametric family of 

non-proportional deviatoric strain paths is considered, expressed analytically by eq. 

(3.59). The strain paths consist of a preloading proportional branch, followed by a non-

proportional one, forming an angle 𝜓𝜓 with the preloading path (Figure 3.4). 

𝐞𝐞(𝑡𝑡) = 𝐞𝐞0𝑡𝑡 + (𝐞𝐞1 − 𝐞𝐞0)〈𝑡𝑡 − 1〉,    𝑡𝑡 ∈ [0,2] (3.59) 

In the above 〈 ∙ 〉 = max{( ∙ ), 0} is the Macaulay bracket and 𝐞𝐞0, 𝐞𝐞1 are expressed as: 

𝐞𝐞0 = 𝜀𝜀̅ �
− 1 2⁄ 0 0

0 −1 2⁄ 0
0 0  1 

� (3.60) 

𝐞𝐞1 = 𝜀𝜀̅ �
−1 2⁄ cos𝜓𝜓 0 0

0 −1 2⁄ cos𝜓𝜓 √3 2⁄ sin𝜓𝜓
0 √3 2⁄ sin𝜓𝜓  cos𝜓𝜓 

� (3.61) 

With 𝜀𝜀̅ = 7.5 × 10−3, and four significant non-proportionality cases are displayed: 

𝜓𝜓 = 𝜋𝜋 8⁄ , 2𝜋𝜋 8⁄ , 3𝜋𝜋 8⁄ , 4𝜋𝜋 8⁄   or  22.5°, 45.0°, 67.5°, 90.0° (3.62) 
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Figure 3.4: Schematic representation of the one-parameter, non-proportional deviatoric 
strain path family considered 

A material with linear hardening and the material properties in Table 3.4 are adopted, to 

allow for comparisons to previous works, in conjunction with four cases for the angle 

parameter: 

𝜃𝜃𝑐𝑐 = 0, 𝜋𝜋 12⁄ , 2𝜋𝜋 12⁄ , 3𝜋𝜋 12⁄ , 4𝜋𝜋 12⁄   or  0°, 15°, 30°, 45°, 60° (3.63) 

Table 3.4: Material properties 

Young’s Modulus 𝐸𝐸(𝑑𝑑𝑠𝑠𝑘𝑘) 10.5 × 103 
Shear Modulus 𝐺𝐺(𝑑𝑑𝑠𝑠𝑘𝑘) 3.95 × 103 
Plastic Modulus/Hardening 𝐻𝐻(𝑑𝑑𝑠𝑠𝑘𝑘) 103 
Yield stress 𝜎𝜎𝑠𝑠(𝑑𝑑𝑠𝑠𝑘𝑘) 33.65 

The numerical calculations were performed with pseudo-time increment 𝛥𝛥𝑡𝑡 = 0.01 and 

the plotted results refer to the second phase of the deformation (non-proportional phase), 

summarized in Table 3.5 

Table 3.5: Notation of the plotted results 

𝑒𝑒(𝑡𝑡) = 
= 
‖𝐞𝐞1‖ 〈𝑡𝑡 − 1〉 
�3 2⁄ 𝜀𝜀  ̅〈𝑡𝑡 − 1〉 

𝜎𝜎(𝑡𝑡) = 𝜎𝜎33(𝑡𝑡) 
𝜀𝜀̅𝑝𝑝𝑒𝑒(𝑡𝑡) = 𝑒𝑒33

𝑝𝑝 (𝑡𝑡) − 𝑒𝑒33
𝑝𝑝 (1)

𝛥𝛥(𝑡𝑡) = 𝜎𝜎23(𝑡𝑡) 
𝛥𝛥𝑝𝑝𝑒𝑒(𝑡𝑡) = 2𝑒𝑒23

𝑝𝑝 (𝑡𝑡)

In Figure 3.5, the stress and plastic strain evolution is given for the selected strain path 

family for discrete angles 𝜓𝜓, employing J2NA, and the model Simo (1987), accounting 

for several values for the angle parameter 𝜃𝜃𝑐𝑐. The material responses employing J2FT and 

J2DT under these strain paths are also included, to facilitate comparisons. 

Under non-proportional straining, the stress tensor rotates towards the direction of the 

non-proportionality, and the angle (𝜃𝜃) it forms with the successive strain increments 

Preloading

Non-
Proportional 

Loading

Initial YS

Current YS
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gradually decreases, irrespective of the material model. It follows that if non-

proportionality angle 𝜓𝜓 < 𝜃𝜃𝑐𝑐, in the non-associative models considered, only one branch 

is activated, leading to a behaviour unaffected by parameter 𝜃𝜃𝑐𝑐. For such combinations 

(𝜃𝜃𝑐𝑐 > 𝜓𝜓), a single line is offered in the following figures for each of the models. In these 

cases, the behaviours of the J2DT and the J2NA are very similar, somewhat stiffer than 

the model by Simo, and less stiff that the J2FT. 

Comparably, in cases that 𝜓𝜓 ≫ 𝜃𝜃𝑐𝑐, it is possible that throughout the analysis 𝜃𝜃𝑐𝑐 < 𝜃𝜃, so 

that only the second branch of the J2NA model is activated. In such cases, the J2NA and 

Simo’s model has the same response for given values 𝜃𝜃𝑐𝑐, which is stiffer than the J2DT, 

and less stiff than the J2FT.  

In a final case, 𝜓𝜓 > 𝜃𝜃𝑐𝑐 only for part of the deformation history. Hence, the second model 

branch is activated initially, producing similar behaviours for the two non-associative 

models. However, angle 𝜃𝜃  decreases with deformation and 𝜃𝜃 ≤ 𝜃𝜃𝑐𝑐  develops onward, 

activating the first branch of each model, hence differentiating their responses. Such 

points are clearly identifiable in Figures 3.5 , 3.6 . 

3.4.1.2 Plane Stress 
For plane stress a one-parameter strain path expressed by (3.59) is also used, with 

𝐞𝐞0 = 𝜀𝜀̅ �1 0
0 0� (3.64) 

𝐞𝐞1 = 𝜀𝜀̅ � cos𝜓𝜓 √3 2⁄ sin𝜓𝜓
√3 2⁄ sin𝜓𝜓 0

� (3.65) 

This strain path is not deviatoric, as in the three-dimensional case, but it represents the 

tension and torsion of a tube who is fixed in the radial direction, for example by being 

filled with a very stiff material. It follows that, in the preloading at first yield there is a 

small non-proportionality which reduces with deformation, but in all considered cases 

smaller than 𝜃𝜃𝑐𝑐 . Hence, angle 𝜓𝜓  is approximate representation of the angle formed 

between the two consecutive strain paths. The material parameters in Table 3.4 are used. 

The behaviours are very similar to the non-proportional paths in brick elements, discussed 

above. 
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Figure 3.5: Stress and plastic strain under non-proportional strain family (3.59)  (a) 𝜓𝜓 =
π 8⁄  (22.5°), (b) 𝜓𝜓 = 2π 8⁄ (45°)  
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Figure 3.5: Stress and plastic strain under non-proportional strain family (3.59) (c) 𝜓𝜓 =
3π 8⁄  (67.5°), (d) 𝜓𝜓 = 4π 8⁄ (90°) 
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Figure 3.6: Plane stress - Stress and plastic strain under non-proportional strain family 
(3.59) (a) 𝜓𝜓 = π 8⁄  (22.5°), (b) 𝜓𝜓 = 2π 8⁄ (45°) 
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Figure 3.6: Plane stress - Stress and plastic strain under non-proportional strain family 
(3.59) (c) 𝜓𝜓 = 3π 8⁄  (67.5°), (d) 𝜓𝜓 = 4π 8⁄ (90°) 
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3.4.2 Accuracy Analysis - Iso-error Maps 
To numerically evaluate the accuracy of the developed algorithm, iso-error maps are 

constructed for a material point under strain-controlled loading. The iso-error maps offer 

a schematic representation of the accuracy of the integration algorithm under a variety of 

loading paths. In the present study, the loading cases suggested by Simo & Taylor (1986) 

are used to test the accuracy of the J2NA model, considering shell elements in plane stress 

loading conditions (𝜎𝜎33 = 𝜎𝜎13 = 𝜎𝜎23 = 0). 

Starting from a stress state on the yield surface (points A,B,C in Figure 3.7), the new 

stress state 𝛔𝛔(𝛥𝛥𝛆𝛆) is calculated for a range of strain increments (combinations of 𝛥𝛥𝜀𝜀11 and 

𝛥𝛥𝜀𝜀22 ), employing the developed integration scheme in a single integration step. 

Subsequently, the ‘exact’ solution 𝛔𝛔∗(𝛥𝛥𝛆𝛆) is obtained by incrementally applying 𝛥𝛥𝛆𝛆 in 

sufficiently small sub-increments and employing the developed integration scheme. The 

number of sub-increments is increased until convergence of 𝛔𝛔∗ . The error of the 

integration is estimated based on the deviatoric part for the stress, according to the 

expression: 

𝑒𝑒 =
‖𝐬𝐬 − 𝐬𝐬∗‖
‖𝐬𝐬∗‖

⋅ 100% (3.66) 

Three initial stress states are considered: (A) uniaxial, (B) biaxial and (C) pure shear 

loading, which represent a wide range of initial loading conditions. The strain increments 

are normalized with the yield strain parameter 𝜀𝜀𝑠𝑠 = 𝜎𝜎𝑠𝑠/𝐸𝐸 = 0.1%. In all iso-error maps 

the shear stress is taken as zero (𝜎𝜎12 = 0). In line with literature, the unfavourable case 

of rigid plasticity is considered, with the properties in Table 3.6 

Table 3.6: Material properties and state variables for iso-error maps 

Poisson’s Ratio 𝜈𝜈  = 0.3 
Young’s Modulus  𝐸𝐸  = 207 𝐺𝐺𝐺𝐺𝑎𝑎 (30000 𝑑𝑑𝑠𝑠𝑘𝑘) 
Von Mises Stress 𝜎𝜎𝑠𝑠 =  207 𝑀𝑀𝐺𝐺𝑎𝑎 (30 𝑑𝑑𝑠𝑠𝑘𝑘) 
Hardening modulus 𝐻𝐻 = 0 𝐺𝐺𝐺𝐺𝑎𝑎 
Equivalent plastic strain 𝜀𝜀𝑞𝑞  = 0.00% 
Angle parameter 𝜃𝜃𝑐𝑐  = 2° 

The level of error for this model is similar to that reported previously in the literature and 

the J2FT, which is up to 8% for strain increments of the size of the yield strain. Increasing 

the hardening modulus leads to somewhat smaller error, because the denominator of 

equation (3.66), that expresses the size of the yield surface, increases. The algorithm 
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exhibits no error for the case of proportional loading, namely, along the line Δ𝜀𝜀22/ Δ𝜀𝜀11 =

0.5 in Figure 3.7(A), and lines Δ𝜀𝜀22/Δ𝜀𝜀11 = 1, in Figure 3.7(B, C). 

Plane stress yield surface, points A, B, C 
used for constructing iso-error maps. (A) Point A – Uniaxial loading initial state

(B) Point B – Biaxial loading initial state (C) Point C – Pure Shear initial state
Figure 3.7: Iso-error maps for different points A, B and C on the yield surface. 

𝜎𝜎2

𝜎𝜎1 

𝛥𝛥𝜀𝜀2 

𝛥𝛥𝜀𝜀1 (𝐵𝐵) 

𝛥𝛥𝜀𝜀2 

𝛥𝛥𝜀𝜀1 (𝐶𝐶) 

𝛥𝛥𝜀𝜀2 

𝛥𝛥𝜀𝜀1 (𝐴𝐴) 
𝑇𝑇 
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3.5 Shell buckling calculations 
This paragraph addressed the application of the J2NA model in the context of finite 

element analyses, to perform buckling calculations, discussing the influence of its non-

associative character in the way instability calculations are executed. 

3.5.1 Implementation in finite element programs 
Lower bound estimates of the bifurcation load from the pre-buckling equilibrium path 

can be obtained using Hill’s ‘comparison solid’ concept. Hutchinson (1974) described in 

detail its implementation and Tvergaard (1983a) discussed its application using the J2 

corner theory by Christoffersen and Hutchinson (1979), which employs material moduli 

dependent on the direction of the strain rate. 

The comparison solid concept introduces a quadratic functional, based on the virtual work 

principle, whose positiveness ensures stability, while the occurrence of non-positive 

values indicates bifurcation. For a discretized finite element model, the functional takes 

the form: 

𝐹𝐹 = 𝚫𝚫𝐔𝐔𝑇𝑇  [𝐊𝐊′] 𝚫𝚫𝐔𝐔 (3.67) 

where [𝐊𝐊′] is the global stiffness matrix that employs the tangent material moduli of the 

constitutive model, and 𝚫𝚫𝐔𝐔 is the vector with the unconstrained degrees of freedom. The 

elastoplastic tangent moduli are used for material points whose loading state is on the 

surface of their respective yield surfaces and the elastic moduli in all other cases. This 

expression implies that stability is ensured by the positive definiteness of the stiffness 

matrix [𝐊𝐊′], or equivalently, instability occurs when a non-positive eigenvalue of [𝐊𝐊′] is 

encountered. 

Using the implicit finite element environment in ABAQUS/Standard, the global stiffness 

matrix [𝐊𝐊′] can be extracted using a dedicated step and a material subroutine UMAT to 

apply the material elastoplastic tangent moduli. Eliminating the constrained degrees of 

freedom, the eigenvalues may be calculated externally, and bifurcation is identified at the 

first zero eigenvalue. Alternatively, using a linear perturbation step, the smallest 

eigenvalues and the respective eigenmodes can be obtained to detect bifurcation. In a 

static analysis, by default, ABAQUS records the occurrence of non-positive eigenvalues 

in the stiffness matrix, which is an alternative way of identifying bifurcation. However, 

implicit analyses, employ the algorithmic moduli of the constitutive models in their 

calculations, which differ from the tangent moduli. Therefore, they may lead to non-
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accurate bifurcation estimates, especially when large strain increments are used. 

Nonetheless, in all cases analysed in the present study, the above methods produced the 

same bifurcation estimates. 

For non-associative and corner models, the material tangent moduli depend on the 

direction (angle 𝜃𝜃) of the strain increment at bifurcation, which is not a priori known, as 

loading path changes may occur. On an assumption of strain direction continuity, the 

instantaneous moduli associated with the angle 𝜃𝜃 of the last strain increment are used, 

adopting an ‘alternative comparison solid’, a concept introduced by Tvergaard (1983a).  
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4 COMPRESSION OF THICK-
WALLED METAL CYLINDERS 

The structural behaviour of long thick-walled cylinders under uniform axial compression 

is addressed in this chapter, demonstrating several key aspects of inelastic instability of 

shells. The buckling and post-buckling behaviours of the cylinders are treated employing 

analytical and numerical tools. Local instability and its evolution are considered, 

accounting for the effect of initial geometric imperfection to investigate the influence of 

constitutive modelling in the structural performance of the simulated cylinders. 

Comparisons are performed successfully with experiments from the literature. 

4.1 Axisymmetric buckling 
Thick-walled metal cylinders (pipes or tubes), when adequately restrained laterally e.g 

buried pipelines, if subjected to axial compression, they shorten uniformly and are loaded 

well into the plastic range of the material before a bifurcation point is met and the tube 

wall exhibits local buckling. Gellin (1979) showed that the resulting buckling mode is 

axisymmetric, characterized by the development of periodic wrinkles uniform along the 

cylinder (Figure 4.1) - assuming the absence of significant boundary effects or 

imperfections which lead to localized effects.  

The critical bifurcation stress (𝜎𝜎𝑐𝑐) and the corresponding halfwave length (𝜆𝜆𝑐𝑐), can be 
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calculated analytically using the following well-known equations (a proof is also 

provided in Appendix 3): 

𝜎𝜎𝑐𝑐 = �
𝐷𝐷11𝐷𝐷22 − 𝐷𝐷122

3
�
1 2⁄

�
𝑡𝑡
𝑅𝑅
� (4.1) 

𝜆𝜆𝑐𝑐 = �
𝐷𝐷112

12(𝐷𝐷11𝐷𝐷22 − 𝐷𝐷112 )�
1 4⁄

(𝑅𝑅𝑡𝑡)1 2⁄  (4.2) 

where 𝑅𝑅  is the radius of the tube, 𝑡𝑡  is the thickness and 𝐷𝐷𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜎𝜎𝛼𝛼𝛼𝛼 𝜕𝜕𝜀𝜀𝛼𝛼𝛼𝛼⁄  (no 

summation on 𝛼𝛼,𝛽𝛽 ) is the condensed material stiffness tensor 𝐷𝐷𝑒𝑒𝑝𝑝 (𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼)
𝑐𝑐.𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ,𝛼𝛼,𝛽𝛽 = 1,2 

presented in equation (3.58), employing the (instantaneous) material tangent moduli 

(2.50) (not the linearized moduli, as discussed in paragraph 3.5).  

The bifurcation strain 𝜀𝜀𝑐𝑐, stress 𝜎𝜎𝑐𝑐 and the corresponding halfwave length 𝜆𝜆𝑐𝑐 are obtained 

by solving the nonlinear equation (4.1), which has the equivalent plastic strain 𝜀𝜀𝑞𝑞 or the 

equivalent stress 𝑞𝑞𝑒𝑒  as the only unknown. In the absence of initial geometric 

imperfection, the pre-buckling average stress-shortening response follows the material 

compression curve, independently of the material model, while the various models 

provide significantly different bifurcation estimates, as they employ different stiffness 

moduli.  

Figure 4.1: Axisymmetric buckling of cylinder under uniform compression 

Key features of the presented methodology are demonstrated below in numerically 

simulating buckling experiments of thick-walled duplex stainless steel tubes reported in 

(Bardi & Kyriakides, 2006; Bardi et al., 2006). Those experiments were designed to 

mitigate the influence of edge supports and represent the bifurcation behaviour of long 

shells, as opposed to older investigations on axially-compressed cylinders (Lee, 1962; 
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Batterman, 1965), where specimen length and support conditions prevented the clear 

identification of wrinkling onset, which may result in misleading comparisons between 

bifurcation and ultimate loads.  

In Figure 4.2b,c,d, the axisymmetric bifurcation stress ( 𝜎𝜎𝑐𝑐 ), strain ( 𝜀𝜀𝑐𝑐 ) and the 

corresponding halfwave length (𝜆𝜆𝑐𝑐) are displayed for tubes in terms of the diameter-to-

thickness ratio (𝐷𝐷 𝑡𝑡⁄ ). Bifurcation from the pre-buckling path is identified by solving 

expression (4.1), employing the material moduli for different constitutive models and the 

material curve Figure 4.2a. The predictions for J2NA and J2DT are identical as the 

preloading is proportional, and both models employ the same material moduli. The J2FT, 

marked with dotted lines, over-predicts the bifurcation stresses by a significant amount, 

in the entire range considered, while J2NA generally provides predictions in better 

agreement with experimental values by (Bardi & Kyriakides, 2006), marked with circles 

and squares. 

(a) Material stress-strain curve (b) Bifurcation stress 𝜎𝜎𝑐𝑐 vs D/t

(c) Bifurcation strain 𝜀𝜀𝑐𝑐 vs D/t (d) Wrinkling halfwave length 𝜆𝜆𝑐𝑐vs D/t

Figure 4.2: Influence of constitutive modelling in the bifurcation stress, strain and 
halfwave length for thick-walled tubes. Experimental data are included 

On the other hand, the non-associative model by Simo (1987) predicts bifurcation at 
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significantly lower load than experiments indicate. The differences are more salient when 

considering the values of strain at bifurcation in Figure 4.2c. In that case, the J2FT grossly 

over-predicts bifurcation strains, whereas the J2NA is in better agreement with 

experiments. Finally, the model by Simo leads to significant underpredictions of the 

bifurcation strain, particularly for tubes with larger values of 𝐷𝐷 𝑡𝑡⁄  ratio. 

The buckling halfwave length is overestimated by all models. Simo’s model yields 

predictions similar to the ones by J2NA, which are more consistent with experimental 

results compared to those of J2FT, but still over-predict the reported halfwave values by 

a factor of two. The differences can be alleviated when yield anisotropy is taken into 

account (Bardi & Kyriakides, 2006; Corona et al., 2006; Kyriakides et al., 2005) which 

was reported in these experiments, but this is outside the scope of the present study. 

Bifurcation predictions are also obtained using finite element models via static analyses 

in Abaqus, employing the user-material-subroutine (UMAT) for J2NA. Axisymmetric 

and three-dimensional shell element models with different lengths were used, under a 

displacement-controlled analysis scheme (modelling details and mesh properties were as 

described in the paragraphs 4.1.1 and 4.2). A series of analyses was performed to identify 

the length that leads to the lowest bifurcation stress, which also supplied the relevant 

strain and halfwave length parameters. The finite element results are included with 

triangular marks in Figure 4.2b,c,d, and they are in excellent agreement with the analytical 

predictions. It is noted that in FE analyses the hardening behaviour is introduced as pairs 

of values of true stress – logarithmic plastic strain. These values are calculated from the 

material hardening curve Figure 4.2a, considering it represents the uniaxial behaviour 

under compression (the standard formulas are used on the material curve under tension). 

4.1.1 Non-axisymmetric buckling modes 
To investigate the development of non-axisymmetric bifurcation modes, models of length 

𝐿𝐿 = 2𝜅𝜅𝜆𝜆𝑐𝑐 (𝜅𝜅 is an integer) are used, following the argument by (Gellin, 1979; Koiter, 

1963). Models employ 12 S4 elements per halfwave and 120 around the circumference, 

together with periodic symmetry support conditions. Shortening (axial displacement at 

the cylinder ends) is imposed incrementally and at 0.1% strain increments, the 

eigenvalues of the stiffness matrix are monitored, to identify structural instability. The 

first zero eigenvalue corresponds to an axisymmetric buckling mode, and the relevant 

bifurcation stress, strain, and wavelength are in line with the analytical solution. At 

increasing deformations, bifurcation into non-symmetric modes with e.g. two and three 
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circumferential waves was also recorded (Figure 4.3). Longer finite element models, with 

𝜅𝜅 equal to 2, 3,… replicated the bifurcation modes and the corresponding strains obtained 

by their shorter two-halfwave counterparts (𝜅𝜅 = 1). 

Figure 4.3: Bifurcation into non-axisymmetric bucking modes 

4.2 Evolution of uniform wrinkling 
Initial geometric imperfection leads to non-uniform stress distribution along the tube and 

non-proportionality arises, surfacing the influence of various constitutive models. The 

average stress (𝐹𝐹/𝐴𝐴) - normalized shortening -or average strain- (𝛥𝛥𝐿𝐿/𝐿𝐿) diagrams of 

initially imperfect cylinders demonstrate this influence (Figures 4.5- 4.7). 

Displacement-controlled axisymmetric analyses are performed, employing twenty, two-

node axisymmetric shell elements, denoted as SAX1 in Abaqus, simulating a one 

halfwave long segment of the cylinder, with seven integration points across the wall 

thickness. To enforce periodicity along the cylinder (uniform wrinkling), the rotation of 

the top and the bottom of the model is restrained, while the cylinder is free to expand 

radially (Figure 4.4).  

m=3

m=2
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Figure 4.4: Geometry and boundary conditions of an axisymmetric one-halfwave model 
of an imperfect thick-walled cylinder under compression 

Initial geometric imperfection is introduced in the shape of the first (axisymmetric) 

eigenmode of the shell, and the radial displacement along the tube can be written as: 

𝑤𝑤 = 𝜔𝜔𝑡𝑡 cos
𝜋𝜋𝑥𝑥
𝜆𝜆𝑐𝑐

(4.3) 

where parameter 𝜔𝜔 refers to the amplitude of the imperfection as a fraction of the shell 

thickness. For simplicity, onward 𝜔𝜔 is simply referred to as imperfection amplitude. The 

behaviour of the imperfect cylinder is presented in Figure 4.5, using the J2NA with angle 

values 𝜃𝜃𝑐𝑐  equal to 2°, 5°, 10°, 15°, 30° , as well as the J2FT and J2DT models for 

comparison purposes. A small imperfection of amplitude 𝜔𝜔 = 10−4  is used, which 

enables the solution to follow the secondary path, without an abrupt transition at the 

bifurcation point. In all analyses, a maximum shortening increment of 0.01% is used.  

The J2FT model follows the primary path, which is practically the material compression 

curve, for axial shortening up to 5%, and develops a load maximum at about 6%. On the 

contrary, the J2DT model develops a load maximum at the bifurcation point of the perfect 

system, immediately followed by a decreasing branch, behaviour in line with arguments 

by Peek (2000). The J2NA leads to behaviours bounded by these two models. At 

bifurcation, the cylinder starts diverging from the primary path with increasing load. The 

parameter 𝜃𝜃𝑐𝑐 influences the load maximum of the tube, with larger values of 𝜃𝜃𝑐𝑐 leading 

to lower load maxima, and behaviours that approach the J2DT. As the angle 𝜃𝜃𝑐𝑐 becomes 

very small, the response of J2NA model approaches that of the J2FT. It is important to 

notice that a small value of angle 𝜃𝜃𝑐𝑐 , e.g., 2°, can lead to a response which is quite 

different to that of J2FT. Such small values of 𝜃𝜃𝑐𝑐 may be hard to measure experimentally, 

𝜆𝜆𝑐𝑐 

𝑅𝑅 − 𝜔𝜔𝑡𝑡 

𝑅𝑅 + 𝜔𝜔𝑡𝑡 

𝑡𝑡 𝑭

𝐴𝐴
𝑥𝑥𝑘𝑘
𝑠𝑠 
𝑜𝑜𝑓𝑓

 𝑑𝑑
𝑦𝑚𝑚
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which would explain the difficulties in past investigations (Hecker,1972) to observe yield 

surface corners. 

For a large imperfection amplitude (𝜔𝜔 = 10−1), the equilibrium path is smoother (Figure 

4.6). Similarly, the J2NA leads to behaviours bounded by the J2FT and the J2DT curves, 

but for high imperfection amplitudes, all these models lead to rather similar behaviours. 

The equilibrium path obtained using the model by Simo (1987) diverges from the material 

curve very close to the corresponding point of bifurcation, as calculated in Figure 4.2c, 

which is a significantly lower level of deformation than the J2DT and experimental data 

indicate. Increasing values of angles 𝜃𝜃𝑐𝑐 lead to progressively earlier load maxima and 

more accentuated deviations from the material compression curve. Numerical instabilities 

were met when employing Simo’s model with low values of angle 𝜃𝜃𝑐𝑐 and imperfection 

𝜔𝜔, which is attributed the model’s full vertex formation effect immediately at first yield, 

as noted in paragraph 2.6. This abruptly reduces material stiffness and hinders 

convergence. 

Figure 4.5: Influence of constitutive modelling in the wrinkling of the axially compressed 
tube (𝜔𝜔 = 10−4) 



Non-associative plasticity for structural instability of cylindrical shells in the inelastic range 

90 Apostolos Nasikas - July 2022 

Figure 4.6: Influence of constitutive modelling in the wrinkling of the axially compressed 
tube (𝜔𝜔 = 10−1) 

In Figure 4.7, an overview is given of the influence of imperfection amplitude 𝜔𝜔 in the 

wrinkling behaviour of the cylinders, when using the J2FT and J2NA models. The use of 

progressively smaller imperfection while employing the J2NA has little influence on the 

simulated response of the cylinder. The equilibrium path diverges from the material 

compression curve soon after the bifurcation strain of the perfect tube, and the secondary 

path is followed. For small values of imperfection 𝜔𝜔 ≤ 0.05% the stress-strain curve is 

practically unaffected by the imperfection amplitude, it exhibits a clear load maximum 

which occurs at a discernible limit strain 𝜀𝜀𝐿𝐿 ≅ 4%.  

On the other hand, the sensitivity of the J2FT to initial imperfection is seen: increasingly 

small imperfection amplitudes enable the cylinder to follow the primary path (material 

compression curve) up to high values of axial shortening, leading to increasingly high 

load maxima at increasing average strains, while for a small imperfection (𝜔𝜔 = 10−5), 

no maximum load is identified for shortening up to 7%. For larger imperfection 

amplitudes 𝜔𝜔 > 0.1% the two constitutive laws produce increasingly similar behaviours, 

while they become almost identical for 𝜔𝜔 = 10% . The influence of imperfection 

amplitude in the axial load capacity and the respective average strain of the cylinder are 

summarized in Figure 4.8, using the J2FT and J2NA. 
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Figure 4.7: Influence of imperfection amplitude in uniform wrinkling, using the J2FT 
and J2NA 

Figure 4.8: Influence of imperfection amplitude in cylinder’s axial load capacity 

In Figure 4.9 the values of angle 𝜃𝜃 are given across the cylinder thickness in the uniform 

wrinkling model. In the neighbourhood of 2% shortening values of 𝜃𝜃  exceed 40o, 

indicating significant non-proportionality in the loading path. The highest values of 𝜃𝜃 are 

recorded in locations with biaxial compression, caused by wrinkling due local bending 
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across thickness (𝜎𝜎𝑥𝑥), but also hoop stresses along the cylinder (𝜎𝜎𝜃𝜃). 

Figure 4.9: Non proportionality angle 𝜃𝜃 along a wavelength at 𝜀𝜀 = 2%, 𝜔𝜔 = 10−5 

Figure 4.10 depicts the limit strain 𝜀𝜀𝐿𝐿 , when the maximum load capacity of the 

compressed cylinder is reached, plotted with respect to the diameter-to-thickness ratio, 

assuming uniform axisymmetric wrinkling. Three initial imperfection levels are 

considered, namely 𝜔𝜔 = 0.1, 1.0, 5.0%  which are in line with investigations by the 

experimenters, suggested to be consistent with the levels of imperfection in the tested 

specimens, and two constitutive models: J2FT and J2NA. Uniformly, the J2FT leads to 

higher limit strains for all levels of imperfection, with more pronounced differences at 

low imperfections. Numerical results are in agreement with the experimental values 

reported by Bardi & Kyriakides (2006), included in the graph, particularly for higher 𝐷𝐷 𝑡𝑡⁄  

values. 

Figure 4.10: Limit strain versus diameter-to-thickness ratio 𝐷𝐷/𝑡𝑡; uniform wrinkling 
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4.3 Localization of wrinkling 
To simulate the localization of the axisymmetric buckling pattern, finite element models 

of multiple halfwaves are used. The length 𝐿𝐿 is assumed equal to 𝑁𝑁𝜆𝜆𝑐𝑐, where 𝜆𝜆𝑐𝑐 is the 

critical halfwave length calculated from equation (4.1), and 𝑁𝑁  an integer. The mesh 

employs twenty axisymmetric shell elements (SAX1) per halfwave and seven integration 

points across the shell thickness. The geometric imperfection is assumed as a stress-free 

initial radial displacement field of the form: 

𝑤𝑤 = −𝑡𝑡 �𝜔𝜔 + 𝜔𝜔1 cos
2𝜋𝜋𝑥𝑥
𝑁𝑁𝜆𝜆𝑐𝑐

� cos
𝜋𝜋𝑥𝑥
𝜆𝜆𝑐𝑐

(4.4) 

Parameter 𝜔𝜔 represents the uniform amplitude of the axisymmetric imperfection, while 

parameter 𝜔𝜔1 is used to modulate the imperfection amplitude along the tube segment 

under consideration and enforce localization at the centre of the 14-halfwave-long model 

(𝑁𝑁 = 14). At the two ends of the model, symmetry conditions are imposed: the rotation 

is restrained, while the radial displacements of the cross-section are free, as in Figure 4.4. 

Figure 4.11: Effect of the imperfection amplitude 𝜔𝜔1 in the average stress- average strain 
response of the imperfect tube employing the J2FT and J2NA 

Figure 4.11 shows the effect of imperfection bias 𝜔𝜔1 on the response of the compressed 

tube for a value of uniform imperfection amplitude 𝜔𝜔 = 0.1% and for values of 𝜔𝜔1 equal 
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to 0.0 %, 0.1%, and 0.5%. When no imperfection amplitude bias (𝜔𝜔1 = 0) is employed, 

the cylinder closely follows the same equilibrium path as in uniform wrinkling, but after 

the limit load formation, additional shortening is distributed non-uniformly along the 

cylinder, localizing in a single wrinkle, and the load capacity reduces rapidly. The limit 

load for the localization model and the uniform wrinkling model are very close. The 

imperfection amplitude bias 𝜔𝜔1 causes localization to initiate at lower levels of stress and 

strain, for both the J2FT and F2NA models, the limit load in these models is similar to 

the uniform wrinkling limit load for imperfection amplitude 𝜔𝜔 + 𝜔𝜔1, as noted (Bardi et 

al., 2006). The tube maintains structural rigidity up until greater deformations when the 

J2FT is employed.  

Figure 4.12: Deformed configuration at increasing strains 

An interesting observation refers to the orientation of the maximum initial imperfection, 

as for either inward or outward maximum imperfection, the wrinkling localizes in an 

outward bugle following the limit load. When initial imperfection has a maximum 

outward wrinkle, the imperfection pattern initially increases almost uniformly in a 

controlled manner when compression is applied. At the load maximum localization 

commences at the wrinkle with the maximum initial amplitude, the displacements start 

increasing rapidly locally, while regions far from the buckle area start to unload (Figures 

4.12 & 4.13b). When the imperfection maximum is in an inward wrinkle, a similar 

response is recorded at early stages of deformation. However, localization takes place at 

one of the outward wrinkles on the side of the maximum inward wrinkle (Figure 4.13b). 

This effect on the orientation of the initial imperfection was found using both the J2FT 

model and the J2NA and it is in line with observations by Tvergaard (1983). In Figure 

J2NA 
𝜃𝜃𝑐𝑐 = 2𝑜𝑜 
𝐷𝐷 𝑡𝑡⁄ = 26.3 
𝐿𝐿 𝜆𝜆𝑐𝑐⁄ = 14 
𝜔𝜔1 = 0.1% 
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4.13b the increase in diameter along the tube is further given for different stages of the 

analysis. In Figure 4.14 the strain direction angle 𝜃𝜃 is plotted along a tube section in an 

advanced stage of the post-buckling (Δ𝐿𝐿 𝐿𝐿⁄ = 6%). Great variations are seen in 𝜃𝜃, and 

values greater than 90𝑜𝑜 signify the unloading of parts of the tube length.  

Figure 4.13: Influence on the direction of the maximum imperfection in (a) the average 
stress- average shortening of compressed cylinders; (b) the displacement profile along 
cylinder generator 

a)

b)
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Figure 4.14: Angle 𝜃𝜃 across the thickness in the cylinder after localization of wrinkling. 

4.3.1 Non axisymmetric modes 
By developing fully 3D shell element models, failure into non-symmetric modes is 

modelled, characteristic in the more thin-walled shells. Additional non-symmetric 

imperfection is introduced expressed as: 

𝑤𝑤𝑠𝑠 = −𝑡𝑡𝜔𝜔𝑠𝑠 cos
𝜋𝜋𝑥𝑥
2𝜆𝜆𝑐𝑐

cos𝑚𝑚𝜃𝜃 (4.5) 

where 𝑡𝑡𝜔𝜔𝑠𝑠  is the amplitude of the buckling mode with 𝑚𝑚  waves developing in the 

circumference. The number 𝑚𝑚 of circumferential waves developing at buckling depends 

on the 𝐷𝐷 𝑡𝑡⁄  ratio of the cylinder, with more waves developing in more thin-walled 

cylinders, in general, but in real shells it is also affected by the imperfection that is present. 

In Figure 4.15 the influence of non-axisymmetric imperfection in the failure of the 

cylinder with 𝐷𝐷 𝑡𝑡⁄ = 43.3 is presented, considering the J2FT and J2NA. Analyses with 

𝑚𝑚 = 2 demanded higher imperfection amplitude and failed to incite pronounced non-

symmetric buckling, so 𝑚𝑚 = 3  is considered critical and the influence of 𝜔𝜔3  in the 

wrinkling localization is given below. This observation is in line with the analysis in 

(Bardi et al., 2006), indicating that three waves develop circumferentially for cylinders 
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with 𝐷𝐷 𝑡𝑡⁄ > 39 and further suggesting imperfection amplitudes 𝜔𝜔 = 0.05% and 𝜔𝜔3 =

6% are representative for this cylinder. 

Figure 4.15: Localization into a non-symmetric mode 

Employing the axisymmetric imperfection amplitude 𝜔𝜔 = 0.05%, along with various 

levels of non-symmetric imperfection 𝜔𝜔3, analyses show that for amplitudes 𝜔𝜔3 ≤10𝜔𝜔, 

the equilibrium path up to the limit load is unaffected. The maximum force and the 

respective average shortening are the same as in the axisymmetric case and wrinkling in 

the cylinder is essentially axisymmetric. Wrinkling is initially quite uniform and at the 

limit load the centre wrinkles become more pronounced, begin to localize 

axisymmetrically, and load capacity reduces. With further shortening, a distinct 

bifurcation point is met, the shell stiffness drops abruptly, and circumferential buckles 

develop. This transition occurs at additional shortening of 0.5% for low values of 𝜔𝜔3 and 

it occurs progressively earlier in the post-limit-load equilibrium path for increasing values 

of 𝜔𝜔3.  

Higher amplitudes of non-axisymmetric imperfection (e.g., 𝜔𝜔3 = 6% ) are quite 

significant and reduce the limit load and the average strain when it occurs. In this case, 

wrinkling localizes directly in a single buckle at the centre of the cylinder, but shows 

signs of circumferential waves even before the limit point is reached. The circumferential 

waves are dominant in the cylinder profile immediately after the maximum load. This 

behaviour is found using both the J2FT and J2NA, with the latter leading to more 

compliant responses, as in the axisymmetric case, and allowing for transitions to the 

secondary path (non-symmetric buckling) for lower imperfection amplitudes. 

In Figure 4.16 this behaviour is compared to the experimental curve by (Bardi et al., 

2006). Simulation follows very closely the experiment up to the limit point when it shows 
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a smoother post limit load behaviour. In the experiment, the shortening was measured in 

a segment of the tube of length 𝐿𝐿 = 1.25𝐷𝐷, while the curves in Figure 4.15 measure it in 

a length of 3.42𝐷𝐷(14𝜆𝜆𝑐𝑐), so the two are not directly comparable. An appropriate curve is 

included in the graph, measuring the shortening from the relative displacements of two 

cross sections 1.24𝐷𝐷 apart, located on either side of the buckle, and it exhibits the same 

smooth behaviour as the experiment. 

Following the limit point, deformation localizes in the buckles and additional shortening 

is not distributed uniformly along the cylinder. It follows that after the limit point any 

shortening measures are dependent on the length that was used, with longer sections 

leading to a seemingly more abrupt loss of stiffness. So, comparisons with the experiment 

in shortening terms must be made based on metrics in the same model length. 

Figure 4.16: Model length and comparison with experiment 

4.4 Conclusions 
The inelastic instability of thick-walled cylinders under uniform compression is reviewed 

using analytic tools and nonlinear numerical analyses. Several constitutive models are 

employed to investigate local buckling. Analytic calculations demonstrate that the J2NA 

can reliability estimate instability, while estimates using the J2FT or the model by Simo 

(1987) show a disparity with experimental data, producing overly high and low 

predictions, respectively. Finite element models are developed in Abaqus and using the 
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software capabilities they are used to validate the bifurcation estimates based on the 

‘alternative’ comparison solid. They verify that local instability onsets in the form of 

periodic axisymmetric wrinkling, when J2NA is employed.  

The influence of constitutive modelling in the post-buckling response is examined using 

implicit FE analyses. Low values of parameter 𝜃𝜃𝑐𝑐  are shown to measurably affect the 

post-buckling response of the cylinders and are used in further buckling calculations. The 

evolution of uniform wrinkling shows the J2NA leads to lower limit loads than J2FT, 

with lower sensitivity to the amplitude of initial imperfection. Comparisons are made with 

experimental data, and models are extended to investigate the local growth of wrinkles. 

Analyses demonstrate the nature of the wrinkle localization process leading to folding of 

the section and to a limit load instability, which can occur well after the onset of 

wrinkling. The presence of imperfection reduces the load capacity of cylinders and 

instigates localization. Analyses demonstrate the complexity of the load paths in the post-

buckling of shells, which necessitates the cautious model implementation scheme 

described in the previous chapter. 

Finite element analyses employing J2NA address key features of inelastic shell buckling 

and demonstrate the capabilities of these modelling tools to reliably simulate inelastic 

buckling of thick-walled cylinders under compression. In the following chapter, they are 

employed to investigate cylinder instabilities under more demanding bending loads. 
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5 PURE BENDING OF LONG 
THICK-WALLED METAL 
CYLINDERS 

The structural performance of thick-walled metal cylinders under pure bending is 

examined in this chapter. Contrary to the case of compression, under bending the 

prebuckling equilibrium path is non-trivial, involving double opposite curvatures in the 

hoop and meridional direction of the cylinder, leading to biaxial, non-proportional 

loading, prior to bifurcation. The influence of constitutive modelling in these more 

complicated loading paths is examined, modelling the structural behaviour of cylinders 

with various 𝐷𝐷 𝑡𝑡⁄  ratios, addressing their pre- and post-buckling response. 

Overview 
The structural behaviour of thick-walled cylindrical shells under bending is characterized 

by the interaction of geometric and material nonlinearities. Ovalization and bifurcation 

instabilities determine the bending load tubulars can sustain, and the elastic-plastic 

material properties further influence the structural performance of tubes, as significant 

inelastic deformations may precede buckling and failure. This chapter focuses on the 

simulation of the mechanical behaviour of thick-walled cylinders, employing the J2NA 

constitutive law to account for the above phenomena. 
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Brazier (1927) showed that bending of elastic cylinders induces ovalization of the cross 

section, which has a prominent role in their structural behaviour. With increasing bending 

deformation, the cross section gradually ovalizes and tends to flatten (Figure 5.1). As the 

distance between the compression and tension side of the tube reduce, a gradual reduction 

of the section’s bending stiffness is recorded and ultimately a moment maximum develops 

(ovalization limit load instability). Further bending deformation leads to a reduction in 

moment the tube section sustains. This geometric destabilization (second order 

deformation effects) is not addressed by the beam theory. Its influence in the performance 

of elastic tubes has been studied by, e.g. (Reissner, 1959) who investigated ovalization 

instability of elastic cylinders further considering pressure with semi-analytic methods, 

and more recently (Karamanos, 2002) who employed a nonlinear finite element 

formulation. 

Figure 5.1: Moment-curvature response of elastic-plastic tube under bending 

Relatively thick-walled cylinders fail while loaded in the plastic range of the material, so 

the ovalization-induced loss of bending stiffness is further exacerbated by the low 

stiffness of the material in the plastic range. The significant combined global and hoop 

bending create a biaxial state of stress in the cylinder wall, which leads the material to 

yield at lower curvatures, further reducing stiffness. As a result, tubulars members may 

be unable to sustain the full plastic moment of the initial cross section (𝑀𝑀𝑜𝑜 = 𝜎𝜎𝑜𝑜𝐷𝐷𝑜𝑜2𝑡𝑡). 

The interaction of material and ovalization instabilities is important for metal cylinders 

with a diameter/thickness ratio (𝐷𝐷 𝑡𝑡⁄ ) of less than, say, 60, when the effects of the inelastic 

material behaviour are more prominent. Particularly in shells with 𝐷𝐷 𝑡𝑡⁄  ≤ 25, this 
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interaction dominates their structural response, which is characterized by ovalization of 

the tube section, formation of a limit load, followed by a gradual failure with significant 

post-limit-load strength. (Figure 5.2c).  

Ades (1957) analysed the ovalization of tubulars in the inelastic range, assuming that the 

cross-section deforms into an elliptical shape, and employing the J2DT to describe 

inelastic material behaviour. This study found the limit (ovalization) moment and 

curvature of elastic-plastic long cylinders, to be lower compared to predictions assuming 

elastic material properties. Gellin (1980) further considered limit loads and curvatures of 

bent tubes, together with nonlinear kinematics from ring deformation theory, enforcing 

the condition of inextentionality employing the J2DT to model material behaviour. Fabian 

(1981) employed similar kinematics and used the J2FT. Motivated by the mechanical 

behaviour of offshore pipelines Kyriakides & Shaw (1982) extensively examined the 

inelastic bending response of relatively thick-walled tubes (15<𝐷𝐷 𝑡𝑡⁄ <80), accounting for 

the influence of external pressure. They employed analytical ovalization models based on 

an inextensional non-linear theory (Brush & Almroth, 1975), using the J2DT to model 

material plasticity. 

Shaw & Kyriakides (1985) and Corona & Kyriakides (1987) extended this study, by 

adopting an improved kinematic formulation, allowing for large changes of hoop 

curvatures, and using J2FT as a constitutive model. Karamanos & Tassoulas (1991) 

investigated the problem using employing “tube” finite elements and offered further 

numerical verification of the experimental data reported in (Corona & Kyriakides, 1987). 

Elchalakani et al. (2002) through theoretical models and experiments further 

demonstrated the role of ovalization instability in the behaviour of thick-walled cylinders. 

They indicated that for reliable modelling of the ovalization behaviour of thick-walled 

cylinders, closed form solutions may be insufficiently detailed. Wang et al. (2018) 

considered the influence of ovalization in the moment resistance of thick-walled under 

bending in the inelastic range using finite elements. 

Experiments by (Kyriakides & Ju, 1992; Reddy, 1979) indicated that ovalization analyses 

may be inadequate to investigate the bending behaviours for metal tubes with 𝐷𝐷 𝑡𝑡⁄  values 

higher than about 45. These cylinders may experience local buckling in the form of tube-

wall wrinkling, before reaching the ovalisation limit moment. During bending, axial 

stresses increase at the compression side of the cylinder can lead to a shell-type instability, 

characterized by the formation of a wave pattern, referred to as ‘local bucking’ or 

‘wrinkling’. This is a bifurcation problem, and the developed buckling mode is 
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characterized by short-wavelength wrinkles forming periodically along the cylindrical 

shell (Figure 5.1). They have a maximum amplitude at the compression side of the cross 

section and gradually diminish around the circumference. The wrinkle development 

reduces the section rigidity, while its interaction with geometric imperfections can have 

a significant influence in the buckling of the cylinders. Bifurcation instability in bending 

is more pronounced in long cylinders, free from boundary conditions.  

Figure 5.2: Typical moment curvature behaviours and bucking modes of thick-walled 
tubes, images from Kyriakides & Shaw (1987) 

Bifurcation from the ovalization primary path may occur either before or beyond the 

ovalization limit load instability, depending on cylinder’s 𝐷𝐷 𝑡𝑡⁄  ratio. For the less thick-

walled shells under consideration (𝐷𝐷 𝑡𝑡⁄ >45), bifurcation and short wavelength wrinkling 
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precede limit load instability, and occur at progressively lower curvatures for increasing 

values of 𝐷𝐷 𝑡𝑡⁄ . For the more thin-walled shells, the wrinkle development is followed by 

an immediate drop in the moment capacity of the shell, localized deformation in one main 

buckle and failure in a “diamond” mode (Figure 5.2a), similar to thin-walled elastic 

cylinders. 

Numerical studies on the uniform wrinkling of bent cylinders were reported by (Gellin, 

1980), where bifurcation in the inelastic range was detected at loads lower than the 

ovalization limit point. Fabian (1981) further considered inelastic stability under 

combined bending and pressure, employing the J2FT for the moment-curvature path and 

J2DT for bifurcation calculations. The experimental work by Reddy (1979) elucidates the 

plastic buckling of thick-walled steel and aluminium cylinders (30<𝐷𝐷 𝑡𝑡⁄ <80) under 

monotonic pure bending. He observed considerable scatter in terms of critical strains, and 

noted variations in the wrinkling wavelengths when comparing between experimental 

values and estimates obtained using both J2DT and J2FT, based on the tubes’ bifurcation 

under compression. 

Ju & Kyriakides (1992) investigated experimentally the bending, ovalization and 

wrinkling of cylinders with 20< 𝐷𝐷 𝑡𝑡⁄ <60. They performed carefully controlled 

experiments on aluminium cylinders, and monitored their structural behaviour until 

failure. Bifurcation instability in the plastic regime was recorded before or after the 

ovalization limit point, dependent on the cylinders 𝐷𝐷 𝑡𝑡⁄  ratio. Ju & Kyriakides (1992b) 

followingly successfully modelled these experiments employing a semi-numerical model 

and considered the main parameters that influence the failure of cylinders. The inelastic 

material behaviour was modelled using J2FT to trace the moment-curvature response 

(equilibrium path) and the J2DT moduli were employed to estimate bifurcation. This 

approach was used by (Houliara, 2008) in the bending of relatively thick cylinders using 

a finite-element formulation. 

Karamanos & Tassoulas (1996) & Limam et al. (2010) examined the structural response 

of tubes under monotonic bending and pressure. Sadowski & Rotter (2013) investigated 

the non-linear plastic buckling behaviour of thick-walled tubes under bending and 

demonstrated the computational efficiency and the reliability of shell elements. The 

disparity between experimental values and numerical predictions on the wrinkling 

wavelength noted by (Ju & Kyriakides, 1992; Reddy, 1979) was re-examined in the work 

of (Corona et al., 2006) and was attributed to the effects of anisotropy. The book by 

(Kyriakides & Corona, 2007) provides a concise overview of the problem of buckling 
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and collapse of inelastic cylinders, and summarizes the previous experimental and semi-

numerical studies. 

To reliably predict the behaviour of cylinders under bending, the intrinsic issue of 

describing accurately the uniform ovalization induced by bending need to be addressed, 

in a consistent manner with bifurcation instabilities. More specifically, the study of the 

buckling and the subsequent post-buckling behaviour, leading to failure, demand 

accounting for the onset, growth and localization of wrinkling which is significantly 

affected by the ovalization process. Towards this purpose, the importance of the 

constitutive modelling becomes clearer, as considerable inelastic deformations and non-

proportional loading take place. Prediction of ovalization localization, associated with the 

natural limit load for thicker shells, and its interaction with wrinkling, for shells with a 

wide range of 𝐷𝐷 𝑡𝑡⁄  values, must be addressed in the analyses. 

5.1 Finite Element Modelling 
Geometrically and materially nonlinear analyses are performed using the implicit static 

solver in Abaqus 2016 to simulate the structural response of the thick-walled circular 

cylinders under bending. Four-node thick shell elements (S4) with finite membrane 

strains are employed. The inelastic material properties are introduced into Abaqus in the 

form of true stress and logarithmic plastic strain and used in the context of a material user 

subroutine UMAT, employing the non-associative constitutive law (J2NA) developed in 

previous paragraphs. Several low values are considered for parameter 𝜃𝜃𝑐𝑐, leading to the 

use of a value of 2𝑜𝑜 which provided good results in both problems of compression and 

bending. 

Finite element meshes are chosen to employ approximately 12 elements per √𝐷𝐷𝑡𝑡  of 

length, and 144 elements around the circumference, with 7 integration points across the 

thickness, found sufficient to accurately capture the buckling behaviour of the cylinders, 

while maintaining computational efficiency. To study both (a) initial instability in the 

form of wrinkling and (b) post-buckling and depending on the geometry the transition 

into non-symmetric buckling modes with circumferential waves, characteristic in the less 

thick-walled shells, an entire cylindrical shell segment is modelled, without half-

symmetry assumptions. Initial geometric imperfection is accounted for, in the form of the 

wrinkled shape eigenmode, obtained at the bifurcation point of the geometrically perfect 

shells, appropriately modulated.  
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The finite element models are subjected to pure bending, under a rotation-controlled 

loading scheme. A simply supported static system is adopted. Reference points are placed 

at the geometric centres of the two ends of the model. The end-cross-section-nodes are 

kinematically coupled to the reference nodes, as in Figure 5.3, imposing kinematic 

constrains that keep the end cross sections plane, while allowing for the cross section to 

ovalize in its rotated plane. This simulates the response of a long cylinder, minimizing 

the influence of the mesh length. A few models were developed with capped ends 

(assuming rigid plates at the models ends, obstructing all-sectional deformation in the 

rotated section plane), which are named appropriately in the following paragraphs. 

Figure 5.3: Wrinkling of geometrically perfect tube segment under bending 

5.2 Uniform ovalization and non-proportionality 
A primary requirement for predicting accurately the structural response of long 

cylindrical shells under bending, is tracing the prebuckling equilibrium path. In the 

absence of initial geometric imperfection, their length ovalizes uniformly, as their cross 

section is bent due to the loading. The longitudinal uniformity implies that the length of 

the employed meshes has little influence in the predicted response, assuming appropriate 

end conditions. Simulations employing meshes with length ranging from 10% to 300% 

of the tube diameter display virtually no differences in the overall moment-curvature 

(𝑚𝑚 − 𝑑𝑑) behaviour of the shells, when no buckling or wrinkle development take place 

(Figure 5.4), provided that the chosen meshes are fine enough in the circumferential 

direction to adequately describe the deformation of the tube. Hence, the influence of the 

constitutive law in the ovalization of the cylinders is investigated in this stage and the 

extend of non-proportionality that is encountered. 
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Table 5.1: Geometric and mechanical definitions 

𝑡𝑡 Cylinder wall thickness 
𝑎𝑎 Initial geometric imperfection amplitude 
𝐷𝐷 Cylinder outside diameter 

𝐷𝐷𝑜𝑜 = 𝐷𝐷 − 𝑡𝑡 Cylinder mean diameter 
𝜎𝜎𝑜𝑜 0.2% offset yield strength 

𝑀𝑀𝑜𝑜 = 𝜎𝜎𝑜𝑜𝐷𝐷𝑜𝑜2𝑡𝑡 Plastic Moment 
𝜅𝜅1 = 𝑡𝑡/𝐷𝐷𝑜𝑜2 Curvature-type normalization parameter 

Table 5.2: Material and geometric data for cylindrical shells 
tested by Ju & Kyriakides (1992) 
Exp.No. D (mm) D/t E (GPa) σo (MPa) 𝛔𝛔�* (MPa) n* 
1 31.82 60.5 68.95 299.0 298.6 28 
2 38.10 52.6 69.64 299.0 298.6 33 
3 25.40 50.0 70.67 307.0 307.5 29 
4 31.78 44.0 67.20 304.0 303.4 25 
5 35.00 38.5 71.02 287.0 285.4 25 
6 31.75 35.7 67.36 283.4 282.0 28 
7 28.63 32.2 71.16 288.0 286.1 26 
8 25.34 28.2 66.20 304.0 303.0 35 
9 31.80 25.3 69.16 286.0 284.8 30 
10 31.78 21.2 71.16 285.0 284.1 28 
11 31.78 19.5 68.67 309.0 308.9 37 

*Ramberg-Osgood parameters in eq.(2.60)

Figure 5.4: Moment-curvature response thick-walled cylinder under bending 
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Figure 5.5: Angles 𝜃𝜃 and 𝜃𝜃𝑝𝑝 over the cross section of the cylinder; Comparison of angle 
𝜃𝜃 employing the associative (J2FT) versus the non-associative model (J2NA) 
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In Figure 5.5a angles 𝜃𝜃 and 𝜃𝜃𝑝𝑝 are presented at increasing curvatures when employing 

the J2NA (𝜃𝜃𝑐𝑐 = 2𝑜𝑜) in a mid-range cylinder (𝐷𝐷 𝑡𝑡⁄ =44). Geometric and material data for 

this cylinder and others referenced followingly are provided in Table 5.1. Initially, both 

the direction angles 𝜃𝜃 and plastic angle 𝜃𝜃𝑝𝑝 take small values. At approximately 𝜅𝜅/𝜅𝜅1 =

0.6 (𝜅𝜅1 = 𝑡𝑡 𝐷𝐷𝑜𝑜2⁄  - see Table 5.1), at the intrados (compressed side - top) and the extrados 

(tensioned side - bottom) of the cross section, ovalization-induced local bending leads to 

more pronounced non-proportionality, and the second branch of the model is activated so 

that 𝜃𝜃𝑝𝑝 = 𝜃𝜃𝑐𝑐, both the inner and outer surface of the cylinder. In contrast, at the mid-

surface, the angles 𝜃𝜃𝑝𝑝  remain small throughout the analysis, implying almost 

proportional loading. Hence, the main contributor to the non-proportionality is the 

ovalization-induced hoop bending. As curvature increases, ovalization and hoop bending 

increase, so that non-proportional load paths develop in a larger part of the cross section. 

The area about the cylinder’s neutral axis where material remains elastic (no 𝜃𝜃𝑝𝑝 values / 

marked as white) reduces with increasing curvature, and the greater part of the cross-

section experiences non-proportional elastoplastic loading. 

In Figure 5.5b a comparison is made at different stages of deformation for the strain 

angles 𝜃𝜃, obtained with J2FT and J2NA models displayed on left- and right-hand-side of 

the cylinders, respectively. For both constitutive laws, angles 𝜃𝜃 are initially quite small 

all around the cross section, apart from the area around the neutral axis where, as 

expected, the combination of meridional bending and ovalization-induced hoop bending 

leads to more pronounced non-proportionality. With increasing deformation angles 𝜃𝜃 

increase initially in the ‘flattening’ top and bottom of the cross section reaching values 

smaller than 10° for both models. Slightly smaller deviations from proportionality are 

encountered for the J2FT with angles barely exceeding 8°. The loading paths are more 

complicated around the neutral zone where the biaxial bending leads to angle 𝜃𝜃 values in 

the range up to 20° − 40°. However, those are encountered mainly in the elastic zone of 

the material and are of limited interest. 

5.2.1 The effect of constitutive model angle 𝜃𝜃𝑐𝑐 
The plastic angle parameter 𝜃𝜃𝑐𝑐 of the non-associative constitutive law influences the pre-

buckling structural response of the simulated bent cylindrical shell in a limited manner 

(Figure 5.6). Increasing values of 𝜃𝜃𝑐𝑐 lead to higher non-associative plastic deformation, 

which facilitates ovalization of the cross section, lowering somewhat limit moments and 

deformations in the loaded shells. The prebuckling equilibrium paths are relatively 
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unaffected by 𝜃𝜃𝑐𝑐  and all are in agreement with the J2FT and the experiments. The 

differences are more pronounced at curvatures in the neighbourhood of the cylinder’s 

limit loads. The material is loaded well into the inelastic range and exhibits reduced 

stiffness, allowing for greater plastic deformations in the presence of the non-proportional 

loading. This ultimately leads to higher ovalization of the cross section. 

Figure 5.6: Influence of constitutive modelling in the structural response of a cylinder 
under bending 

Figure 5.6 demonstrates the effect of increasing values for the angle 𝜃𝜃𝑐𝑐 = 2𝑜𝑜 , 5𝑜𝑜 , 10𝑜𝑜 in 

the prebuckling equilibrium path, characterized by uniform ovalization of a moderately 

thick aluminium shell with 𝐷𝐷/𝑡𝑡 = 44. The experimental curve of this cylinder by (Ju & 

Kyriakides, 1992) is included. The reported wrinkling and failure are indicated with (▼) 

and (x), respectively. As in the case of compression, in bending a low value 𝜃𝜃𝑐𝑐 = 2° leads 

to slightly more compliant responses than the J2FT in the overall behaviour of the 

cylinder, in line with experiments. For all angles 𝜃𝜃𝑐𝑐, the pre-limit-load path is practically 

unaffected, while increasing values 𝜃𝜃𝑐𝑐  gradually reduce the limit load 𝑚𝑚𝐿𝐿  and limit 
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curvature 𝜅𝜅𝐿𝐿  for the cylinders. Differences with respect to J2FT become noticeable at 

deformations levels in the neighbourhood of the limit moment 𝑚𝑚𝐿𝐿. 

Similarly, the J2NA leads to more pronounced ovalization, defined in (5.1), of the bent 

cylinders’ cross-section. Higher values of 𝜃𝜃𝑐𝑐 lead to higher ovalization throughout the 

curvature range in Figure 5.6, approaching marginally more the trend of the experimental 

curve. 

𝛥𝛥 =
𝐷𝐷𝑠𝑠𝑚𝑚𝑥𝑥 − 𝐷𝐷𝑠𝑠𝑖𝑖𝑚𝑚
𝐷𝐷𝑠𝑠𝑚𝑚𝑥𝑥 + 𝐷𝐷𝑠𝑠𝑖𝑖𝑚𝑚

(5.1) 

A similar influence of 𝜃𝜃𝑐𝑐 is encountered in the entire range of 𝐷𝐷 𝑡𝑡⁄  under consideration, 

when geometrically perfect shells are addressed. In Figure 5.7 the moment-curvature 

response of tubes with 𝐷𝐷 𝑡𝑡⁄  values of 25.3 and 60.5 are given for a wider range for the 

semi-angle parameter 𝜃𝜃𝑐𝑐  (2𝑜𝑜 − 18𝑜𝑜 ). Its influence is limited in the initial moment-

curvature response of the cylinder, assuming uniform ovalization, but it becomes more 

pronounced at higher curvatures, following the formation of the limit load. 

For 𝐷𝐷 𝑡𝑡⁄ =60.5, following the limit load 𝑚𝑚𝐿𝐿, more pronounced differences are predicted 

in the structural response of the tube segment, depending on the adopted value 𝜃𝜃𝑐𝑐. For all 

𝜃𝜃𝑐𝑐 values, the response is less stiff compared to the J2FT, but for 𝜃𝜃𝑐𝑐 = 2°, the differences 

are modest. Intermediate angles 𝜃𝜃𝑐𝑐 lead to more compliant behaviours, while for values 

of 𝜃𝜃𝑐𝑐 ≥ 10°, the predicted structural responses group together with minimal differences. 

In these cases, similar to the contours in Figure 5.5 for 𝐷𝐷 𝑡𝑡⁄ =44, the loading path of the 

material in several locations is non-proportional. However, non-proportionality is limited 

and does not lead to direction angles 𝜃𝜃 in excess of 10°, so for models with 𝜃𝜃𝑐𝑐 ≥ 10𝑜𝑜 

only one branch of the model is activated, and they all produce practically identical 

behaviours, as shown in paragraph 3.4.1. Less pronounced differences are found in the 

uniform ovalization behaviour of the more thick-walled shell 𝐷𝐷 𝑡𝑡⁄ =25.3 (Figure 5.7). 
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Figure 5.7: Effect of constitutive modelling parameter 𝜃𝜃𝑐𝑐 in the structural response of 
cylinders under bending 

5.3 Bifurcation analysis and uniform wrinkling 
Perturbation analyses are performed at regular deformation intervals to identify the lowest 

eigenvalues of the cylinder model. The occurrence of non-positive eigenvalues denotes 

instability, and the curvature at which the first non-positive eigenvalues occur is the 

shell’s bifurcation curvature 𝜅𝜅𝑏𝑏. The associated eigenmode is characterized by wrinkling 

of the compressed side of the cylinders (Figure 5.3). The number of halfwaves 𝑁𝑁𝐻𝐻𝐻𝐻 is 

used to define the wrinkling halfwave length of the shell 𝜆𝜆𝐻𝐻𝐻𝐻 = 𝐿𝐿/𝑁𝑁𝐻𝐻𝐻𝐻. 

In simulating ‘long’ tube segments any stiffening influence from the support conditions 

should be alleviated in order to obtain accurate bifurcation estimates. Indeed, considering 

bending of models with length 𝐿𝐿 = 3𝐷𝐷 and monitoring their eigenvalues at curvature 

intervals of 0.01𝜅𝜅1, the bifurcation curvature and the halfwave are identified for several 

cylinders tested by (Ju & Kyriakides, 1992). At bifurcation, these models develop 1-3 

non-positive eigenvalues simultaneously, with associated eigenmodes of 11-19 halfwaves 

forming along the compressed side of the shells (Table 5.3). Hence, long models can 

provide a range for the wrinkling wavelength, which in Figure 5.8 is seen to be consistent 

with the predictions by Ju & Kyriakides (1992), indicating the effectiveness of this 

method. The predicted 𝜆𝜆𝐻𝐻𝐻𝐻 are uniformly longer than the ones measured experimentally. 

This discrepancy was also met in tubes under compression, and it can be addressed by 

further accounting for material anisotropy due to the manufacturing process (Bardi & 

Kyriakides, 2006; Corona et al., 2006; Kyriakides et al., 2005). In Figure 5.8 the ratio of 

the experimentally calculated to the numerically estimated halfwave length is given. 
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Figure 5.8: Comparison of predicted and experimental wavelength of long thick-walled 
cylinders under bending 

Table 5.3: Bifurcation data for cylinders tested 
by Ju & Kyriakides (1992) 
No D/t 𝜅𝜅𝑏𝑏

𝜅𝜅1
𝜅𝜅𝑏𝑏
𝜅𝜅1
�
𝑒𝑒𝑥𝑥𝑝𝑝

𝑁𝑁𝐻𝐻𝐻𝐻
𝐿𝐿

𝜆𝜆𝐻𝐻𝐻𝐻
√𝐷𝐷𝑡𝑡

𝜆𝜆𝐻𝐻𝐻𝐻|𝑒𝑒𝑥𝑥𝑝𝑝
√𝐷𝐷𝑡𝑡

1 60.5 1.05 18, 19 1.21 - 1.27 
2 52.6 1.03 18, 17, 16 1.19 -1.33 
3 50.0 1.05 0.91 17, 16 1.22 -1.30 0.997 
4 44.0 1.09 0.95 16, 15 1.22 -1.30 1.193 
5 38.5 1.10 0.95 15, 14 1.21 -1.30 0.887 
6 35.7 1.09 0.96 14 1.24 0.717 
7 32.2 1.13 0.94 14, 13 1.18 -1.27 0.872 
8 28.2 1.11 0.89 13, 12 1.18 -1.28 0.718 
9 25.3 1.17 12 1.21 
10 21.2 1.26 11 1.20 
11 19.5 1.26 11 1.14 

Similar bifurcation calculations using the J2FT yield unrealistically high values of critical 

moments, curvatures and longer critical 𝜆𝜆𝐻𝐻𝐻𝐻. Such a result is also reported in for thick-

walled shells under axial compression in Chapter 4. Moderate variations of the model 

length 𝐿𝐿 do not affect the bifurcation curvature 𝜅𝜅𝑏𝑏, but can affect the number of negative 

eigenvalues and the number of forming waves. Therefore, no single value can be obtained 

for 𝜆𝜆𝐻𝐻𝐻𝐻 from long models. A more precise investigation on 𝜆𝜆𝐻𝐻𝐻𝐻 may be performed by 

adopting ‘short’ meshes of approximately one halfwave. The wavelength is not known a 

priori and, therefore, a sequence of analyses is conducted, assuming for several trial 

wavelength values. The critical wavelength corresponds to the ‘earliest’ bifurcation point 
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on the primary path, occurring at the lowest moment capacity (Karamanos & Tassoulas, 

1996).  

The periodicity of winkling can be modelled accurately by the assumed support 

conditions when the model length is an integer multiple of 𝜆𝜆𝐻𝐻𝐻𝐻. As shown in Figure 5.9, 

for the shell with 𝐷𝐷 𝑡𝑡⁄ =44 and models with length raging between 0.8√𝐷𝐷𝑡𝑡 and 1.8√𝐷𝐷𝑡𝑡, 

have been analysed to identify bifurcation halfwave of the shell. All meshes with length 

of 1.18√𝐷𝐷𝑡𝑡  up to 1.32 √𝐷𝐷𝑡𝑡,  experience bifurcation at the critical curvature 1.08 𝜅𝜅1 , 

which was also identified by longer simulated segments. This is the lowest recorded value 

by the one-halfwave models. Slightly shorter and longer meshes experience bifurcation 

at higher curvatures up to 23% higher (0.25𝜅𝜅1), as the non-critical lengths together with 

the symmetry conditions stiffen the model’s response. 

Figure 5.9: Bifurcation curvature versus the length of the simulated tube segment 

Considering longer shell segments with 𝐿𝐿 √𝐷𝐷𝑡𝑡⁄  ranging from 1.8 to 7.0, while 

maintaining the element size approximately constant, the earliest bifurcation is similarly 

recorded at 𝜅𝜅𝑏𝑏 = 1.08𝜅𝜅1. For segments with 𝐿𝐿 √𝐷𝐷𝑡𝑡⁄ ≥ 6, the bifurcation curvature 𝜅𝜅𝑏𝑏 is 

relatively insensitive to the segment length and it quickly converges to the value obtained 

for long shells (𝐿𝐿 = 3𝐷𝐷). At bifurcation these meshes develop two or more halfwaves 

along the tube segment. As expected, the 𝜆𝜆𝐻𝐻𝐻𝐻 values computed by the longer modes are 

always within the length range calculated by the one-halfwave models.  

It is algebraically calculated that any model length 𝐿𝐿 ≥ 10√𝐷𝐷𝑡𝑡 is an integer multiple of a 
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value in the range of critical 𝜆𝜆𝐻𝐻𝐻𝐻 obtained by the shorter halfwave models, and as a result 

has the same bifurcation curvature 𝜅𝜅𝑏𝑏, under a fixed frequency of bifurcation checks. This 

further supports the concept of using long models to produce accurate estimates for 𝜅𝜅𝑏𝑏, 

and explains the occurrence of multiple negative eigenmodes: the long model’s length 

can be an integer multiple of different values in the range calculated by the one halfwave 

models. 

Further accuracy in the calculation of 𝜅𝜅𝑏𝑏 is obtained by performing bifurcation analyses 

at smaller deformation intervals, i.e., 0.001𝜅𝜅1, leading to more precise values for 𝜆𝜆𝐻𝐻𝐻𝐻. In 

Figure 5.8, the ‘precise’ 𝜆𝜆𝐻𝐻𝐻𝐻 obtained from one-halfwave models in this way is included 

and is always within the expected ranges. The exaggerated buckling mode in the cross 

section of two cylinders is shown in Figure 5.10. The part of the cross section affected by 

buckling is larger for thicker cylinders (lower values of 𝐷𝐷 𝑡𝑡⁄ ). The same effect was found 

in elastic shells by (Houliara & Karamanos, 2006). 

Figure 5.10: Buckling in the cylinder cross section under pure bending 

5.3.1 Influence of imperfection 
Buckling includes non-uniform deformation along the shell, which grows in the 

developing wrinkles at the compressed side. In a first approach, axial wrinkles are 

assumed to grow periodically along the bent shell, and therefore a single halfwave 

segment (𝐿𝐿 = 𝜆𝜆𝐻𝐻𝐻𝐻) may be analysed. Considering 𝜆𝜆𝐻𝐻𝐻𝐻 values in the above calculated 

range has very limited influence on the uniform wrinkling response of the shell, 

irrespective of the level of initial geometric imperfection (Figure 5.11). The imperfection 

is in the shape of the eigenmode obtained from the perturbation analyses in the previous 

paragraph, and three amplitudes are considered with respect to the shell radius: 𝜔𝜔𝑅𝑅 =

pre-buckling post-buckling

buckling zone

initial 
cross-section

D/t=44.0 D/t=19.5

buckling zone
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𝑎𝑎 𝑅𝑅⁄ = 0.5, 1, 3‰, which are similar to the ones used in compression and they were 

considered by the experimenters as representative. For any given imperfection amplitude, 

using wrinkling wavelengths in the obtained range produces very small differences in the 

limit moment 𝑚𝑚𝐿𝐿 and curvature 𝜅𝜅𝐿𝐿, less than 1% (Figure 5.11b). 

The imperfection amplitude affects the moment-curvature response of the cylinders, as in 

the case of compression, mainly in the inelastic part of the response and as bending 

deformation increases, the imperfect cylinder response becomes more compliant. Both 

the value of the maximum moment 𝑚𝑚𝐿𝐿  and the curvature 𝜅𝜅𝐿𝐿  at which it develops 

progressively reduce for increasing imperfection amplitudes.  

Figure 5.11: Influence of imperfection amplitude and wavelength in the uniform 
wrinkling of a cylinder under bending 

5.3.2 Non-proportional loading 
In the imperfect cylinders, non-proportionality, as expressed by angle 𝜃𝜃, is higher than in 

the geometrically perfect uniform ovalizing shell, and it varies along the cylinder 

depending on the position of the cross section. At the crests and troughs of the wrinkles, 

material experiences complicated stress paths due to biaxial local bending and the 

meridional compression from global bending. Figure 5.12 shows the values of angle 

measures 𝜃𝜃 and 𝜃𝜃𝑝𝑝  around the cross-section at these two critical positions, at various 

levels of deformation in the wrinkled cylinder (𝐷𝐷 𝑡𝑡⁄ =44). For visualization purposes, the 

shell thickness is magnified ten times in the plots. 

At a low curvature (𝜅𝜅/𝜅𝜅1 = 0.4), values of 𝜃𝜃  in the wrinkled shell are significantly 

higher, compared to the uniform ovalizing case, and they are not symmetric with respect 

to the cylinder mid surface. In particular, at the position of the wrinkle trough, non-
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proportionality angle 𝜃𝜃  reaching values of more than 10° in an extended part of the 

section intrados. Therefore, higher plastic strains are predicted than J2FT and the second 

branch of the constitutive law (𝜃𝜃𝑝𝑝 = 2𝑜𝑜) is activated already at this stage. Higher values 

𝜃𝜃 are encountered at the inner surface of the shell at this position, yet the angles 𝜃𝜃𝑝𝑝 do 

not reach 𝜃𝜃𝑐𝑐. This is caused by the non-uniform stress distribution across the thickness of 

the shell. The inner surface experiences lower compression because of wrinkling-induced 

local bending and as a result it has not deformed plastically as much as the outside surface, 

and the material response is stiffer at lower plastic deformations. At the crest of the 

wrinkles, lower values of 𝜃𝜃 are seen across the cylinder thickness. At material points 

located about the bending axis, insignificant differences are encountered between the two 

cross sections, though angles 𝜃𝜃 take somewhat higher values.  

In the wrinkle trough, at curvature 𝜅𝜅/𝜅𝜅1 = 0.8 the compressed side of the cylinder shows 

direction angles 𝜃𝜃 as high as 20° at the outer surface. Angles larger than 90° are found at 

the inner surface, implying unloading has initiated in this part of the section. Non-

proportionality is high enough, so that the second branch of the model is activated almost 

in the entire compressed side of the shell, both at the crest and at the trough of the 

imperfection.  

By curvature 𝜅𝜅/𝜅𝜅1 = 1.2, the moment capacity of the section has begun to decrease and 

ovalization is visible in Figure 5.12. Unloading occurs in an extended area of the inner 

surface at the wrinkle trough, but also at the outer surface of the wrinkle crest starting at 

the symmetry axis and expanding circumferentially with increasing deformation. 

Throughout the deformation, in the neutral axis, the material remains elastic, so the high 

values 𝜃𝜃 are of no interest.  

In the bottom part of the cylinder, (extrados) which is loaded in tension due to flexural 

bending, the loading paths are practically unaffected by the wrinkling. Angles 𝜃𝜃 are very 

similar to the uniform ovalization case particularly before 𝜅𝜅𝑏𝑏, with slight increases of up 

to 2𝑜𝑜 for 𝜅𝜅 𝜅𝜅1⁄ ≥ 1.2.  
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5.3.3 Non-symmetric bifurcation modes 
The thinner shells under consideration (𝐷𝐷/𝑡𝑡 ≥ 44) develop wrinkles at an increasing 

load, soon followed by buckling into a diamond mode, developing one sharp local buckle 

characterized by a number of circumferential waves. To investigate bifurcation into non-

symmetric buckling modes, these are assumed to be periodically repeated along a cylinder 

with an axial wavelength twice that of the uniform wrinkling value (Gellin, 1979). Hence 

a two-halfwave (𝐿𝐿 = 2𝜆𝜆𝐻𝐻𝐻𝐻) geometrically perfect model is subjected to bending under a 

rotation-controlled regime and the occurrence of negative eigenvalues is monitored, as in 

the previous section. Figure 5.13 presents the curvatures at which the cylinder segment 

experiences bifurcation, together with the corresponding bifurcation modes. 

Figure 5.13: Bifurcation into non-symmetric modes 

Following the first bifurcation, several negative eigenvalues are recorded with increasing 

curvature, both before and after the load maximum of the cylinder. The sequence of the 

buckling modes is similar to the one obtained from analyses of compressed cylinders. The 

first eigenmode is associated with uniform wrinkling of the compressed side of the shell, 

developing longitudinal waves of halfwave 𝜆𝜆𝐻𝐻𝐻𝐻 at the bifurcation curvature 𝜅𝜅𝑏𝑏, which 

was obtained from previous simpler analyses. At progressively higher curvatures, 

buckling modes develop, characterized by increasing numbers of circumferential waves 

and smaller longitudinal wavelengths. 
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Figure 5.14: Effect of the simulated halfwave length 𝜆𝜆𝐻𝐻𝐻𝐻 in the development of non-
symmetric bifurcation modes 

Small perturbations on the model length do not affect the first bifurcation into uniform 

wrinkling, as shown in Figure 5.14. However, they may affect the curvature at which the 

following eigenmodes might occur. They can somewhat delay or accelerate the 

occurrence of following bifurcation mode shapes. The curvature difference is not 

substantial, and the sequence of which buckling modes is not altered. Estimating 

bifurcation directly in much longer cylinder segments (several halfwaves long) is 

considerably more computationally expensive, and it can be more complicated. The first 

bifurcation occurs at the calculated curvature 𝜅𝜅𝑏𝑏  in a uniform wrinkled mode. Yet, 

additional eigenmodes may be obtained followingly, that do not always directly relate to 

the ones obtained by the two halfwave models but may represent superposition of several 

eigenmodes. 

When employing the two-halfwave model, estimating bifurcation of cylinders, with 

imperfection in the shape of the first bifurcation mode, leads to secondary bifurcation 

generally recorded at somewhat higher curvatures than the respective ones in the 

geometrically perfect shell. In imperfect shells, the obtained eigenmodes are similar to 

the respective of the geometrically perfect cylindrical shell, with the imperfection profile 

superimposed, as shown in Figure 5.15. The sequence of the eigenmodes of the imperfect 

cylinder segments is not altered.  
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Figure 5.15: Buckling of imperfect cylinders into non-symmetric modes 

5.4 Wrinkling localization and influence of imperfection 
To investigate localization of wrinkling, long models (𝐿𝐿 ≥  16𝜆𝜆𝐻𝐻𝐻𝐻) are subjected to 

bending. Symmetry support conditions are used, as described earlier. Imperfection in the 

form of the uniform wrinkling eigenmode is employed, which was obtained from a 

bifurcation analysis of the perfect shell. Three imperfection amplitudes are considered 

𝜔𝜔𝑅𝑅 = 𝑎𝑎/𝑅𝑅 = 0.5, 1, 3  ‰. Results are obtained using two constitutive models: the 

developed J2NA juxtaposed with the J2FT. A 3%𝜔𝜔𝑅𝑅 imperfection bias is implemented 

midway along the cylinder, to incite localization far from the end supports. Maximum 

imperfection directed both inward and outward the shell is considered and its influence 

in the structural response of the cylinders is presented. 

In Figure 5.16, the characteristic structural response of the thinner cylinder (𝐷𝐷/𝑡𝑡 = 60.5) 

is demonstrated. Initially the shell ovalizes uniformly and ovalization grows non-linearly 

with curvature, in agreement with the behaviours from shorter models. In the 

neighbourhood of the perfect shell’s bifurcation curvature 𝜅𝜅𝑏𝑏, at increasing moment, the 

wrinkles at compressed side of the shell grow in amplitude uniformly and bending rigidity 

is reduced. Followingly, deformation localizes at the mid-length wrinkles: the amplitude 

of the wrinkles and the ovalization of the cross section increases rapidly and locally. A 

maximum moment develops, and a steep drop is recorded in the cylinder’s 𝑚𝑚− 𝑑𝑑 

response. The load maximum is slightly lower to the one obtained for uniform wrinkling, 



Non-associative plasticity for structural instability of cylindrical shells in the inelastic range 

122 Apostolos Nasikas - July 2022 

due to the slightly higher imperfection amplitude, and significantly lower to the uniform 

ovalization limit load of the shell, as induced by the Brazier effect alone. 

Figure 5.16: Effect of imperfection in the structural response of a thin-walled cylinder 
under bending using J2FT and J2NA. 

Maximum inward imperfections (wrinkle troughs) lead to buckled shapes where a single 

symmetric inward buckle develops at the position of the deepest wrinkle, see Figure 

5.16A. The deformation is localized, leading to a dropping branch in the moment-

curvature behaviour of the shell. Increasing imperfection amplitudes leave the shells 

maximum moment relatively unaffected, but the curvatures at which they occur become 

smaller and the developing buckles become more pronounced. Following the load 

maximum, the recorded drop in the moment capacity of the cylinder is precipitous.  

Maximum outwards imperfection produces a somewhat stiffer behaviour. When 

deformation localizes at the (mid-length) location of the maximum outward wrinkle, it 

allows for imperceptibly higher load maxima and limit curvatures, and the cylinder 

moment capacity reduces less abruptly. At the moment maximum, the outward 

imperfection stops developing as rapidly and two inward buckles start forming 

eccentrically, either both on one side of the buckle, or one in each side of the outward 

wrinkle begin to develop anti-symmetrically and, on the two sides of the maximum 

wrinkle Figure 5.16B.  

Similarly, buckling in a diamond shape occurs, forming one inward buckle centrally on 

one side of the localizing maximum imperfection, and two eccentric buckles in the other 
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side. These modes of buckling are observed experimentally in the thinner tubes with 

𝐷𝐷 𝑡𝑡⁄ ≥50 by (Ju & Kyriakides, 1992). In analyses the transition to diamond buckling 

modes can be incited earlier by the addition of small non-symmetric geometric 

imperfections corresponding to the buckling shape.  

Figure 5.17: Limit moment and curvature of cylinders versus 𝐷𝐷 𝑡𝑡⁄  ratio 
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In Figure 5.17 the influence of the wrinkling imperfection amplitude in the limit 

(maximum) load and curvature of the cylinders is plotted with respect to the 𝐷𝐷 𝑡𝑡⁄  ratio. 

Significant reduction is found in the cylinder ultimate moment capacity and limit 

curvature with increasing imperfection for the thinner cylinders (𝐷𝐷 𝑡𝑡⁄ ≥40). In these 

cylinders bifurcation instability precedes the ovalization instability, and localization 

initiates immediately, close to the wrinkling bifurcation point. Following the moment 

maximum, the drop in the moment capacity of the cylinder is also very abrupt. Section 

failure (marked in Figure 5.18 when the moment capacity in the cylinder drops by 5%) 

occurs immediately after the limit point in thin cylinders but not in the thicker cylinders 

(𝐷𝐷 𝑡𝑡⁄  < 30). In those, the overall effect of outward geometric imperfection is similar: 

leading to a maximum inward dent developing at the location of maximum imperfection 

trough where ovalization localizes and deformations increase rapidly, but significant 

additional bending deformation is sustained before section failure. Imperfection has small 

influence in the 𝑚𝑚 − 𝑑𝑑  response of the thicker cylinders, only slightly affecting the 

ultimate moment capacity and the limit curvature. This is justified by the bifurcation point 

shown to occur after the limit load instability in thick cylinders, so ultimate load capacity 

is mainly the result of ovalization and demands additional investigation in the next 

paragraph.  

Figure 5.18: Influence of imperfection amplitude in the limit curvature and failure of the 
cylinders depending on the 𝐷𝐷 𝑡𝑡⁄  ratio 
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Figure 5.19: Effect of imperfection and constitutive modelling in the structural response 
of thick-walled cylinders under bending 
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Overall, the two constitutive models produce similar behaviours for the cylinders, with 

the J2FT leading to somewhat higher moment and deformation capacities, compared to 

the more compliant J2NA. Using the non-associative model, the structural response is 

more compliant, and localization leads to lower moment maxima, developing at 

curvatures uniformly lower, compared to the ones obtained using the J2FT. In addition, 

the load drop is more abrupt and deformations are more localized after the maximum 

load, particularly in the thinner cylinders. Models employing the J2FT follow the primary 

loading path up to higher curvatures before localization initiates. Differences between the 

J2FT and J2NA are more pronounced for the lower imperfection amplitude. Employing 

larger values for 𝜃𝜃𝑐𝑐 , decreases the overall stiffness of the tube’s response and the 

curvature when diamond-shaped buckles develop. The 𝑚𝑚− 𝑑𝑑 response of cylinders with 

𝐷𝐷 𝑡𝑡⁄ = 19.5 − 50 is presented in Figure 5.19 for the two constitutive models and these 

imperfection amplitudes, along with experimental curves. 

5.4.1 Support conditions and model length 
For the thicker shell under consideration (𝐷𝐷 𝑡𝑡⁄ =19.5), employing the long cylinder 

conditions and the range of imperfections described earlier, the section failure is 

calculated at curvatures higher than experiments reported. Considering higher 

imperfection amplitude results in localization at lower curvatures, they have small 

influence on the limit moment of the shell, but the behaviour following the maximum 

moment is smoother than the one observed in experiments. An explanation lies in the 

influence of model length, which is investigated next. As shown in Figure 5.20a, 

considering increasingly long segments, leads to similar limit loads and curvatures, while 

the post-limit-moment response becomes more abrupt. Considering length and support 

conditions similar to the ones used in experiments, a structural behaviour in line with the 

experimental response is obtained for the thicker tubes as well. 
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Figure 5.20: Effect of end conditions and imperfection in the bending response of thick-
walled cylindrical shell 

The ovalization profile along the tube segment is given in Figure 5.21 (V), and it follows 

a similar trend as the experiments indicate. The ovalization, increases uniformly at the 

early stages of deformation. At curvature values approximately equal to 𝜅𝜅1, ovalization 

begins to localize in a section about 6D long at the centre of the tube segment. 

When the edges are clamped, the ovalization of the tube is influenced locally at the 

models ends, while wrinkling localization occurs in the middle of the model and its 

behaviour is similar to the infinite shell as obtained using shorter models with symmetry 

conditions. 
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Figure 5.21: Evolution of the ovalization along the cylinder for different support 
conditions and imperfection; moment-curvature graph; ovalization-curvature graph 

IV V
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5.5 Conclusions 
The structural performance of long thick-walled inelastic cylinders (𝐷𝐷 𝑡𝑡⁄  < 60) under pure 

bending is examined using nonlinear finite element analyses, accounting for imperfection 

and material nonlinearity. Ovalization and bifurcation instabilities are shown to control 

the behaviour of the cylinders. These instabilities occur while the material is loaded in 

the inelastic range, so the elastoplastic properties of the material, and its representation 

through constitutive modelling influence the simulated cylinder’s structural behaviour. 

Depending on the 𝐷𝐷 𝑡𝑡⁄  ratio of the cylinder one of these instability modes becomes 

dominant and leads to the structural failure. 

The prebuckling response of the cylinders shows considerable deformations and biaxial 

compressive stresses in the tube wall caused by global and hoop bending, leading to a 

non-trivial prebuckling equilibrium path and non-proportional loading in the cross 

section. Ovalization and bifurcation instabilities are identified, and the post-buckling 

equilibrium path is traced. 

Rather thick cylinders (𝐷𝐷 𝑡𝑡⁄  ≤ 30), ovalize uniformly until progressively forming a region 

of localized ovalization. They develop a limit load (maximum moment) but maintain 

significant post-limit load strength and fail gradually. Wrinkling type bifurcation is 

identified after the limit load and such imperfection was found to have limited influence 

in the limit load but may accelerate the behaviour leading to an earlier failure of the 

section. Stiff support conditions can have a similar effect. The section ovalizes in an 

extended segment of the tube, verifying the observations of previous researchers. 

Therefore, long models are necessary to simulate these behaviours. 

For the thinner cylinders (𝐷𝐷 𝑡𝑡⁄  ≥ 45), the bifurcation into short-wavelength wrinkling 

precedes the development of a limit load. Cylinder wall wrinkling and initial geometric 

imperfection reduce the ultimate moment capacity of the cylinders and lower the 

curvature when it is reached. For these cylinders, the local buckling leads to wrinkling 

localization, followed by an abrupt loss of bending stiffness of the cross-section and local 

deformations leading to non-symmetric ‘diamond’ buckling modes. 

For intermediate values of 𝐷𝐷 𝑡𝑡⁄  the two instability modes occur at similar curvatures and 

interact so limit load instability may somewhat precede catastrophic failure which can be 

more gradual. 

The non-associative model parameter 𝜃𝜃𝑐𝑐  reduces somewhat the limit load of the 

simulated cylinder and the influence of imperfection amplitude. Similar to compression, 
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a small value of 2𝑜𝑜 leads to behaviours aligned with experimental data from the literature. 

The developed constitutive model is found to accurately reproduce the structural 

behaviour of the cylinders under pure bending leading to reasonable instability estimates, 

but also in reliably tracing the pre- and post-buckling equilibrium path of cylinders. 
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6 BENDING UNDER INTERNAL 
PRESSURE 

This chapter investigates the stability of long inelastic thick-walled cylinders subjected to 

bending under constant internal pressure. The combined loading creates an inherently 

non-proportional loading path, and the following analysis showcases the capability of the 

developed constitutive model to accurately simulate the structural behaviour, buckling 

and post-buckling of thick-walled cylinders under complex loading conditions. The 

influence of internal pressure in the ovalization and buckling of the cylinders is examined. 

The post-buckling response of the cylinder is traced, considering the influence of 

imperfection, and aspects of the structural failure are addressed. Comparisons with 

experimental data from the literature are performed successfully. 

6.1 Modelling details 
The mechanical behaviour of thick-walled cylindrical shells subjected to internal pressure 

and bending is numerically investigated using finite element simulations within the 

general-purpose finite element software Abaqus. Geometrically nonlinear static analyses 

are conducted employing the static and Rik’s arc-length solvers. The material is 

considered to be elastic-plastic with isotropic hardening, defined by the stress –strain 

response of the material in uniaxial tension, and it is introduced in the analyses as true 

stress – logarithmic plastic strain values. The developed J2 non-associative constitutive 

model (𝜃𝜃𝑐𝑐 = 2𝑜𝑜) is employed to simulate metal material behaviour, implemented through 
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a material user subroutine (UMAT). Initial geometric imperfection, when included, is 

introduced in the form of the buckling mode of the cylinders (wrinkling). Buckling modes 

are obtained from perturbation analyses accounting for the elastic-plastic moduli of the 

material, which are performed at the bifurcation point. 

Figure 6.1: Boundary conditions, reference points and kinematic constraints at the end 
cross section for cylinders under bending and pressure. 

Three-dimensional finite element meshes of variable lengths 𝐿𝐿  are employed: short 

models (𝐿𝐿 < 𝐷𝐷 ) are used to accurately identify the shell’s instability, the wrinkle 

development, sensitivity to initial imperfection and initial post-buckling, while longer 

models are employed to simulate wrinkling localization and structural failure of the 

cylinders. The cylinders are discretized with four-noded general-purpose shell elements 

(S4), with 7 integration points across the thickness. Around the cylinder circumference 

144 elements are employed; mesh density in the longitudinal direction varies with the 

analysis type. 

The cylinder is modelled as simply supported, and symmetry conditions are employed at 

the ends to represent continuity of a long cylinder. At each end of the mesh, a reference 

node is placed, and it is coupled with the nodes of respective end cross sections, 

constraining them to remain plane and follow the rotation of the reference node. The 

nodes of end cross section are permitted to slide on the rotated plane, allowing for cross 

sectional deformation. Support conditions eliminate rigid body motions of the model. 

Loading is applied in two stages. Initially, internal pressure is applied by prescribing on 

the shell’s surface a distributed force 𝑝𝑝, which is a fraction of the yield pressure 𝑝𝑝0 =

2𝜎𝜎0𝑡𝑡/𝐷𝐷0 . Simultaneously, end-cap forces 𝐹𝐹𝑐𝑐𝑚𝑚𝑝𝑝 = 𝑝𝑝𝜋𝜋𝐷𝐷02/4 are applied as concentrated 



Chapter 6: Bending under internal pressure 

Apostolos Nasikas - July 2022 133 

loads at the reference nodes at the end cross sections, defined as follower forces, which 

remain perpendicular to the cross section throughout the analysis (Figure 6.1). In a second 

stage, bending is induced by incrementally prescribing a relative angle of rotation 𝜙𝜙 

between the reference nodes of the end cross sections. The pressure loads are kept 

constant during bending. The moment 𝑀𝑀 is obtained from the reaction at these nodes and 

normalized by 𝑀𝑀0 = 𝜎𝜎0𝑡𝑡𝐷𝐷02. The cylinders average curvature is calculated as 𝜅𝜅 = 𝜙𝜙/𝐿𝐿, 

where 𝜙𝜙 is the relative rotation of the end cross sections, and it is normalized by the 

curvature-like quantity 𝜅𝜅1 = 𝑡𝑡/𝐷𝐷02.  

6.2 Uniform Ovalization 
The previous chapter demonstrated that the response of cylinders under bending is 

governed by the interaction of ovalization, bifurcation instabilities and inelastic material 

behaviour. In a first stage, the influence of internal pressure in axially uniform ovalization 

is addressed. A moderately thick-walled (𝐷𝐷/𝑡𝑡=52) stainless steel cylinder is analysed, 

chosen to allow for comparisons with the experimental investigation by (Limam et al., 

2010). The Rambert-Osgood material curve fit, and geometry parameters of the cylinder 

are listed in Table 6.1. 

A pseudo two-dimensional ovalization analysis is performed using a short cylinder 

segment with length equal to 5% of the cylinder’s diameter. Ten (10) elements are 

employed in the longitudinal direction, to effectively exclude lengthwise non-uniform 

(wall wrinkling) phenomena from the response of the shell, while accurately describing 

the lengthwise curvature.  

Table 6.1: Geometry and material properties 

𝐷𝐷(mm) 38.15 
𝑡𝑡(mm) 0.737 
𝐸𝐸(GPa) 186 
𝜎𝜎� (MPa)* 227 
𝜎𝜎𝑜𝑜(MPa) 262 
𝜀𝜀𝑡𝑡(%) 2.1 
𝑛𝑛 * 9.3 

*Ramberg-Osgood parameters in eq.(2.60)

The influence of internal pressure 𝑝𝑝/𝑝𝑝0  in the moment-curvature response of the 

uniformly ovalizing cylinder is shown in Figure 6.2a. For low curvatures, the behaviour 

is linear, independent of the pressure, until yielding initiates when bending stiffness 

reduces, a knee develops in the 𝑚𝑚 − 𝑑𝑑 response of the cylinder and it smoothly diverges 
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from the initial elastic branch. Under pure bending, the Brazier effect gradually leads to 

the development of a limit load 𝑚𝑚𝐿𝐿  at curvature 𝜅𝜅𝐿𝐿/𝜅𝜅1 = 1.5 followed by a dropping 

branch instigated by the rapid ovalization of the cross section and flattening.  

Low levels of pressure have a stiffening effect and move upward the 𝑚𝑚− 𝑑𝑑 curve of the 

cylinder, while they curb significantly the growth-rate of cross-sectional ovalization Δ 

(Figure 6.3a). Furthermore, limit load instability is delayed: the limit (maximum) moment 

and the corresponding limit curvature increase. For a pressure value 𝑝𝑝 𝑝𝑝0⁄ = 0.10, the 

limit moment increases by 10% and the respective curvature doubles. Pressurization 

introduces axial and circumferential tension in the cylinder, which interact with the 

compression at the top of the cylinder and tension at the bottom due to global bending 

and the hoop bending stresses due to ovalization, causing earlier material yielding. The 

complex biaxial loading path of the material into the inelastic range lead to high plastic 

deformations and low material stiffness, which reduce the bending rigidity of the cylinder. 

The influence of early yielding is clear for pressure levels 𝑝𝑝 𝑝𝑝0⁄ ≥ 0.30 for which the 

𝑚𝑚 − 𝑑𝑑 response of the cylinder moves downwards and diverges earlier form the initial 

linear branch. Yet, it maintains a hefty slope up to rather high curvatures as internal 

pressure counteracts the distortion of the cross section.  

Internal pressure delays ovalization and the cylinder remains rounder (Figure 6.5a, b), so 

it sustains rather high values of moment and curvature before limit load instability. 

Indeed, for pressure levels greater than 0.3𝑝𝑝0 no limit load was identified for curvatures 

up to 10𝜅𝜅1 . In Figure 6.8 the ovalization limit curvatures are shown to increase 

unrealistically rapidly with pressure, compared to experimental data, indicating that the 

cross-section failure is governed by local buckling, non-uniform localized deformations 

which precede ovalization instability. 
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Figure 6.2: (a)Moment-curvature response, (b) Axial stress at the intrados of the 
uniformly ovalizing shell for various values of internal pressure 

Figure 6.2b shows the evolution of the average axial stress 𝜎𝜎𝑥𝑥|𝑡𝑡 at the intrados of the shell 

where maximum compression occurs. It follows a similar trend with respect to curvature 
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as the cylinder’s moment. The maxima of the two do not coincide, and stress maximizes 

at somewhat higher curvatures than 𝜅𝜅𝐿𝐿 . Following the ovalization limit point, 

compressive stresses at the intrados continue to increase while the moment capacity 

reduces driven by the rabidly reducing section height. The axial stress curve is seen to 

reduce uniformly (move downwards) with internal pressure for all curvature levels, which 

is the result of the axial tension (𝑝𝑝𝑅𝑅 2𝑡𝑡⁄ ) due to end-cap forces. The evolution of 

ovalization -eq.(5.1)- with respect to bending curvature, is provided in Figure 6.5a 

showing the beneficial influence of internal pressure. The change in the local hoop radius 

𝑅𝑅𝑒𝑒𝑞𝑞 at the intrados of the cylinder (Figure 6.4) relative to the initial radius 𝑅𝑅 is further 

given in Figure 6.5(b) under various pressure levels. 𝑅𝑅𝑒𝑒𝑞𝑞  is calculated from the 

coordinates of the three most compressed nodes of the cross section and its value 

increases more rapidly than ovalization. 𝑅𝑅𝑒𝑒𝑞𝑞 is associated with buckling resistance of the 

cylinder, and it is used in Chapter 7 together with 𝜎𝜎𝑥𝑥|𝑡𝑡 to estimate the bifurcation in a 

semi-analytical manner. 
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Figure 6.3: (a) Ovalization-curvature diagram of the pressurized shell (b) Change in the 
local hoop radius at the intrados of the shell at various levels of internal pressure 
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Figure 6.4: Ovalization due to bending, local hoop radius at the intrados of the cylinder 
and equivalent compressed cylinder 

Limam et al. noted that in the presence of internal pressure, plastic deformation due to 

bending leads to expansion of the section. Figure 6.5a depicts the average change in 

diameter in the shell, expressed in (6.1), which approximates the average hoop strain. It 

clearly indicates an expansion of the cross section for high pressures, but it also shows 

some shrinking under pure bending. In Figure 6.5b, the average hoop strain in the cross 

section is calculated using (6.2). It verifies that section expands under bending for high 

levels of internal pressure, with expansion reaching 1.7% for 𝑝𝑝 𝑝𝑝0⁄ = 0.80 . It also shows 

that ovalization is almost inextensional under pure bending, and the simplified formula 

(6.1) is not representative for this case. 

Δ𝐷𝐷 =
𝐷𝐷𝑠𝑠𝑚𝑚𝑥𝑥 − 𝐷𝐷𝑠𝑠𝑖𝑖𝑚𝑚

2𝐷𝐷
(6.1) 

𝜀𝜀𝜃𝜃|𝑚𝑚𝑣𝑣𝑎𝑎 = � 𝜀𝜀�̅�𝜃|𝑡𝑡
𝐶𝐶

𝑑𝑑𝐶𝐶/𝐶𝐶 (6.2) 

Above, 𝜀𝜀�̅�𝜃|𝑡𝑡 is the cross-thickness average hoop strain and 𝐶𝐶 is the shell’s circumference 

in the deformed configuration.  
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Figure 6.5: (a) Change in diameter (b) Average hoop strain of the shell versus curvature 
at various levels of internal pressure 
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Figure 6.6: Axial stress distribution around the cross section of the cylinder (a) under 
pure bending 𝑝𝑝/𝑝𝑝0 = 0.00, (b) under internal pressure 𝑝𝑝/𝑝𝑝0 = 0.40 

Figure 6.6 presents the axial stress distribution across the height of the shell at various 

levels of curvature, for two levels of pressure: 𝑝𝑝/𝑝𝑝0 = 0.00 and 𝑝𝑝/𝑝𝑝0 = 0.40. At low 

curvatures, ovalization is limited and the stress distribution follows the material curve. 

After the limit load, the maximum axial stress is not found at the intrados of the shell 

under pure bending. The bending stress distribution for pressure 𝑝𝑝/𝑝𝑝0 = 0.40  is 

qualitatively similar but is lower than the material curve due to the axial tension (cap 

forces) and the interaction with hoop stresses through the Von Mises yield criterion. 

Further focusing on the intrados, the evolution of axial and hoop stress across the 

thickness of the cylinder is given in Figure 6.7 for different stages of deformation, and 

two levels of pressure. For 𝑝𝑝/𝑝𝑝0 = 0.00, at small curvatures, the distribution of 𝜎𝜎𝑥𝑥  is 

approximately uniform across the thickness. At higher curvatures, the ovalization-

induced hoop bending causes significant hoop stresses, non-uniform across the thickness. 

These interact with axial stresses through the Von Mises yield criterion due to inelastic 

material response, resulting in a non-uniform profile of 𝜎𝜎𝑥𝑥  across the thickness. This 

effect is particularly pronounced in the absence of internal pressure, while even low levels 

of pressure limit this influence, by reducing hoop bending. 
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Figure 6.7: (a) Axial and (b) Hoop stress distribution across the thickness at the intrados 
of the cylinder versus curvature under pure bending 𝑝𝑝/𝑝𝑝0 = 0.00 and internal pressure 
𝑝𝑝/𝑝𝑝0 = 0.50 

6.3 Bifurcation using Abaqus 
The onset of bifurcation from the axially uniform ovalizing prebuckling state is identified 

by the development of non-positive eigenvalues in the stiffness matrix of the model 

(‘alternative comparison solid’, as employed in the previous chapters). Using ‘short’ 

models of various lengths, the length leading to bifurcation at the lowest curvature 𝜅𝜅𝑏𝑏 is 

identified as the characteristic wavelength of the shell 𝜆𝜆𝐻𝐻𝐻𝐻, and a perturbation analysis 

at bifurcation provides the buckling eigenmode. To achieve accuracy of 1% in defining 

𝜆𝜆𝐻𝐻𝐻𝐻, eigenvalue checks are necessary at deformation intervals ~0.01%𝜅𝜅𝑏𝑏 in the vicinity 

of bifurcation. Similar to the case of pure bending, 𝜅𝜅𝑏𝑏 is found to be relatively insensitive 

to small length variations. The bifurcation points obtained by ‘halfwave’ models in 

Abaqus are marked with a ‘+’ in Figures 6.2-6.5. Considering four- and eight-times 

smaller elements leads to smaller than 1% changes in the predicted 𝜅𝜅𝑏𝑏  and 𝜆𝜆𝐻𝐻𝐻𝐻 . 

Consideration of smaller curvature increment size had no further influence.  

Bifurcation occurs before the limit point from ovalization analyses for all pressure levels. 

Increasing pressure levels somewhat delay the bifurcation, which occurs at higher 

curvatures. The delay in the ovalization instability is considerably more pronounced, 

which is demonstrated in Figure 6.8 where both are plotted with respect to the level of 

internal pressure. The bending moment at bifurcation 𝑀𝑀𝑏𝑏  increases for low values of 

pressure, reaching a 4.5% increase for 𝑝𝑝 𝑝𝑝0⁄ = 0.20 . For higher values of internal 
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pressure, the moment-curvature response of the shell moves downwards, and 𝑀𝑀𝑏𝑏 follows 

the same trend.  

Figure 6.8: Buckling wavelengths of cylinders under bending versus internal pressure (b) 
Curvature at buckling versus internal pressure  
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The prebuckling (prior to bifurcation) and post-buckling configuration of the deformed 

cylinder are depicted in Figure 6.9 for two levels of internal pressure. Buckling 

displacements are obtained from perturbation analyses in Abaqus and for visualization 

purposes are amplified. The buckling mode includes deformations in an extended portion 

of the compressed side of the cylinder, centred at the intrados, while deformations zero 

towards the mid-height and the tension side of the section. The size of the ‘buckling zone’ 

increases with pressure: for pure bending it is 2𝑅𝑅, increasing to 2.4𝑅𝑅 for 𝑝𝑝 𝑝𝑝0⁄ = 0.60. 

The ‘buckling zone’ is considered here as the arc along the cross-section circumference, 

where buckling displacements are greater than say 5% of the maximum displacement in 

the buckling mode (at the intrados).  

Figure 6.9: Exaggerated buckling mode of cylinder for two levels of internal pressure 

An increasing trend for the ‘buckling zone’ width with respect to pressure was also found 

for elastic cylinders by (Houliara & Karamanos, 2006). For inelastic cylinders the 

buckling zone is more extended, not localized at the intrados. This is attributed to the 

pre-buckling post-buckling
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‘relatively uniform’ stress values in the material that has yielded and the lower ovalization 

compared to elastic shells, which results in buckling of a wider part of the section, as it 

approaches the local critical stress (see also Chapter 7). 

In Figure 6.8, the values of 𝜅𝜅𝑏𝑏 , 𝜆𝜆𝐻𝐻𝐻𝐻  are plotted with respect to the level of internal 

pressure. The exact calculations using ‘halfwave’ models are marked with a ‘+’, while 

estimates obtained using ‘long’ models are plotted with dots, with several provided for 

each level of pressure, reflecting the number of non-positive eigenvalues obtained at 𝜅𝜅𝑏𝑏, 

and measured from the corresponding eigenmodes. The buckling wavelength increases 

with internal pressure. Figure 6.9b displays the exaggerated buckling modes for 𝑝𝑝 𝑝𝑝𝑜𝑜⁄ =

0.00, and 𝑝𝑝 𝑝𝑝𝑜𝑜⁄ = 0.47, causing a 31% increase in 𝜆𝜆𝐻𝐻𝐻𝐻. This behaviour was observed 

experimentally in pressurized inelastic cylinders under bending by (Limam et al., 2010), 

and under uniform compression by (Paquette & Kyriakides, 2006). The opposite effect, 

was found by (Houliara & Karamanos, 2006) in elastic cylinders under bending, who 

found wrinkling wavelength to decrease with the level of internal pressure.  

These seemingly incompatible behaviours are explained in Chapter 7, using the ‘Local 

Buckling Hypothesis’ drawing on similarities to the buckling of cylinders subjected to 

axial compression. It is shown that internal pressure lowers ovality at buckling (Figure 

6.3) which tends to lower wavelength, as reported for elastic cylinders. However, in 

elastoplastic shells, yielding under biaxial loading leads to a considerable increase in 

wavelength and this ultimately governs the trend of 𝜆𝜆𝐻𝐻𝐻𝐻 with respect to internal pressure. 

The obtained wavelength estimates are uniformly lower than the experimental values, as 

the influence of the reported anisotropy (Kyriakides et al., 2005) is not accounted for in 

the context of the present work.  

The bifurcation curvature 𝜅𝜅𝑏𝑏 increases with the level of internal pressure (Figure 6.8), 

which is explained by the stabilizing influence of pressure: it keeps the section rounder 

and lowers compressive loads by introducing axial tension. Even at low pressure values, 

bifurcation occurs well before ovalization limit instability, which for 𝑝𝑝 𝑝𝑝0⁄ =0.10, 

develops well after 𝜅𝜅𝑏𝑏, following additional bending deformations of several 𝜅𝜅1 (Figure 

6.8b). This comes in agreement with the reported experimental observations by (Limam 

et al., 2010) who identified wrinkling early in the bending history. 
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Figure 6.10: Distribution of (a) axial stress 𝜎𝜎𝑥𝑥, (b) hoop stress 𝜎𝜎𝜃𝜃 across the thickness at 
the intrados of the cylinder at bifurcation for various levels of internal pressure 
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Figure 6.11: Non-proportionality angle 𝜃𝜃  across the thickness in the intrados at 
bifurcation for various levels of internal pressure 

Figure 6.10 displays the distribution of the axial and hoop stress across the cylinder 

thickness at the intrados when bifurcation occurs. Apart from the case of pure bending 

(𝑝𝑝 𝑝𝑝𝑜𝑜⁄ = 0.00), both stress distributions are quasi-linear. The axial stress 𝜎𝜎𝑥𝑥 decreases 

with pressure across the cross section, while the hoop stress 𝜎𝜎𝜃𝜃  increases. The non-

proportionality angle 𝜃𝜃 at bifurcation is presented in Figure 6.11, and records small values 

~2.3𝑜𝑜 for all pressure levels. For high values of pressure, 𝜃𝜃 is quasi-uniform across the 

thickness, while for low pressure values, it varies across the thickness, affected by hoop 

bending. 

6.4 Uniform wrinkling 
The onset of buckling from the ovalization prebuckling 𝑚𝑚 − 𝑑𝑑 path is investigated for the 

pressurized cylinders. Uniform wrinkling is considered using one-halfwave long models, 

employing 10 elements along the halfwave. Imperfection in the shape of the obtained 

buckling mode is used to enable the model to follow the secondary equilibrium path. 

Several imperfection levels are considered with respect to the tube radius 𝑎𝑎𝑜𝑜𝑖𝑖 = 𝑎𝑎 𝑅𝑅⁄ , 

ranging from 10−8  to 10−3 . Similarly to pure bending, wrinkling of the shell’s 
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compressed side leads to a more compliant 𝑚𝑚 − 𝑑𝑑  response. Increasing initial 

imperfection amplitude leads to progressively lower limit load values 𝑚𝑚𝐿𝐿, developing at 

lower curvatures.  

Initial imperfection amplitude has a more pronounced influence in pressurized bending 

of cylinders, than under pure bending ( 𝑝𝑝 𝑝𝑝0⁄ =0.00). Particularly low values of 

imperfection suffice to affect measurably the shells behaviour. In Figure 6.12 the moment 

curvature response of the cylinder is given for two levels of internal pressure. For 𝑝𝑝 𝑝𝑝0⁄ =

0.138, the behaviour deviates from the uniform ovalization response for imperfection 

values of 𝑎𝑎𝑜𝑜𝑖𝑖 = 10−6, and limit loads reduce considerably for higher imperfection values. 

This effect becomes increasingly pronounced at higher levels of internal pressure e.g., 

𝑝𝑝 𝑝𝑝0⁄ = 0.467, where imperfection levels as low as 𝑎𝑎𝑜𝑜𝑖𝑖 = 10−8 lead to a load maximum, 

at much lower curvature than estimates from ovalization analyses. Under pure bending, 

imperfection values of 𝑎𝑎𝑜𝑜𝑖𝑖 = 10−4 are needed for the cylinder to follow the secondary 

equilibrium path, reducing its limit load. The imperfection sensitivity of the pressurized 

cylinder is depicted in Figure 6.13, showing the limit loads obtained from uniform 

wrinkling analyses, plotted with respect to the imperfection amplitude for various levels 

of internal pressure. 
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Figure 6.12: Moment-curvature response of pressurized cylinder with various levels of 
initial geometric imperfection 
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Figure 6.13: Influence of imperfection amplitude in the maximum moment of the shell 
and the respective curvature for various levels of internal pressure 
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6.5 Localization of wrinkling 
To investigate the localization of deformation and failure of the pressurized cylinders 

under bending, models of length 𝐿𝐿 = 30𝜆𝜆𝐻𝐻𝐻𝐻 are employed with 10 elements per 𝜆𝜆𝐻𝐻𝐻𝐻 in 

the axial direction. Initial geometric imperfection is introduced in the models in the shape 

of the eigenmode of pressurized cylinder. Imperfection bias is introduced in the mid-

length of the cylinder, so that localization may initiate far from the supports: the 

eigenmode profile along the cylinder is multiplied by factor 𝑓𝑓  

𝑓𝑓 = 1 + 𝑎𝑎𝑖𝑖 |𝑎𝑎𝑜𝑜𝑖𝑖|⁄ sin2 𝜋𝜋𝑥𝑥/𝐿𝐿 (6.3) 

where 𝑎𝑎𝑜𝑜𝑖𝑖 is the amplitude of uniform wrinkling of the shell and 𝑎𝑎𝑖𝑖 offers a preference in 

the amplitude. Positive values of 𝑎𝑎𝑜𝑜𝑖𝑖  introduce a maximum outward (bulging) 

imperfection at the midspan, and negative imply a maximum inward (dent) imperfection. 

6.5.1 Imperfection 
In Figure 6.13 the maximum moment and respective curvature of the long cylinders under 

various levels of pressure are plotted versus the maximum amplitude of initial geometric 

imperfection, considering a preference 𝑎𝑎𝑖𝑖 = 3% 𝑎𝑎𝑜𝑜𝑖𝑖 . The imperfection sensitivity 

identified in uniform wrinkling is further exacerbated particularly at high pressures. For 

𝑝𝑝/𝑝𝑝0 = 0.760 wrinkling localization is seen to occur well before the limit load from 

wrinkling analyses with the same amplitude. For lower pressures, the limit loads and 

curvatures from the full 3D analysis are somewhat lower but compare reasonably well 

with the limit loads from uniform wrinkling.  

The direction of the maximum imperfection has small influence in the pre-maximum-

load behaviour of the cylinder but influences the collapse configuration. Figure 6.14 

shows the 𝑚𝑚 − 𝑑𝑑  response of the cylinder under pressure level 𝑝𝑝/𝑝𝑝0 = 0.138 . Both 

inward and outward imperfection leads to practically identical behaviours in the initial 

post-buckling, up until and including the development of the limit moments and 

curvatures. Before the development of the limit load, the wrinkle amplitude increases 

uniformly along the shell. At the vicinity of the limit load, the deformation localizes in 

the location of the maximum imperfection (Figure 6.15).  

Immediately after the limit moment, an abrupt loss of bending resistance denotes the 

section failure. In the case of outward imperfection, a primary bulging buckle develops, 

and as collapse is initiated, at one of its sides an inward buckle develops which deepens 

rapidly and deformation localizes. On the other side of the initial bulging buckle, two 
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eccentric secondary buckles may be formed, leading to a diamond buckling mode. 

Figure 6.14: Influence of the direction of the maximum imperfection in the failure of the 
pressurized shell (a) Moment-curvature response (b) Ultimate configuration. 
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Figure 6.15: Evolution of ovalization along the pressurized cylinder (𝑝𝑝/𝑝𝑝0 = 0.138) for 
(a) inward, (b) outward maximum initial geometric imperfection

In the case of inward imperfection, a primary inward buckle forms, whose depth increases 

rapidly following the limit load, while eccentric secondary buckles may develop one or 

both the side of its neighbouring imperfection crests. In this case, the post-limit load 

moment reduction is more precipitous. It is noted that the secondary non-symmetric 

buckles became visible at curvature just before 4𝜅𝜅1, by which stage the cylinder moment 

capacity was already reduced by 15%. These differences, dependent on the direction of 

imperfection, arise immediately after the limit load but soon afterwards the 𝑚𝑚 − 𝑑𝑑 

behaviours converge again and become very similar for both types of imperfection. 

For a high internal pressure, the post-buckling behaviour is altered, as an outward buckle 

forms and deformation localizes symmetrically on the two adjacent wrinkle crests further 

pronouncing the main outward buckle. This leads to the symmetric buckling mode in 

(Figure 6.16), in agreement with the experiments at high pressure. 

Figure 6.16 focuses on the deformation locally at the buckle in the vicinity of the 

maximum moment and well after it (at 𝜅𝜅 = 7𝜅𝜅1 ). It further depicts the evolution of 

ovalization along the simulated cylinder segment at increasing values of curvature. 

Compared to the lower pressure in Figure 6.14, the wrinkle amplitude increases more 

uniformly up to larger values before localization. Despite bifurcation being estimated at 

𝜅𝜅𝑐𝑐 = 1.5𝜅𝜅1  the wrinkle evolution is curbed by pressurization, so wrinkle amplitude 

remains benign up to large curvatures 𝜅𝜅 = 3.2𝜅𝜅1 (configuration 1) as noted by (Limam 

et al., 2010). Before the limit load (configuration 2) wrinkles are visible and the greatest 

amplitude is seen at the mid-length, where imperfection bias was applied. Figure 6.17 

further shows the axial stress level in the pressurized cylinder at four stages of 

deformation, which are also marked in Figure 6.16 
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Figure 6.16: (a) Moment-curvature response of pressurized shell (𝑝𝑝 𝑝𝑝0⁄ = 0.467), (b) 
localization of wrinkling in an outward ‘bulge’, (c) Ovalization along the cylinder 

(a)

(c)

(b)
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Figure 6.17: Axial stress in the buckled cylinder at different stages of deformation 

A good comparison with the experimental response is seen for 𝑝𝑝 𝑝𝑝0⁄ = 0.467  for 

imperfection amplitudes of order 10−5 . This was indicated in Figure 6.13 and it is 

consistent with the conclusions in (Limam et al., 2010). In Figure 6.18 the influence of 

imperfection amplitude in the ultimate moment capacity of the cylinder and the respective 

limit curvature are plotted versus the level of internal pressure. 

①

②

③

④
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Figure 6.18: Limit curvatures and moments for various levels of imperfection and 
comparison with experimental data 



Non-associative plasticity for structural instability of cylindrical shells in the inelastic range 

156 Apostolos Nasikas - July 2022 

6.5.2 Constitutive modelling 
The influence of the constitutive model parameter 𝜃𝜃𝑐𝑐 in bending under pressure is similar 

to that in pure bending. Small values can lead to substantial differences in the limit 

curvature of the shell, and less pronounced changes in the limit load. The sequence of 

events leading to failure is not altered: (a) initially the shell ovalizes almost uniformly, 

(b) the onset of wrinkling is established, and the amplitude of the wrinkles increases

uniformly along the shell (c) wrinkling localizes, a limit moment resistance develops and

(d) collapse follows.

In Figure 6.19 the behaviour of the cylinder is given for pressure 0.138𝑝𝑝0  and two 

imperfection amplitudes. For the associative model, the smaller imperfection amplitude 

(5 ⋅ 10−6) does not instigate collapse immediately after the limit load, as additional 

bending deformation of 0.8𝜅𝜅1 is applied before abrupt loss of stiffness. For the larger 

imperfection both take place concurrently, and this behaviour is also recorded with the 

non-associative model: bending rigidity drops immediately after the limit load formation. 

Limit loads develop earlier in the deformation history for increasing values of 𝜃𝜃𝑐𝑐 . 

Additionally, for 𝜃𝜃𝑐𝑐 = 5𝑜𝑜, limit load develops at very similar deformation and load, for 

both imperfection amplitudes. 

In all cases, the steep reduction of stiffness in the shell’s behaviour signifies the transition 

to the localized wrinkling configuration, characterized by a main bulging buckle. Well 

into the dropping branch another bifurcation takes place, signified by the formation of 

secondary buckles on either side of the main one, which develop gradually within the 

dropping branch. In the cases of the J2FT and J2NA (𝜃𝜃𝑐𝑐 = 2𝑜𝑜), the cylinder ultimately 

transitions to a diamond mode, while buckles grow more rapidly when the non-

associative model is used. By increasing the constitutive model’s angle to 𝜃𝜃𝑐𝑐 = 5°, a 

different secondary buckle profile is recorded, with eccentric buckles developing anti-

symmetrically on either side of the main outward buckle (Figure 6.19).  
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Figure 6.19: Influence of constitutive modelling in the moment-curvature and ovalization 
response of pressurized cylinder; exaggerated failure profile 

6.5.3 Modelling of experiments 
Simulations of the experiments by (Limam et al., 2010) are given in Figure 6.20 showing 

agreement with the experimental curves for the levels of imperfections that were 

suggested by the experimenters and investigated above. 

Well into the 
dropping branch
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Figure 6.20: Comparisons with experimental data of bending under various levels of 
internal pressure  
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6.6 Conclusions 
The structural response of a long internally pressurized thick-walled inelastic cylinder 

( 𝐷𝐷 𝑡𝑡⁄ = 52 ) is examined using nonlinear finite element analyses, employing the 

developed non-associative flow rule. Results demonstrate the influence of two instability 

modes (ovalization and bifurcation) in the ultimate capacity and deformation of inelastic 

cylinder and verify the observation of previous researchers about the effects of pressure. 

The J2NA constitutive model is found to accurately reproduce the structural behaviour of 

the pressurized shell, including ovalization, buckling, wrinkle evolution and localization, 

ultimately leading to structural failure. 

Bending tends to ovalize the cross section but internal pressure curbs the growth of 

ovalization. A low internal pressure (less than say 0.20𝑝𝑝0) has a stiffening effect in the 

tube response, increasing the moment capacity and drastically delaying the ovalization 

limit point. Increasing values of pressure cause earlier yielding, and as a result the 

moment-curvature response of the shell develops a knee at progressively lower curvatures 

for increasing pressure. This lowers the moment sustained by the cylinder at any 

curvature, however, the maximum load at the ovalization limit point increases. It reaches 

uncharacteristic levels, denoting that local instability governs the cylinder failure.  

Bifurcation instability (buckling) occurs in the form of wrinkles developing in the 

compressed side of the bent tube. Internal pressure delays somewhat the bifurcation point, 

which, however, in all cases is estimated well before ovalization instability. Wrinkle 

wavelength and width increase for increasing pressure loads. The secondary equilibrium 

path is smooth, and wrinkles develops stably. Significant post-buckling bending 

deformations may precede the localization of wrinkling, particularly for high values of 

pressure. Localization of wrinkling causes the development of a maximum load, followed 

by an abrupt loss of bending stiffness, which signifies the failure of the cylinder.  

In the resulting dropping branch of the moment-curvature response, gradually with 

additional deformation, a transition into non symmetric modes may occur for low values 

of pressure, similar to the case of pure bending for cylinders with 𝐷𝐷 𝑡𝑡⁄ > 45 . For high 

values of pressure, the pressurization’s stabilizing effect leads to buckling localization in 

an outward bulge at considerably higher loads and curvatures, consistent with 

experimental results. Comparisons with data by Limam et al. (2010) indicate good 

agreement with the analyses for the imperfection levels that were suggested. 

The maximum load under uniform wrinkling shows sensitivity to imperfection, which 
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increases for higher pressure levels. The ‘long’ models indicate that wrinkle localization 

occurs significantly earlier that the limit point in uniform wrinkling models. The 

parameter 𝜃𝜃𝑐𝑐  of the constitutive model somewhat reduces sensitivity to imperfection 

amplitude, but also leads to less stiff behaviours, similar to observations in pure bending 

and compression, indicating small values are more representative for the material. The 

adopted approach is found to reliably model the cylinder behaviour, under the non-

proportional loading scheme due to the internal pressure. 



162  Apostolos Nasikas - July 2022 

7 BENDING-COMPRESSION 
ANALOGY 

Early investigations by (Seide & Weingarten, 1961) in bifurcation instability of elastic 

tubes under pure bending identified similarities to their bifurcation under uniform 

compression. They concluded that bifurcation onsets when the nominal bending stress is 

very close to the critical stress of the cylinder under uniform compression -eq. (7.1)-. This 

similarity offered a practical way to estimate bifurcation of the elastic cylinders under 

bending, yet, the resulting bifurcation moments were uncharacteristically high, so that 

buckling was estimated to occur after the ovalization limit point obtained by Brazier. 

In an improved approach, Axelrad (1965) postulated that bifurcation is determined by the 

stress and deformation locally, inside the zone of an initial buckle. Based on this ‘local 

buckling hypothesis’ (LBH), instability under bending occurs when the compressive 

stress inside the buckle zone reaches the critical stress value of an ‘equivalent compressed 

cylinder’ with radius 𝑅𝑅𝑒𝑒𝑞𝑞 equal to the local hoop radius of the ovalized shell (Figures 6.4 

& 7.1). This approach produces bifurcation estimates at moments which are lower than 

the ovalization limit load and more consistent with experimental results. Onward, LBH 

was successfully employed in investigations on bifurcation instabilities of elastic 

cylinders under bending, accounting for the influence of support conditions (Stephens, et 

al., 1975), pressure, initial curvature and non-circular cross sections (Fabian, 1977; 

Karamanos, 2002; Houliara & Karamanos, 2006). Similarities between the buckling 

behaviours under compression and bending were also considered for cylindrical shells 
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loaded into the inelastic range by e.g. (Reddy, 1979; Ju & Kyriakides, 1992; Vasilikis, 

2012). 

This paragraph demonstrates the use of LBH in estimating bifurcation of elastic-plastic 

cylinders under bending and internal pressure, based on their ovalization response. It 

further explains the mismatch in behaviour of the bending wavelengths in elastic and 

elastoplastic cylinders with respect to internal pressure: in inelastic cylinders pressure 

tends to increase wavelength, while it has the opposite effect in elastic cylinders. 

Figure 7.1: Schematic representation of the local buckling hypothesis (LBH) or bending-
compression analogy in elastic plastic cylinders 

7.1 Simplified bifurcation estimates 
Using LBH in bending, bifurcation from the primary equilibrium path occurs when the 

compressive stress 𝜎𝜎𝑥𝑥 at the intrados of the ovalized cylinder reaches the critical stress 

value 𝜎𝜎𝑐𝑐 of an equivalent cylinder with radius 𝑅𝑅𝑒𝑒𝑞𝑞, equal to the local hoop radius of the 

ovalized cross section. The wrinkling wavelength of the two cylinders is very similar. For 

elastic cylinders, this hypothesis is written as: 

𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑐𝑐.𝑒𝑒𝑒𝑒|𝐸𝐸𝐸𝐸 =
𝐸𝐸

√1 − 𝜈𝜈2
1

𝑅𝑅𝑒𝑒𝑞𝑞 𝑡𝑡⁄  (7.1) 
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𝜆𝜆𝐻𝐻𝐻𝐻 = 𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒|𝐸𝐸𝐸𝐸 =
𝜋𝜋

�12(1 − 𝜈𝜈2)4 �𝑅𝑅𝑒𝑒𝑞𝑞𝑡𝑡 (7.2) 

where 𝑅𝑅𝑒𝑒𝑞𝑞  is the local hoop radius at the most compressed location (intrados) of the 

ovalized shell. Figure 7.1 shows a generalization of this analogy for inelastic cylinders. 

Previous researchers adopted a simplified ovalization displacement field for linear elastic 

materials and developed an analytic expression for the ovalization response of pressurized 

elastic shells under bending. This was used in (7.1) to obtain closed-form solutions for 

the critical bifurcation curvature 𝜅𝜅𝑐𝑐  and stress 𝜎𝜎𝑐𝑐 , and eq. (7.2) provided the 

corresponding halfwave length 𝜆𝜆𝐻𝐻𝐻𝐻 . These bifurcation estimates were found to be in 

excellent agreement with estimates obtained using more sophisticated finite element 

models. 

Extending this approach to inelastic shells demands accounting for the interaction of 

ovalization, pressure and the nonlinear, history-dependent material behaviour. This 

complexity disallows the obtainment of a closed form expression for 𝜅𝜅𝑐𝑐. Instead, a semi-

analytic approach is adopted, where the time histories of stress and local hoop radius are 

sourced from the initial nonlinear ovalization analyses in Abaqus. Throughout the 

bending history, the average axial stress at the intrados 𝜎𝜎𝑥𝑥|𝑡𝑡 is compared to the bifurcation 

stress 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝 of the equivalent elastic-plastic cylinder with hoop radius 𝑅𝑅𝑒𝑒𝑞𝑞 and the same 

level of pressure. Bifurcation from the primary (ovalization) equilibrium path is assumed 

at curvature 𝜅𝜅𝑐𝑐, when 𝜎𝜎𝑥𝑥|𝑡𝑡 reaches 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝.  

𝜎𝜎𝑥𝑥|𝑡𝑡(𝜅𝜅𝑐𝑐) = 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝(𝜅𝜅𝑐𝑐) = 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝|𝐸𝐸𝐸𝐸 (7.3) 

𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝�𝜎𝜎𝑥𝑥,𝜎𝜎𝜃𝜃,𝑅𝑅𝑒𝑒𝑞𝑞 𝑡𝑡⁄ � = �
1 − 𝐶𝐶𝜃𝜃𝜃𝜃𝜎𝜎𝜃𝜃

3(𝐶𝐶𝑥𝑥𝑥𝑥𝐶𝐶𝜃𝜃𝜃𝜃 − 𝐶𝐶𝑥𝑥𝜃𝜃𝐶𝐶𝜃𝜃𝑥𝑥)
𝑡𝑡
𝑅𝑅𝑒𝑒𝑞𝑞

(7.4) 

To calculate the elastoplastic bifurcation stress 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝  at any stage of bending, a local 

iterative scheme is employed to solve eq. (7.4) in terms of 𝜎𝜎𝑥𝑥, which is the generalized 

form of eq. (4.1) accounting for the influence of internal pressure - a detailed analysis on 

the obtainment of this formula is provided in Appendix 3. 𝐶𝐶𝑖𝑖𝑖𝑖  are the moduli of the 

material compliance tensor 𝐶𝐶, the inverse of the stiffness tensor 𝐷𝐷, which is dependent on 

the stress state (𝜎𝜎𝑥𝑥 ,𝜎𝜎𝜃𝜃) and the adopted material model. The average value of hoop stress 

across the thickness at the intrados (𝜎𝜎𝜃𝜃|𝑡𝑡) is used in calculations as hoop stress 𝜎𝜎𝜃𝜃, sourced 

from the ovalization analysis in Abaqus, or alternatively the simpler approximation 𝜎𝜎𝜃𝜃 =

𝑝𝑝𝑅𝑅/𝑡𝑡 which leads to the same results. The local hoop radius 𝑅𝑅𝑒𝑒𝑞𝑞 is calculated from the 
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displacement field at the cylinder intrados for each increment of the analysis (the 𝑅𝑅𝑒𝑒𝑞𝑞 −

𝜅𝜅 history is given in Figure 7.3). In the adopted non-associative constitutive model, the 

flexibility tensor is further dependent on the non-proportionality angle 𝜃𝜃, which is further 

sourced by the FE analyses. Figure 6.11 shows that 𝜃𝜃 takes low values at bifurcation for 

all levels of pressure, hence the material moduli are similar to the moduli of the J2DT. 

After the bifurcation point 𝜅𝜅𝑐𝑐  is identified by solving (7.3), the wrinkling halfwave 

𝜆𝜆𝐻𝐻𝐻𝐻 = 𝜆𝜆𝑐𝑐.𝑒𝑒𝑝𝑝|𝐸𝐸𝐸𝐸 is obtained using (7.5): 

𝜆𝜆𝑐𝑐.𝑒𝑒𝑝𝑝|𝐸𝐸𝐸𝐸 = 𝜋𝜋 �
(𝐶𝐶𝜃𝜃𝜃𝜃)2

12(𝐶𝐶𝑥𝑥𝑥𝑥𝐶𝐶𝜃𝜃𝜃𝜃 − 𝐶𝐶𝑥𝑥𝜃𝜃𝐶𝐶𝜃𝜃𝑥𝑥)(1 − 𝐶𝐶𝜃𝜃𝜃𝜃𝜎𝜎𝜃𝜃)�
1/4

�𝑅𝑅𝑒𝑒𝑞𝑞𝑡𝑡�
1/2 (7.5) 

The above procedure of applying LBH in the buckling of inelastic cylinders under 

bending is presented in Figure 7.2 for pure bending and internal pressure 𝑝𝑝 𝑝𝑝0⁄ = 0.4. 

Solving eq. (7.3) for all values of curvature, the critical stress 𝜎𝜎𝑐𝑐.𝑒𝑒𝑞𝑞  of the equivalent 

compressed shell is calculated and plotted in with a black dashed line throughout the 

bending history. It reduces slowly with ovalization of the studied thick-walled cylinder. 

The average axial stress 𝜎𝜎𝑥𝑥|𝑡𝑡(𝜅𝜅) increases with curvature and its intersection with line 

𝜎𝜎𝑐𝑐.𝑒𝑒𝑞𝑞 denotes bifurcation using LBH, it identifies 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝|𝐸𝐸𝐸𝐸 and it is marked with (∙) on the 

graph. Bifurcation estimated in Abaqus is marked with (+). Generally, 𝜎𝜎𝑥𝑥|𝑡𝑡(𝜅𝜅) is very 

similar to axial stress at the integration point 4, positioned at the mid surface of the shell 

which is included in Figure 7.2, that further shows the stress history of all 7 integration 

points across the shell thickness. The same procedure is employed for pressurized 

bending. 

Using LBH, the estimates for the critical curvature 𝜅𝜅𝑐𝑐 are somewhat lower than the ones 

obtained by the perturbation analyses in Abaqus, for all values of pressure. On the other 

hand, the bifurcation stress and halfwave estimates closely agree with the numerical 

results from the FE analyses (differences up of 1% in Figure 7.4). 

An alternative, simpler approach to identifying the bifurcation using LBH is made by 

using 𝜎𝜎𝑥𝑥|𝑡𝑡(𝜅𝜅), 𝜎𝜎𝜃𝜃|𝑡𝑡(𝜅𝜅) from the ovalization analysis to identify the ratio 𝑅𝑅𝑐𝑐.𝑒𝑒𝑝𝑝/𝑡𝑡 of the 

equivalent compressed cylinder that bifurcates under the current stress combination, by 

direct substitution of 𝜎𝜎𝑥𝑥|𝑡𝑡, 𝜎𝜎𝜃𝜃|𝑡𝑡 in eq. (7.4). Bifurcation is identified when 𝑅𝑅𝑒𝑒𝑞𝑞/𝑡𝑡 from the 

ovalization analysis of the shell reaches the value 𝑅𝑅𝑐𝑐.𝑒𝑒𝑝𝑝 𝑡𝑡⁄ , as shown in Figure 7.3. 

Bifurcation estimates employing this expression of the LBH are identical to the estimates 

using the more standard stress-based formulation used above. However, in this approach, 
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no iterative solution of eq. (7.3) is necessary, making calculations simpler and more 

efficient. 

Figure 7.2: Axial stress 𝜎𝜎𝑥𝑥|𝑡𝑡 , and the bifurcation stress 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝 of the equivalent 
compressed cylinder versus curvature under pure bending 𝑝𝑝 𝑝𝑝0⁄ = 0.00  and internal 
pressure 𝑝𝑝 𝑝𝑝0⁄ = 0.40. 
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Figure 7.3: Hoop radius at the intrados over thickness 𝑅𝑅𝑒𝑒𝑞𝑞/𝑡𝑡 vs curvature and the 𝑅𝑅𝑐𝑐.𝑒𝑒𝑝𝑝/𝑡𝑡 
of the compressed shell that bifurcated under the loading 𝜎𝜎𝑥𝑥|𝑡𝑡, 𝜎𝜎𝜃𝜃|𝑡𝑡, a simpler use of LBH. 

In Figure 7.4 the estimated wrinkling wavelengths are plotted for the cylinder 
(𝐷𝐷/𝑡𝑡 = 52), subjected to bending and various levels of internal pressure. The wavelength 

predictions from LBH, using the data from the ovalization analyses are further marked 

with ‘x’. They are in line with predictions obtained using the FE models for all pressure 

levels (differences up of 1%). It is noted that the compression material curve is used in 

these calculations, which was found to produce identical estimates with Abaqus in the 

problem of uniform compression. Estimated wavelengths follow the same trend as the FE 

estimates: the wavelengths increase with pressure. For high levels of pressure, close to 

the yield pressure 𝑝𝑝0, this increasing trend is curbed and reversed. This is caused by the 

change of material behaviour at strain 𝜖𝜖 = 2.1% (the stress-strain curve transitions from 

a Ramberg-Osgood curve to a linear hardening branch).  

The wavelength of the pressurized elastic-plastic cylinder under uniform compression is 

further included in Figure 7.4, which follows a similar increasing trend with pressure, but 

as it neglects ovalization it displays higher differences to the Abaqus estimates, that reach 

8% for pure bending. The wavelength of the axially compressed cylinder, when assuming 

elastic material behaviour (blue dashed line), does not accurately describe the influence 

of pressure in the inelastic cylinder.  
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Figure 7.4: Wrinkling halfwave lengths and critical stress of the cylinder under bending 
versus internal pressure using Abaqus and LBH. 
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Figure 7.5: Critical moment of cylinder under bending versus internal pressure from FE 
analyses and using LBH. 

Figure 7.6: Critical bending curvature of cylindrical shell under bending versus internal 
pressure, calculated from FE analyses and LBH. 
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Very close agreement, between the LBH and the FE calculations is seen in the estimated 

critical axial stress 𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝|𝐸𝐸𝐸𝐸 in Figure 7.4, and in the moment 𝑀𝑀𝑐𝑐 in Figure 7.5 with 

differences up to 2% and 5%, respectively. The LBH estimated bifurcation curvature 

𝜅𝜅𝑐𝑐 shows differences of ~15%  to the ones calculated using Abaqus, thus offering a 

conservative estimate. 

The above analysis verifies that the bifurcation behaviour of inelastic cylinders under 

bending exhibits similarities with the instability of cylinders under compression, which 

persist in the presence of internal pressure. Using LBH and accounting for the material 

elastic-plastic material behaviour, accurate semi-analytical approximations of buckling 

stresses and wavelengths can be obtained, along with reasonable estimates of the 

bifurcation moment and curvature, based on simple pseudo-2D ovalization analyses. 

7.1.1 Application in bending under external pressure 
Similar agreement is found in the bifurcation of cylinders (𝐷𝐷 𝑡𝑡⁄ = 49), investigated by 

(Ju & Kyriakides, 1992) which are subjected to bending under external pressure. The 

LBH is employed to estimate wrinkling-type bifurcation for low values of external 

pressure, fractions of the cylinders collapse pressure 𝑝𝑝𝑐𝑐, which if applied on the cylinder 

leads to collapse in an ovalization mode. Its value is expressed as: 

𝑝𝑝𝑐𝑐 =
𝐷𝐷𝜃𝜃𝜃𝜃

4(1 + (1 12⁄ )(𝑡𝑡 𝑅𝑅⁄ )2) �
𝑡𝑡
𝑅𝑅
�
3

(7.6) 

where 𝐷𝐷𝜃𝜃𝜃𝜃 = 𝐶𝐶𝑥𝑥𝑥𝑥 (𝐶𝐶𝑥𝑥𝑥𝑥𝐶𝐶𝜃𝜃𝜃𝜃 − 𝐶𝐶𝑥𝑥𝜃𝜃𝐶𝐶𝜃𝜃𝑥𝑥)⁄  is a component of inelastic material stiffness 

tensor, and 𝑡𝑡,𝑅𝑅 the cylinder thickness and radius (proof and discussion in Appendix 3).  

In Figure 7.7 the LBH is employed to estimate bifurcation for a low value of external 

pressure 𝑝𝑝 𝑝𝑝𝑐𝑐⁄ = −0.1, producing reasonable agreement with FE results. For a higher 

external pressure (𝑝𝑝 𝑝𝑝𝑐𝑐⁄ = −0.3) the cylinder bending stress does not reach the buckling 

stress of the equivalent compressed shell and no instability estimates are obtained from 

the LBH. 

This behaviour is verified from buckling analyses performed in Abaqus for the externally 

pressurized cylinder under bending, using finite element models as described in paragraph 

6.1 loaded with external pressure (negative values of internal pressure). In Figure 7.8 the 

ovalization behaviour and bifurcation point are given for various levels of external 

pressure. For small fractions of 𝑝𝑝𝑐𝑐  the obtained bifurcation mode is characterized by 

wrinkling in the compressed side of the tube (bifurcation points marked in ‘+’). For higher 
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values of external pressure, a bifurcation point is found (marked with ‘o’) associated with 

an ovalization buckling mode. However, the LBH fails to produce instability estimates 

for 𝑝𝑝 𝑝𝑝𝑐𝑐⁄  values between -0.3 and -0.4 in which cases, Abaqus estimates instability after 

the moment maximum. 

Figure 7.7: Axial stress 𝜎𝜎𝑥𝑥|𝑡𝑡, and bifurcation stress 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝 of the equivalent compressed 
cylinder versus curvature for cylinder bending under external pressure 
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Fully three-dimensional (localization) analyses further demonstrate that wrinkling-type 

imperfection has small influence is in the limit curvature of bent cylinders, loaded with 

high levels of external pressure (Figure 7.8), as ovalization instability dominates the 

cylinders behaviour. In contrast, for high values of internal pressure, in Figure 6.18, the 

role of imperfection is dominant in the performance of the cylinder, while ovalization 

analyses grossly overpredict its load capacity. 

Figure 7.8: (a) Moment-curvature response of cylinder under external pressure (b) 
bifurcation modes 
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Figure 7.9: Limit curvature versus external pressure  

7.2 Elastic versus elastic-plastic wavelength in pressurized 
bending 
Figure 7.4 shows that internal pressure tends to increase the wrinkling wavelength for 

inelastic cylinders under bending. In the literature the opposite effect has been reported 

for elastic cylinders: wavelengths decrease for increasing internal pressure (Houliara & 

Karamanos, 2006). This mismatch in the cylinder’s behaviour is addressed below, 

employing LBH. 

The wavelength 𝜆𝜆𝐻𝐻𝐻𝐻 of the pressurized cylinder under bending is normalized with the 

𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒 = 𝜋𝜋√𝑅𝑅𝑡𝑡[12(1 − 𝜈𝜈2)]1∕4 which is the wrinkling wavelength of the cylinder under 

uniform compression, assuming elastic material behaviour. Employing the LBH, the 

wavelength under bending is equal to the wavelength of the ‘equivalent’ compressed 

cylinder 𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒|𝐸𝐸𝐸𝐸, calculated from (7.5). So, the normalized wavelength 𝑠𝑠 is expressed as: 

 𝑠𝑠 =
𝜆𝜆𝐻𝐻𝐻𝐻
𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒

=
𝜆𝜆𝑐𝑐.𝑒𝑒𝑝𝑝|𝐸𝐸𝐸𝐸

𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒
 (7.7) 

For elastic shells, the equivalent compressed cylinder is also elastic 𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒|𝐸𝐸𝐸𝐸 , and it is 

calculated using (7.2), so the normalized wavelength simplifies to: 
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𝑠𝑠𝑒𝑒𝑒𝑒 =
𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒|𝐸𝐸𝐸𝐸

𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒
= �𝑅𝑅𝑒𝑒𝑞𝑞

𝑅𝑅
= �̂�𝑡 (7.8) 

This expression is used for obtaining the wavelength of elastic cylinders under bending, 

and it clearly shows that 𝑠𝑠𝑒𝑒𝑒𝑒 increases for higher values of 𝑅𝑅𝑒𝑒𝑞𝑞 at bifurcation. In Figure 

7.1, bending is shown to induce ovalization in the cross section of inelastic cylinders, 

while internal pressure tends to counteract it, leading to lower local hoop radius 𝑅𝑅𝑒𝑒𝑞𝑞 at 

bifurcation. The same effect was shown in elastic cylinders, so eq. (7.8) indicates that for 

elastic cylinders under bending, internal pressure tends to lower wrinkling wavelength. 

For inelastic cylinders, the normalized wavelength does not simplify in the same way. 

Instead, it is expressed as: 

𝑠𝑠 =
𝜆𝜆𝑐𝑐.𝑒𝑒𝑝𝑝|𝐸𝐸𝐸𝐸

𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒|𝐸𝐸𝐸𝐸

𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒|𝐸𝐸𝐸𝐸

𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒
= 𝑙𝑙�𝑝𝑝,𝑅𝑅𝑒𝑒𝑞𝑞 𝑡𝑡⁄ ��

𝑅𝑅𝑒𝑒𝑞𝑞
𝑅𝑅

= 𝑙𝑙 ⋅ �̂�𝑡 (7.9) 

where 𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒|𝐸𝐸𝐸𝐸 is the half wavelength of the equivalent compressed cylinder, assuming 

elastic behaviour -eq. (7.2)-. The value of 𝑠𝑠 is the product of two terms: (i) �̂�𝑡 accounting 

for the change of local hoop radius at bifurcation compared to the initial configuration, 

and (ii) the additional factor 𝑙𝑙(𝑝𝑝,𝑅𝑅𝑒𝑒𝑞𝑞 𝑡𝑡⁄ )  which accounts for the inelastic material 

behaviour including the effect of the hoop stress level. 

Lower ovalization (and a lower value of 𝑅𝑅𝑒𝑒𝑞𝑞) is found at buckling of pressurized shells 

under bending, so the term �̂�𝑡 reduces, which tends to reduce wavelength. From the LBH 

calculations in Figure 7.3 for pure bending (𝑝𝑝 𝑝𝑝0⁄ = 0.00) and pressure 𝑝𝑝 𝑝𝑝0⁄ = 0.40, 

term �̂�𝑡 takes values 1.060 and 1.015, respectively. However, for inelastic cylinders the 

factor 𝑙𝑙  increases significantly with pressure, which is demonstrated in Figure 7.10. 

Factor 𝑙𝑙 is relatively constant for small changes in 𝐷𝐷 𝑡𝑡⁄  but increases from 1.008 in pure 

bending to 1.292 for 𝑝𝑝 𝑝𝑝0⁄ = 0.40. As a result, despite the higher ovality at bifurcation 

under pure bending, the normalized wavelength is 𝑠𝑠 = 1.07, which is 15% smaller than 

in the pressurized case where 𝑠𝑠 = 1.30. It follows that the inelastic material behaviour 

and biaxial stress state have a more pronounced influence on the wavelength. Figure 7.11 

demonstrates the increasing trend of the wrinkling wavelength of compressed inelastic 

cylinders with various 𝐷𝐷 𝑡𝑡⁄  ratios with respect to internal pressure. 
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Figure 7.10: Factor 𝑙𝑙  for compressed cylinders with respect to 𝐷𝐷 𝑡𝑡⁄  ratio for various 
levels of internal pressure 

 
Figure 7.11: Factor 𝑙𝑙 versus with internal pressure for axially compressed cylinders of 
various 𝐷𝐷 𝑡𝑡⁄  values. 
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In summary, the perceived mismatch in the wavelength behaviour in elastic and elastoplastic 

cylinders bent under pressure is explained by the consideration of ‘equivalent’ compressed 

cylinders. The wavelength increases with ovality, so internal pressure tends to reduce it. 

Oppositely, buckling into the inelastic range under biaxial loading tends to increase 

wavelength. The influence of ovality is less pronounced than the influence of plasticity, so 

the latter governs the increasing trend of the wavelength with respect to internal pressure in 

bending of inelastic cylinders, while the former in elastic ones. 
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8 CONCLUSIONS 

 

 

This doctoral work develops a new perspective in traditional instability problems of thick-

walled metal shells, where standard numerical simulation approaches do not always 

produce reliable buckling predictions and rely on overly high geometric and other 

imperfections. 

A fundamental objective of this work is the development of a special-purpose constitutive 

model for simulating the structural behaviour of thick-walled metal cylinders under 

compressive loads and, in particular, accounting for their structural instability and post-

buckling response. The model assumes a Von Mises yield surface and a non-associative 

flow rule, dependent on the direction of the strain rates, which mimics the effect of a yield 

surface vertex. Fully elastic unloading is implemented for strain rates directed tangent to 

or inwards the yield surface. In this model, any discontinuity in the plastic strain 

production is eliminated for strain rate directions near the yield surface tangent, by 

adopting a strain-direction-dependent non-associative hardening parameter ℎ� , which 

moderates the production of plastic strain. Upon proper definition of ℎ� , the model’s 

formulation can represent several pseudo-corner models proposed elsewhere, which 

account for different material stiffness. 

A two-branch flow rule is developed in the present plasticity model. For small deviations 

from proportional loading, it employs the rate form of the J2 deformation theory to inherit 

its effectiveness in predicting bifurcation. For larger deviations from proportional 
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loading, the plastic flow mimics the effect of a corner in the yield surface, constraining 

the plastic strain increment to be directed within this ‘vertex’. The non-associative 

hardening parameter ℎ� determines the model’s pseudo-corner effect and enables a smooth 

transition to elastic unloading.  

A robust integration algorithm is developed for implementing the constitutive model 

using a backward-Euler scheme for three-dimensional (solid) elements, together with an 

enhanced version suitable for shell element analysis. In both cases, the consistent 

algorithmic moduli are derived. This implementation scheme maintains the main features 

of the standard J2 flow theory (J2FT), and it can be efficiently introduced in a finite 

element code. Key modifications incorporate the non-associative behaviour and offer a 

versatile framework for implementing various other pseudo-corner plasticity models in 

an implicit numerical environment, while meticulously accounting for the non-standard 

material behaviour.  

The model is programmed and introduced in the commercial finite-element software 

Abaqus as a material user subroutine (UMAT) for shell element analyses. Several 

benchmark problems of inelastic shell buckling are simulated, demonstrating the 

capabilities of the model. The structural behaviour of thick-walled cylindrical shells is 

considered under various monotonic compressive loads, which are characteristic for 

tubular structures and pipelines. The most important advantage of this model is that the 

analyses use a single constitutive law for both tracing the equilibrium path and estimating 

instability, using of the capabilities of the software. The bifurcation estimates from the 

present model agree with experimental data in a range of loading conditions. The results 

demonstrate that the present methodology can accurately and efficiently predict buckling 

and post-buckling into the inelastic range. Numerical analyses investigate further aspects 

of the structural response of tubulars in the inelastic range, factors that influence their 

post-buckling performance, and comparisons are made with results obtained using the 

J2FT.  

Starting with uniform compression, buckling estimates compare well with available 

experimental data and analytical solutions. They are juxtaposed with the high load and, 

more markedly, large deformation estimates obtained from the J2FT and the low 

estimates obtained from the pseudo-corner model by Simo (1987). The analyses go 

beyond buckling, investigating the post-buckling response of compressed cylinders. The 

growth of wrinkles, the localization of deformation and structural failure are addressed, 

accounting for the influence of geometric imperfection. In spite of the trivial pre-buckling 
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equilibrium path under uniform compression, significant non-proportional loading is 

shown to follow tube-wall wrinkling, and the influence of non-associative modelling is 

clarified. Finite element modelling allows for accurately tracing the structural response 

of compressed thick-walled cylinders well into the post-buckling regime. 

The problem of pure bending is addressed next, characterized by a non-trivial pre-

buckling path, involving biaxial, non-proportional loading, which occurs prior to 

bifurcation. Numerical analyses successfully estimate inelastic instability and trace the 

structural behaviour of cylinders, their ovalization, wrinkling and post-wrinkling. 

Cylinders with various 𝐷𝐷/𝑡𝑡  values are considered, examining the influence of 

constitutive modelling and imperfection. The structural behaviours obtained with this 

model are in good agreement with experimental data for a range of thick-walled tubulars, 

showing their deformation capacity and ability to sustain load beyond yielding and 

bifurcation instability, depending on their 𝐷𝐷/𝑡𝑡 value. 

Followingly, bending under uniform pressure conditions is considered as a problem with 

inherently non-proportional loading, where the two loads are applied in sequence (first 

pressure, then bending). Low values of internal pressure have a stiffening effect, reducing 

ovalization and delaying ultimate load formation in cylinders. For increasing values of 

pressure, wrinkling is found to grow stably for an increased range of deformation and the 

imperfection amplitude has greater influence in the ultimate load capacity of the section. 

Localization of deformation instigates the collapse of the cylinders and, depending on the 

pressure level, it can alter the failure mode of the section compared to pure bending. 

Simulations of experimental data show the capability of the developed numerical tools to 

describe accurately the structural behaviour, instability and post-buckling response of 

pressurized cylinders subjected to bending.  

In the final part of this thesis, a simplified method is considered for estimating buckling 

of thick-walled cylindrical shells under various loading conditions. It is used primarily to 

predict the buckling load and deformation of cylinders, and it explains the increase in 

wrinkling wavelength of inelastic cylinders, when they are subjected to bending in the 

presence of internal pressure. This is the opposite to the effect of internal pressure in 

elastic tubes, an issue pinpointed in experimental observations. 

Overall, the results in the present research work demonstrate that the developed numerical 

approach can be used as an effective tool for performing calculations in shell instability 

problems. It can accurately reproduce the structural behaviour of inelastic shells under 
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compressive loads, predicting structural instabilities and tracing the post-buckling 

response. The model can be employed towards the assessment of the structural behaviour 

of tubular members and may be integrated as a tool in pipeline engineering design and in 

analysis of shell structures. 

Novelty 
A key contribution of the present research is the development of a constitutive law that 

can be efficiently incorporated into finite element tools, allowing for reliably simulating 

the structural behaviour and instabilities of shells subjected to compressive loads into the 

inelastic range. Numerical tools are developed and successfully tested on cylinders under 

various loading conditions, proving the capability for both (a) accurately predicting 

bifurcation and (b) consistently tracing the post-buckling equilibrium path of shells, using 

a single constitutive law, when traditional approaches employ a distinct material model 

for each function.  

Analyses show the applicability of the developed model in big-scale finite element 

simulations of thick-walled cylinders subjected to a range of compressive loads, not 

limited to problems with trivial prebuckling paths and simple loading histories, e.g. 

uniform compression. Simulations provide reliable buckling estimates for cylinders under 

bending and pressure, which are characterized by non-trivial equilibrium paths and non-

proportional loading prior to bifurcation.  

Comparisons with available experimental data and analytic predictions demonstrate the 

effectiveness of the present approach, allowing for monitoring the structural performance 

of thick-walled cylinders, predicting their ultimate load and deformation capacity. 

Numerical investigations offer insight in the evolution of local buckling and verify the 

ability of thick-walled members to sustain loading into the inelastic range before 

structural failure, in analyses considering ‘vertex-type’ effects. They indicate that 

accounting for the development of small yield surface corners (i.e. 𝜃𝜃𝑐𝑐 = 2𝑜𝑜) in metal 

materials suffices to describe the structural behaviour of metal shells and alleviates the 

sensitivity to geometric imperfection that standard plasticity exhibits. 

Recommendations for future research 
An important extension for this work could include experimental studies on the behaviour 

of structural metals, subjected to non-proportional strain paths, to examine the material 

stiffness. These can provide useful insight towards the calibration of the constitutive 
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model, offer the means to refine the definitions of the material hardening ℎ� and to directly 

determine parameter 𝜃𝜃𝑐𝑐 , which is expected to take small values, as the present work 

indicates.  

Several fundamental problems of tube buckling have been addressed in the context of the 

present research. Further investigations can be undertaken for tubulars subjected to 

compressive and pressure loads, particularly for high-strength steel members, whose 

design under present guidelines may be quite conservative. To address problems of 

instability under reverse or cyclic plastic loading, the model can be extended to adopt 

kinematic hardening, along with the non-associative flow rule. In pipeline engineering, 

the reeling installation method offers a classical example, where tubes are bent and 

straightened before deployment in the seawater and must be designed against local 

buckling. The introduction of Hill’s yield criterion would further allow for the 

consideration of yield anisotropy, and its influence in the structural performance of tubes. 

Besides tubulars, problems in buckling of spherical shells and plates could be addressed, 

starting with the classical problem of torsional buckling of cruciform columns, which still 

attracts research attention. The applicability of the developed approach in metal forming 

simulation could be considered, as in the relevant literature interest has been directed in 

accounting for non-associative material effects, with positive indications. 
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APPENDIX 1: DETAILS FOR THE NUMERICAL 
IMPLEMENTATION OF J2NA 

According to eq.(3.35), the deviatoric stress tensor at the converged state is expressed as: 

 

𝐬𝐬𝑚𝑚+1�𝛥𝛥𝜀𝜀𝑞𝑞 , ζ∗ ,𝛥𝛥𝐞𝐞� = �2 3⁄ 𝑑𝑑𝑚𝑚+1 𝐧𝐧𝑚𝑚+1 

                                   = �2 3⁄ 𝑑𝑑𝑚𝑚+1 [cos(𝜁𝜁𝑒𝑒 − 𝜁𝜁∗)𝐧𝐧𝑚𝑚 + sin(𝜁𝜁𝑒𝑒 − 𝜁𝜁∗)𝐦𝐦𝑚𝑚] 

  = �2 3⁄ 𝑑𝑑𝑚𝑚+1�𝛥𝛥𝜀𝜀𝑞𝑞� ∙                                                               

 [cos(𝜁𝜁𝑒𝑒(𝛥𝛥𝐞𝐞) − 𝜁𝜁∗)𝐧𝐧𝑚𝑚 + sin(𝜁𝜁𝑒𝑒(𝛥𝛥𝐞𝐞) − 𝜁𝜁∗)𝐦𝐦𝑚𝑚(𝛥𝛥𝐞𝐞)] 

(10.1) 

From equation (10.1), the following derivatives are obtained, which are used in the 

calculation of linearized moduli: 

 𝐬𝐬𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞 =    �2 3⁄ 𝐻𝐻𝑚𝑚+1𝐧𝐧𝑚𝑚+1  (10.2) 

 𝐬𝐬𝑚𝑚+1,ζ∗    = −�2 3⁄ 𝑑𝑑𝑚𝑚+1𝐦𝐦𝑚𝑚+1 (10.3) 

 𝐬𝐬𝑚𝑚+1,𝛥𝛥𝐞𝐞   =    �2 3⁄ 𝑑𝑑𝑚𝑚+1 �𝐦𝐦𝑚𝑚+1 ⊗
𝜕𝜕𝜁𝜁𝑒𝑒

𝜕𝜕𝛥𝛥𝐞𝐞
+ sin(𝜁𝜁𝑒𝑒 − 𝜁𝜁∗)

𝜕𝜕𝐦𝐦𝑚𝑚

𝜕𝜕𝛥𝛥𝐞𝐞
� (10.4) 

where 

 𝜁𝜁,𝛥𝛥𝐞𝐞
𝑒𝑒    =

2𝐺𝐺
‖𝐬𝐬𝑒𝑒‖

[− sin 𝜁𝜁𝑒𝑒 𝐧𝐧𝑚𝑚 + cos 𝜁𝜁𝑒𝑒 𝐦𝐦𝑚𝑚] (10.5) 

 
𝜕𝜕𝐦𝐦𝑚𝑚

𝜕𝜕𝛥𝛥𝐞𝐞
=

1
‖𝛥𝛥𝐞𝐞‖ sin𝜃𝜃𝑚𝑚

[𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧𝑚𝑚 ⊗ 𝐧𝐧𝑚𝑚 −𝐦𝐦𝑚𝑚 ⊗𝐦𝐦𝑚𝑚] (10.6) 

Equations (10.5) and (10.6) are obtained by differentiating the definitions in equations 

(3.18) and (3.12) respectively. The ratio sin 𝜁𝜁 sin 𝜃𝜃𝑚𝑚⁄  which appears in (10.4), may 

demand care under proportional loading as both angles approach zero. In such cases the 

ratio may be substituted by the value �2𝐺𝐺�3 2⁄ ‖𝛥𝛥𝐞𝐞‖ − 3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞� 𝑑𝑑𝑚𝑚+1� , obtained at the limit 

𝜃𝜃𝑚𝑚 → 0. Additionally, since 𝜃𝜃𝑒𝑒 =  𝜃𝜃𝑚𝑚 − 𝜁𝜁𝑒𝑒, the following expressions can be derived: 

 
𝜃𝜃,𝛥𝛥𝐞𝐞
𝑒𝑒 =  

1
‖𝛥𝛥𝐞𝐞‖

[−sin𝜃𝜃𝑚𝑚 𝐧𝐧𝑚𝑚 + cos 𝜃𝜃𝑚𝑚 𝐦𝐦𝑚𝑚]

−
2𝐺𝐺
‖𝐬𝐬𝑒𝑒‖

[− sin 𝜁𝜁𝑒𝑒 𝐧𝐧𝑚𝑚 + cos 𝜁𝜁𝑒𝑒 𝐦𝐦𝑚𝑚] 
(10.7) 

Expressions (10.1)-(10.7) are applicable for the integration algorithm and its 

linearization, irrespective of the definition of ℎ�, and refer to both three-dimensional and 

shell elements. 
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First branch of the model (𝜃𝜃𝑝𝑝 ≤ 𝜃𝜃𝑐𝑐) 
For the first branch of the model, the algorithm reduces to the system of equations (10.8) 

and (10.9), which is solved numerically, employing a local Newton scheme. 

 𝐹𝐹1(𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗,𝛥𝛥𝐞𝐞) = 𝐹𝐹𝑝𝑝1 = 1 + tan2 𝜁𝜁∗ − �
𝑞𝑞𝑒𝑒

𝑑𝑑𝑚𝑚+1 + 3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞
�
2

= 0 (10.8) 

 𝐹𝐹2(𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗,𝛥𝛥𝐞𝐞) = tan 𝜁𝜁∗ −
tan𝜃𝜃𝑒𝑒

𝐻𝐻 − 1
= 0 (10.9) 

where 

 𝐻𝐻 =
‖𝐬𝐬𝑒𝑒‖

2𝐺𝐺‖𝛥𝛥𝐞𝐞‖ cos 𝜃𝜃𝑒𝑒
�1 +

ℎ𝑚𝑚+1
3𝐺𝐺

� =
𝐬𝐬𝑒𝑒 ⋅ 𝐬𝐬𝑒𝑒

2𝐺𝐺𝛥𝛥𝐞𝐞 ⋅ 𝐬𝐬𝑒𝑒
�1 +

ℎ𝑚𝑚+1
3𝐺𝐺

� (10.10) 

The derivatives, used in the Newton scheme are: 

 𝐹𝐹𝑝𝑝1,𝛥𝛥𝜀𝜀𝑞𝑞  = 2 �
𝑞𝑞𝑒𝑒

𝑑𝑑𝑚𝑚+1 + 3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞
�
2 𝐻𝐻𝑚𝑚+1 + 3𝐺𝐺
𝑑𝑑𝑚𝑚+1 + 3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞

 (10.11) 

 𝐹𝐹𝑝𝑝1,𝜁𝜁∗ = 2 tan 𝜁𝜁∗ (1 + tan2 𝜁𝜁∗) (10.12) 

 𝐹𝐹𝑝𝑝1,𝛥𝛥𝐞𝐞 = −2
3𝐺𝐺 𝐬𝐬𝑒𝑒

�𝑑𝑑𝑚𝑚+1 + 3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞�
2 (10.13) 

 𝐹𝐹2,𝛥𝛥𝜀𝜀𝑞𝑞
=

tan𝜃𝜃𝑒𝑒

(𝐻𝐻 − 1)2  
‖𝐬𝐬𝑒𝑒‖

2𝐺𝐺‖𝛥𝛥𝐞𝐞‖ cos 𝜃𝜃𝑒𝑒
𝜕𝜕ℎ𝑚𝑚+1 𝜕𝜕𝛥𝛥𝜀𝜀𝑞𝑞⁄

3𝐺𝐺
 (10.14) 

 𝐹𝐹2,𝜁𝜁∗ = 1 + tan2 𝜁𝜁∗ (10.15) 

 

𝐹𝐹2,𝛥𝛥𝐞𝐞 = −
1 + tan2 𝜃𝜃𝑒𝑒

𝐻𝐻 − 1
𝜃𝜃,𝛥𝛥𝐞𝐞𝑒𝑒  

+
tan𝜃𝜃𝑒𝑒

(𝐻𝐻 − 1)2  
1

‖𝛥𝛥𝐞𝐞‖ cos 𝜃𝜃𝑒𝑒
�2

𝐬𝐬𝑒𝑒

‖𝐬𝐬𝑒𝑒‖
−

‖𝐬𝐬𝑒𝑒‖
‖𝛥𝛥𝐞𝐞‖ cos𝜃𝜃𝑒𝑒

�
𝐬𝐬𝑒𝑒

2𝐺𝐺
+ 𝛥𝛥𝐞𝐞�� �1 +

ℎ𝑚𝑚+1
3𝐺𝐺

� 

(10.16) 

Those derivatives are also employed in the linearization of the model. 

Remark: Following a relevant discussion in paragraph 3.3, equation (10.9) offers an 

explicit expression for 𝜁𝜁∗, which can be used to eliminate 𝜁𝜁∗ from (10.8), leading to: 

 

𝐹𝐹�𝑝𝑝1�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝐞𝐞� = 𝐹𝐹𝑝𝑝1�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝐞𝐞�,𝛥𝛥𝐞𝐞� = 

1 + �
sin 𝜃𝜃𝑒𝑒

‖𝐬𝐬𝑒𝑒‖
2𝐺𝐺‖𝛥𝛥𝐞𝐞‖ �1 + ℎ𝑚𝑚+1

3𝐺𝐺 � − cos 𝜃𝜃𝑒𝑒
�

2

− �
𝑞𝑞𝑒𝑒

𝑑𝑑𝑚𝑚+1 + 3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞
�
2

 
(10.17) 
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For the three-dimensional formulation, equation (10.17) can be solved for 𝛥𝛥𝜀𝜀𝑞𝑞 which is 

next substituted into (10.9) to provide 𝜁𝜁∗. Therefore, single variable equations need to be 

solved to define each of the unknowns. The derivatives used in this alternative expression 

of the problem and the subsequent linearization are: 

 𝐹𝐹�𝑝𝑝1,𝛥𝛥𝜀𝜀𝑞𝑞 = 𝐹𝐹𝑝𝑝1,𝛥𝛥𝜀𝜀𝑞𝑞  + 𝐹𝐹𝑝𝑝1,𝜁𝜁∗𝜁𝜁,𝛥𝛥𝜀𝜀𝑞𝑞
∗ = 𝐹𝐹𝑝𝑝1,𝛥𝛥𝜀𝜀𝑞𝑞 + 𝐹𝐹𝑝𝑝1,𝜁𝜁∗ �−

𝐹𝐹𝑝𝑝2,𝛥𝛥𝜀𝜀𝑞𝑞

𝐹𝐹𝑝𝑝2,𝜁𝜁∗
� (10.18) 

 𝐹𝐹�𝑝𝑝1,𝜁𝜁∗ = 0 (10.19) 

 𝐹𝐹�𝑝𝑝1,𝛥𝛥𝐞𝐞 = 𝐹𝐹𝑝𝑝1,𝛥𝛥𝐞𝐞 + 𝐹𝐹𝑝𝑝1,𝜁𝜁∗𝜁𝜁,𝛥𝛥𝐞𝐞
∗ = 𝐹𝐹𝑝𝑝1,𝛥𝛥𝐞𝐞 + 𝐹𝐹𝑝𝑝1,𝜁𝜁∗ �−

𝐹𝐹𝑝𝑝2,𝛥𝛥𝐞𝐞

𝐹𝐹𝑝𝑝2,𝜁𝜁∗
� (10.20) 

Remark: Either version: 𝐹𝐹1 = 𝐹𝐹𝑝𝑝1 or 𝐹𝐹1 = 𝐹𝐹�𝑝𝑝1 can be used in solving for 𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗ and 

either may be used in the subsequent linearization of the model, leading to identical 

results. 

 

Second branch of the model (𝜃𝜃𝑝𝑝 = 𝜃𝜃𝑐𝑐 ) 
For the second branch of the present model, equations (10.21) and (10.22) are solved 

numerically. 

 𝐹𝐹1 = 𝐹𝐹𝑝𝑝2(𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝐞𝐞) = �𝛥𝛥𝜀𝜀𝑞𝑞 +
𝑑𝑑𝑚𝑚+1
3𝐺𝐺

�
2

+ �𝛥𝛥𝜀𝜀𝑞𝑞 tan𝜃𝜃𝑐𝑐�
2
− �

𝑞𝑞𝑒𝑒

3𝐺𝐺
�
2

= 0 (10.21) 

 𝐹𝐹2 = sin 𝜁𝜁∗ −
3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞 tan 𝜃𝜃𝑐𝑐

𝑞𝑞𝑒𝑒
= 0 (10.22) 

Using only (10.21), the equivalent plastic strain increment 𝛥𝛥𝜀𝜀𝑞𝑞 can be obtained directly. 

Subsequently, (10.22) may then be solved to find 𝜁𝜁∗. The derivatives necessary for the 

solution of the two equations, also used in the consistent linearization, are: 

 𝐹𝐹𝑝𝑝2,𝛥𝛥𝜀𝜀𝑞𝑞 = 2 �𝛥𝛥𝜀𝜀𝑞𝑞 +
𝑑𝑑𝑚𝑚+1
3𝐺𝐺

� �1 +
𝐻𝐻𝑚𝑚+1
3𝐺𝐺

� + 2𝛥𝛥𝜀𝜀𝑞𝑞 tan2 𝜃𝜃𝑐𝑐 (10.23) 

 𝐹𝐹𝑝𝑝2,𝜁𝜁∗ = 0 (10.24) 

 𝐹𝐹𝑝𝑝2,𝛥𝛥𝐞𝐞 = −6𝐺𝐺 𝐬𝐬𝑒𝑒/(3𝐺𝐺)2 (10.25) 

and 

 𝐹𝐹2,𝛥𝛥𝜀𝜀𝑞𝑞 = −
3𝐺𝐺 tan 𝜃𝜃𝑐𝑐

𝑞𝑞𝑒𝑒
 (10.26) 
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 𝐹𝐹2,𝜁𝜁∗ = cos 𝜁𝜁∗ (10.27) 

 𝐹𝐹2,𝛥𝛥𝐞𝐞 = −
3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞 tan𝜃𝜃𝑐𝑐

𝑞𝑞𝑒𝑒
 
3𝐺𝐺𝒔𝒔𝑒𝑒

(𝑞𝑞𝑒𝑒)2 (10.28) 

 

Explicit definition of ℎ�(𝛥𝛥𝜀𝜀𝑞𝑞 ,𝜃𝜃) 
A similar methodology can be applied in the case where a function ℎ�(𝛥𝛥𝜀𝜀𝑞𝑞 ,𝜃𝜃) is defined 

explicitly. Adopting such an approach, the model by Pappa & Karamanos (2016) could 

be integrated and linearized, with ℎ� defined as reported Table 2.2. The system of 

equations (3.31) and (3.32) can be solved in terms of �𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗� with 𝜃𝜃 = 𝜃𝜃𝑒𝑒 + 𝜁𝜁∗, and it 

can be written as follows: 

 𝐹𝐹𝑝𝑝ℎ��𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗,𝛥𝛥𝐞𝐞� = 𝑞𝑞𝑒𝑒 cos 𝜁𝜁∗ − �𝑑𝑑𝑚𝑚+1 + 3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞� = 0 (10.29) 

 𝐿𝐿𝑝𝑝ℎ��𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗,𝛥𝛥𝐞𝐞� = 𝑞𝑞𝑒𝑒 sin 𝜁𝜁∗ − �2 3⁄
3𝐺𝐺‖𝛥𝛥𝐞𝐞‖ sin(𝜃𝜃𝑒𝑒 + 𝜁𝜁∗)

1 + ℎ�𝑚𝑚+1 3𝐺𝐺⁄
= 0 (10.30) 

with 

 ℎ�𝑚𝑚+1 = ℎ�𝑚𝑚+1�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝜃𝜃 = 𝜃𝜃𝑒𝑒 + 𝜁𝜁∗� (10.31) 

The derivatives used in the integration and the linearized moduli of the model are: 

 𝐹𝐹𝑝𝑝ℎ�,𝛥𝛥𝜀𝜀𝑞𝑞 = −[𝐻𝐻𝑚𝑚+1 + 3𝐺𝐺] (10.32) 

 𝐹𝐹𝑝𝑝ℎ�,𝜁𝜁∗   = −𝑞𝑞𝑒𝑒 sin 𝜁𝜁∗ (10.33) 

 𝐹𝐹𝑝𝑝ℎ�,𝛥𝛥𝐞𝐞  =
3𝐺𝐺𝐬𝐬𝑒𝑒

𝑞𝑞𝑒𝑒
cos 𝜁𝜁∗ (10.34) 

and 

 𝐿𝐿𝑝𝑝ℎ�,𝛥𝛥𝜀𝜀𝑞𝑞 = +�2 3⁄
3𝐺𝐺‖𝛥𝛥𝐞𝐞‖ sin(𝜃𝜃𝑒𝑒 + 𝜁𝜁∗)

�1 + ℎ�𝑚𝑚+1 3𝐺𝐺⁄ �
2

ℎ�𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞 

3𝐺𝐺
 (10.35) 

 

𝐿𝐿𝑝𝑝ℎ�,𝜁𝜁∗   = 𝑞𝑞𝑒𝑒 cos 𝜁𝜁∗ 

−��2 3⁄
3𝐺𝐺‖𝛥𝛥𝐞𝐞‖ cos(𝜃𝜃𝑒𝑒 + 𝜁𝜁∗)

1 + ℎ�𝑚𝑚+1 3𝐺𝐺⁄
− �2 3⁄

3𝐺𝐺‖𝛥𝛥𝐞𝐞‖ sin(𝜃𝜃𝑒𝑒 + 𝜁𝜁∗)

�1 + ℎ�𝑚𝑚+1 3𝐺𝐺⁄ �
2

ℎ�𝑚𝑚+1,𝜃𝜃 

3𝐺𝐺
� 

(10.36) 
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𝐿𝐿𝑝𝑝ℎ�,𝛥𝛥𝐞𝐞 =
3𝐺𝐺𝐬𝐬𝑒𝑒

𝑞𝑞𝑒𝑒
sin 𝜁𝜁∗

− ��2 3⁄
3𝐺𝐺 sin(𝜃𝜃𝑒𝑒 + 𝜁𝜁∗)

1 + ℎ�𝑚𝑚+1 3𝐺𝐺⁄

− �2 3⁄
3𝐺𝐺‖𝛥𝛥𝐞𝐞‖ sin(𝜃𝜃𝑒𝑒 + 𝜁𝜁∗)

�1 + ℎ�𝑚𝑚+1 3𝐺𝐺⁄ �
2

ℎ�𝑚𝑚+1,‖𝛥𝛥𝐞𝐞‖ 

3𝐺𝐺
�
𝛥𝛥𝐞𝐞
‖𝛥𝛥𝐞𝐞‖

− ��2 3⁄
3𝐺𝐺‖𝛥𝛥𝐞𝐞‖ cos(𝜃𝜃𝑒𝑒 + 𝜁𝜁∗)

1 + ℎ�𝑚𝑚+1 3𝐺𝐺⁄

− �2 3⁄
3𝐺𝐺‖𝛥𝛥𝐞𝐞‖ sin(𝜃𝜃𝑒𝑒 + 𝜁𝜁∗)

�1 + ℎ�𝑚𝑚+1 3𝐺𝐺⁄ �
2

ℎ�𝑚𝑚+1,𝜃𝜃 

3𝐺𝐺
�𝜃𝜃,𝛥𝛥𝐞𝐞

𝑒𝑒  

(10.37) 

Enhancement for shell element implementation 
For shell element, the extra unknown strain increment component 𝛥𝛥𝜀𝜀33  needs to be 

calculated using the additional condition (3.52), to define the plastic corrector. The latter 

can be rewritten in the form of equation (10.38) below: 

 𝐹𝐹𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗,𝛥𝛥𝛆𝛆(𝛥𝛥𝜀𝜀33)� = 𝐚𝐚 ⋅ 𝐬𝐬𝑚𝑚+1 − 𝑝𝑝𝑚𝑚+1 = 0 (10.38) 

and its derivatives used to solve the 3x3 system are: 

 𝐹𝐹𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝛥𝛥𝜀𝜀𝑞𝑞  = 𝐚𝐚 ⋅ 𝐬𝐬𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞 (10.39) 

 𝐹𝐹𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝜁𝜁∗    = 𝐚𝐚 ⋅ 𝐬𝐬𝑚𝑚+1,𝜁𝜁∗ (10.40) 

 𝐹𝐹𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝛥𝛥𝜀𝜀33 = 𝐚𝐚 ⋅ 𝐬𝐬𝑚𝑚+1,𝛥𝛥𝐞𝐞 − 𝐾𝐾 (10.41) 

For the two branches of the J2NA model, 𝐹𝐹2  can be easily rewritten as an explicit 

expression of angle 𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝐞𝐞(𝛥𝛥𝜀𝜀33)�. This allows for the system to reduce to a single 

equation of a scalar unknown 𝛥𝛥𝜀𝜀𝑞𝑞, for three dimensional elements. Similarly, for shell 

element implementation, the explicit expression for 𝜁𝜁∗ allows for the solution of a simpler 

system of two unknowns �𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33�, expressed as follows: 

 𝐹𝐹�1�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33�       = 𝐹𝐹1�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33�,𝛥𝛥𝜀𝜀33�       = 0 (10.42) 

 𝐹𝐹�𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33� = 𝐹𝐹𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33�,𝛥𝛥𝜀𝜀33� = 0 (10.43) 

To solve the system of equations (10.42) and (10.43), a local Newton scheme is used; 

assuming from some trial values �𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33�, functions 𝐹𝐹�1, 𝐹𝐹�𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 and their derivatives 
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are calculated. A correction to these trial values �𝛿𝛿�𝛥𝛥𝜀𝜀𝑞𝑞�,𝛿𝛿(𝛥𝛥𝜀𝜀33)� is obtained as: 

 �𝛢𝛢11 𝛢𝛢12
𝛢𝛢21 𝛢𝛢22

� ⋅ � 𝛿𝛿�𝛥𝛥𝜀𝜀𝑞𝑞�
𝛿𝛿(𝛥𝛥𝜀𝜀33)

 � = � 𝑏𝑏1𝑏𝑏2
 � (10.44) 

or 

 � 𝛿𝛿�𝛥𝛥𝜀𝜀𝑞𝑞�
𝛿𝛿(𝛥𝛥𝜀𝜀33)

 � =
1

𝐴𝐴11𝐴𝐴22 − 𝐴𝐴12𝐴𝐴21
 �   𝛢𝛢22 −𝛢𝛢12
−𝛢𝛢21    𝛢𝛢11

� ⋅ � 𝑏𝑏1𝑏𝑏2
 � (10.45) 

In the above equations, 𝐴𝐴𝑖𝑖𝑖𝑖 and 𝑏𝑏𝑖𝑖 are obtained by the following expressions: 

 𝐴𝐴11 =
𝜕𝜕𝐹𝐹�1
𝜕𝜕𝛥𝛥𝜀𝜀𝑞𝑞 

= 𝐹𝐹1,𝛥𝛥𝜀𝜀𝑞𝑞 + 𝐹𝐹1,𝜁𝜁∗𝜁𝜁,𝛥𝛥𝜀𝜀𝑞𝑞
∗  (10.46) 

 𝐴𝐴12 =
𝜕𝜕𝐹𝐹�1
𝜕𝜕𝛥𝛥𝜀𝜀33

= 𝐚𝐚 ⋅ �𝐹𝐹1,𝛥𝛥𝐞𝐞 + 𝐹𝐹1,𝜁𝜁∗𝜁𝜁,𝛥𝛥𝐞𝐞
∗ � (10.47) 

‘ 𝐴𝐴21 =
𝜕𝜕𝐹𝐹�𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕𝛥𝛥𝜀𝜀𝑞𝑞

= 𝐚𝐚 ⋅ �𝐬𝐬𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞 + 𝐬𝐬𝑚𝑚+1,𝜁𝜁∗𝜁𝜁,𝛥𝛥𝜀𝜀𝑞𝑞
∗ � (10.48) 

 𝐴𝐴22 =
𝜕𝜕𝐹𝐹�𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕𝛥𝛥𝜀𝜀33

= 𝐚𝐚 ⋅ �𝐚𝐚 ⋅ 𝐬𝐬𝑚𝑚+1,𝛥𝛥𝐞𝐞 + 𝐚𝐚 ⋅ 𝐬𝐬𝑚𝑚+1,𝜁𝜁∗𝜁𝜁,𝛥𝛥𝐞𝐞
∗ � − 𝐾𝐾 (10.49) 

and 

 𝑏𝑏1 = −𝐹𝐹�1�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33� = −𝐹𝐹1�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33�,𝛥𝛥𝜀𝜀33� (10.50) 

 𝑏𝑏2 = −𝐹𝐹�𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33� = −𝐹𝐹𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝜀𝜀33�,𝛥𝛥𝜀𝜀33� (10.51) 

The derivatives 𝜁𝜁,𝛥𝛥𝜀𝜀𝑞𝑞
∗  , 𝜁𝜁,𝛥𝛥𝐞𝐞

∗  can be calculated by differentiating 𝜁𝜁∗�𝛥𝛥𝜀𝜀𝑞𝑞 ,𝛥𝛥𝐞𝐞(𝛥𝛥𝜀𝜀33)�, or 

equivalently, directly from 𝐹𝐹2: 

 𝜁𝜁,𝛥𝛥𝜀𝜀𝑞𝑞
∗ = −𝐹𝐹2,𝛥𝛥𝜀𝜀𝑞𝑞 𝐹𝐹2,𝜁𝜁∗⁄  (10.52) 

 𝜁𝜁,𝛥𝛥𝐞𝐞
∗   = −𝐹𝐹2,𝛥𝛥𝒆𝒆 𝐹𝐹2,𝜁𝜁∗⁄  (10.53) 

Derivatives 𝐬𝐬𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞 , 𝐬𝐬𝑚𝑚+1,𝜁𝜁∗ , 𝐬𝐬𝑚𝑚+1,𝛥𝛥𝐞𝐞,𝐹𝐹1,𝛥𝛥𝜀𝜀𝑞𝑞 , 𝐹𝐹1,𝜁𝜁∗ ,  𝐹𝐹1,𝛥𝛥𝐞𝐞 ,  𝐹𝐹1,𝜁𝜁∗ ,  𝐹𝐹2,𝛥𝛥𝜀𝜀𝑞𝑞 ,  𝐹𝐹2,𝜁𝜁∗ ,  𝐹𝐹2,𝛥𝛥𝒆𝒆  have 

been presented earlier in this Appendix, and are summed up in Table 10.1. 

The trial values of 𝛥𝛥𝜀𝜀𝑞𝑞 and 𝛥𝛥𝜀𝜀33 are updated as follows 

 𝛥𝛥𝜀𝜀𝑞𝑞  ←   𝛥𝛥𝜀𝜀𝑞𝑞 + 𝛿𝛿�𝛥𝛥𝜀𝜀𝑞𝑞 �
𝛥𝛥𝜀𝜀33 ←  𝛥𝛥𝜀𝜀33 + 𝛿𝛿(𝛥𝛥𝜀𝜀33)

 (10.54) 

and the iterative process continues until both 𝑏𝑏1, 𝑏𝑏2 vanish, as indicated in Table 10.1.  
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Table 10.1: Newton scheme for solving the system of  𝐹𝐹�1  and 𝐹𝐹�𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒  for the two 
branches of the model for shell elements 

 𝐧𝐧𝑚𝑚 = 𝐬𝐬𝑚𝑚/‖𝐬𝐬𝑚𝑚‖, 𝑑𝑑𝑚𝑚 = 𝑑𝑑�𝜀𝜀𝑞𝑞|𝑚𝑚� 
 𝛥𝛥𝜀𝜀𝑞𝑞 = 0,    𝛿𝛿�𝛥𝛥𝜀𝜀𝑞𝑞� = 0 , 𝐹𝐹�1 = ∞ 

𝛥𝛥𝜀𝜀33 = 0,  𝛿𝛿(𝛥𝛥𝜀𝜀33) = 0, 𝐹𝐹�𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = ∞ 
WHILE  max��𝐹𝐹�1�, �𝐹𝐹�𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒�� > 𝑇𝑇𝑇𝑇𝐿𝐿 
 𝛥𝛥𝜀𝜀𝑞𝑞 = 𝛥𝛥𝜀𝜀𝑞𝑞 + 𝛿𝛿�𝛥𝛥𝜀𝜀𝑞𝑞�, 𝛥𝛥𝜀𝜀33 = 𝛥𝛥𝜀𝜀33 + 𝛿𝛿(𝛥𝛥𝜀𝜀33) 

𝛥𝛥𝛆𝛆 = 𝛥𝛥𝛆𝛆� + 𝛥𝛥𝜀𝜀33𝐚𝐚 
𝛔𝛔𝑒𝑒 = 𝛔𝛔𝑚𝑚 + 𝐃𝐃𝛥𝛥𝛆𝛆        , 𝐬𝐬𝑒𝑒 = 𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣𝛔𝛔𝑒𝑒 = 𝐬𝐬𝑚𝑚 + 2𝐺𝐺𝛥𝛥𝐞𝐞   
𝑝𝑝𝑒𝑒 = −1 3⁄ (𝐈𝐈 ⋅ 𝛔𝛔𝑒𝑒) , 𝑞𝑞𝑒𝑒 = �3 2⁄ ‖𝐬𝐬𝑒𝑒‖ 

cos𝜃𝜃𝑚𝑚 =
𝐬𝐬𝑚𝑚 ⋅ 𝛥𝛥𝐞𝐞

‖𝐬𝐬𝑚𝑚‖‖𝛥𝛥𝐞𝐞‖
, 𝐦𝐦𝑚𝑚 =

[𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧𝑚𝑚 ⊗ 𝐧𝐧𝑚𝑚] 𝛥𝛥𝐞𝐞
‖[𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧𝑚𝑚 ⊗ 𝐧𝐧𝑚𝑚] 𝛥𝛥𝐞𝐞 ‖

 

cos 𝜁𝜁𝑒𝑒 =
𝐬𝐬𝑚𝑚 ⋅  𝐬𝐬𝑒𝑒

‖𝐬𝐬𝑚𝑚‖‖𝐬𝐬𝑒𝑒‖
 , cos𝜃𝜃𝑒𝑒 =

𝛥𝛥𝐞𝐞 ⋅  𝐬𝐬𝑒𝑒

‖𝛥𝛥𝐞𝐞‖‖𝐬𝐬𝑒𝑒‖
 

𝜁𝜁,𝛥𝛥𝐞𝐞
𝑒𝑒  (10.5),                           𝜃𝜃,𝛥𝛥𝐞𝐞

𝑒𝑒  (10.7),                    𝐦𝐦𝑚𝑚,𝛥𝛥𝐞𝐞 (10.6) 
 1st branch 2nd branch  

𝜁𝜁∗ tan 𝜁𝜁∗ =
sin𝜃𝜃𝑒𝑒

‖𝐬𝐬𝑒𝑒‖
2𝐺𝐺‖𝛥𝛥𝐞𝐞‖ �1 + ℎ𝑚𝑚+1

3𝐺𝐺 � − cos𝜃𝜃𝑒𝑒
 sin 𝜁𝜁∗ =

3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞 tan𝜃𝜃𝑐𝑐
𝑞𝑞𝑒𝑒

 

 𝜃𝜃 = 𝜃𝜃𝑒𝑒 + 𝜁𝜁∗, 𝜁𝜁 = 𝜁𝜁𝑒𝑒 − 𝜁𝜁∗ 
𝐧𝐧𝑚𝑚+1 =     cos 𝜁𝜁 𝐧𝐧𝑚𝑚 + sin 𝜁𝜁𝐦𝐦𝑚𝑚 
𝐦𝐦𝑚𝑚+1 = − sin 𝜁𝜁 𝐧𝐧𝑚𝑚 + cos 𝜁𝜁𝐦𝐦𝑚𝑚 
𝐬𝐬𝑚𝑚+1 = �2 3⁄ 𝑑𝑑𝑚𝑚+1 𝐧𝐧𝑚𝑚+1(10.1) 
𝐬𝐬𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞(10.2),             𝐬𝐬𝑚𝑚+1,𝜁𝜁∗ (10.3),            𝐬𝐬𝑚𝑚+1,𝛥𝛥𝐞𝐞(10.4) 

 1st branch 2nd branch 
𝐹𝐹1 & 𝐹𝐹2    (10.8) & (10.9) (10.21) & (10.22) 

𝐹𝐹1,𝛥𝛥𝜀𝜀𝑞𝑞  & 𝐹𝐹2,𝛥𝛥𝜀𝜀𝑞𝑞   (10.11) & (10.14) (10.23) & (10.26)  
𝐹𝐹1,𝜁𝜁∗  & 𝐹𝐹2,𝜁𝜁∗  (10.12) & (10.15) (10.24) & (10.27) 
𝐹𝐹1,𝛥𝛥𝐞𝐞 & 𝐹𝐹2,𝛥𝛥𝐞𝐞 (10.13) & (10.16) (10.25) & (10.28) 

 𝐹𝐹�1       = 𝐹𝐹1�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗,𝛥𝛥𝜀𝜀33� 
𝐹𝐹�𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐹𝐹𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗,𝛥𝛥𝜀𝜀33�(10.38) 

 Calculate 𝐴𝐴11,𝐴𝐴12,𝐴𝐴21,𝐴𝐴22 and the corrections 𝛿𝛿�𝛥𝛥𝜀𝜀𝑞𝑞�, 𝛿𝛿(𝛥𝛥𝜀𝜀33) 
 𝐴𝐴11 = 𝐹𝐹1,𝛥𝛥𝜀𝜀𝑞𝑞 + 𝐹𝐹1,𝜁𝜁∗𝜁𝜁,𝛥𝛥𝜀𝜀𝑞𝑞

∗  

𝐴𝐴12 = 𝐚𝐚 ⋅ �𝐹𝐹1,𝛥𝛥𝐞𝐞 + 𝐹𝐹1,𝜁𝜁∗𝜁𝜁,𝛥𝛥𝐞𝐞
∗ � 

𝐴𝐴21 = 𝐚𝐚 ⋅ �𝐬𝐬𝑚𝑚+1,𝛥𝛥𝜀𝜀𝑞𝑞 + 𝐬𝐬𝑚𝑚+1,𝜁𝜁∗𝜁𝜁,𝛥𝛥𝜀𝜀𝑞𝑞
∗ �, 

𝐴𝐴22 = 𝐚𝐚 ⋅ �𝐚𝐚 ⋅ 𝐬𝐬𝑚𝑚+1,𝛥𝛥𝐞𝐞 + 𝐚𝐚 ⋅ 𝐬𝐬𝑚𝑚+1,𝜁𝜁∗𝜁𝜁,𝛥𝛥𝐞𝐞
∗ � − 𝐾𝐾 

 where  𝜁𝜁,𝛥𝛥𝜀𝜀𝑞𝑞
∗ = −𝐹𝐹2,𝛥𝛥𝜀𝜀𝑞𝑞/𝐹𝐹2,𝜁𝜁∗ , 𝜁𝜁,𝛥𝛥𝐞𝐞

∗ = −𝐹𝐹2,𝛥𝛥𝒆𝒆/𝐹𝐹2,𝜁𝜁∗ 

 
� 𝛿𝛿�𝛥𝛥𝜀𝜀𝑞𝑞�
𝛿𝛿(𝛥𝛥𝜀𝜀33)

 � =
1

𝐴𝐴11𝐴𝐴22 − 𝐴𝐴12𝐴𝐴21
 �   𝛢𝛢22 −𝛢𝛢12
−𝛢𝛢21    𝛢𝛢11

� ⋅ � −𝐹𝐹
�1      

−𝐹𝐹�𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒
 � 

END 
Remark: For 3D elements, only 𝐹𝐹�1�𝛥𝛥𝜀𝜀𝑞𝑞� = 𝐹𝐹1�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗� = 0 needs to be solved. The 
correction to 𝛥𝛥𝜀𝜀𝑞𝑞 using a Newton scheme is ontained as 𝛿𝛿�𝛥𝛥𝜀𝜀𝑞𝑞� = −𝐹𝐹�1/𝐹𝐹�1,𝛥𝛥𝜀𝜀𝑞𝑞.(10.46) 
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APPENDIX 2: DETAILS ON OTHER MODELS IN THE 
LITERATURE 

In this appendix, some additional details are provided about the formulation properties 

and implementation of material models in the literature. Namely, the limitations of the 

model by Hughes & Shakib (1986) are indicated and implementation schemes are 

developed for the J2DT, and the original model by Simo (1987). 

Limitation in the model by Hughes & Shakib (1986) 
Hughes & Shakib (1987) developed an associative “pseudo-corner” model, incorporating 

increased plastic flow for non-proportional loading paths. It employs a modified 

hardening modulus 𝐻𝐻� explicitly dependent on the strain rate direction (angle 𝜃𝜃), defined 

as: 

 𝐻𝐻� = 3𝐺𝐺 ��1 +
𝐻𝐻
3𝐺𝐺�

cos𝜃𝜃
cos𝜓𝜓− 1� (10.55) 

with  

 𝜓𝜓(𝜃𝜃) = max �0, 𝜋𝜋 2⁄
𝜃𝜃 − 𝜃𝜃𝑐𝑐
𝜋𝜋 2⁄ − 𝜃𝜃𝑐𝑐

� (10.56) 

and 𝜃𝜃𝑐𝑐  was suggested as a material parameter to be calibrated form experimental data. 

However, from Drucker’s requirements, plastic work must be positive (�̇�𝐬 ⋅ �̇�𝐞𝒑𝒑 ≥ 0), which 

creates a restriction for 𝜃𝜃𝑐𝑐: 

 �̇�𝐬 ⋅ �̇�𝐞𝑝𝑝 ≥ 0   ↔    2𝐺𝐺(�̇�𝐞 − �̇�𝐞𝑝𝑝) ⋅ �̇�𝐞𝑝𝑝 ≥ 0 ↔  cos𝜃𝜃 ≥
‖�̇�𝐞𝑝𝑝‖
‖�̇�𝐞‖

=
𝑤𝑤∗�𝜃𝜃, 𝜀𝜀𝑞𝑞�
1 + 𝐻𝐻 3𝐺𝐺⁄  (10.57) 

which under the definition (10.56) demands 𝜃𝜃𝑐𝑐 ≤ (𝜋𝜋 2⁄ ) (1 + 3𝐺𝐺 𝐻𝐻⁄ )⁄ = 𝜃𝜃𝑐𝑐 𝑠𝑠𝑚𝑚𝑥𝑥. This is 

restrictive for materials with low hardening 𝜃𝜃𝑐𝑐 𝑠𝑠𝑚𝑚𝑥𝑥 ≈ 0, and the model allows for very 

limited increases in the plastic flow compared to the J2FT. Yet, different definitions 𝜓𝜓(𝜃𝜃) 

may provide further applicability in materials with low hardening. Simo (1987), also 

noted that under non-proportional loading, this plastic flow may be accompanied by a 

reduction of the initial radius of the Von Mises yield surface, making it a softening model. 
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Implementation of J2 Deformation Theory 
As discussed in paragraph 2.4 the J2DT is a total strain theory, postulating there is a one-

to-one relation between total strain and stress, so no integration is needed for 

implementation in an FE environment. However, in an incremental analysis, a stress 

update algorithm is used to calculate the size of plastic strain after an imposed strain 

increment 𝛥𝛥𝛆𝛆. Isolating volumetric and deviatoric parts of the strain and accounting for 

additive decomposition, it can be easily seen that: 

 𝛆𝛆𝑚𝑚+1 = 𝛆𝛆𝑚𝑚 + 𝛥𝛥𝛆𝛆  (10.58) 

 𝐞𝐞𝑚𝑚+1𝑒𝑒 + 𝐞𝐞𝑚𝑚+1
𝑝𝑝 + 𝑡𝑡𝑡𝑡(𝛆𝛆𝑚𝑚+1) 3⁄ 𝐈𝐈 = 𝐞𝐞𝑚𝑚𝑒𝑒 + 𝐞𝐞𝑚𝑚

𝑝𝑝 + 𝛥𝛥𝐞𝐞 + 𝑡𝑡𝑡𝑡(𝛆𝛆𝑚𝑚 + 𝛥𝛥𝛆𝛆) 3⁄ 𝐈𝐈  (10.59) 

From the postulate that total plastic strain and stress are codirectional it is: 

 𝐞𝐞𝑚𝑚𝑒𝑒     = 𝐬𝐬𝑚𝑚 2𝐺𝐺⁄ = �2 3⁄ 𝑞𝑞𝑚𝑚 2𝐺𝐺⁄ 𝐧𝐧𝑚𝑚 ,                    𝐞𝐞𝑚𝑚
𝑝𝑝     = �3 2⁄ 𝜀𝜀𝑞𝑞|𝑚𝑚𝐧𝐧𝑚𝑚 (10.60) 

 𝐞𝐞𝑚𝑚+1𝑒𝑒 = 𝐬𝐬𝑚𝑚+1 2𝐺𝐺⁄ = �2 3⁄ 𝑞𝑞𝑚𝑚+1 2𝐺𝐺⁄ 𝐧𝐧𝑚𝑚+1 ,       𝐞𝐞𝑚𝑚+1
𝑝𝑝 = �3 2⁄ 𝜀𝜀𝑞𝑞|𝑚𝑚+1𝐧𝐧𝑚𝑚+1 (10.61) 

So that the deviatoric part of (10.59) takes the form: 

 �3 2⁄ �
𝑞𝑞𝑚𝑚+1
3𝐺𝐺

+ 𝜀𝜀𝑞𝑞|𝑚𝑚+1� 𝐧𝐧𝑚𝑚+1 = �3 2⁄ �
𝑞𝑞𝑚𝑚
3𝐺𝐺

+ 𝜀𝜀𝑞𝑞|𝑚𝑚� 𝐧𝐧𝑚𝑚 + 𝛥𝛥𝐞𝐞  (10.62) 

This defines the direction of the final deviatoric stress tensor 

 𝐧𝐧𝑚𝑚+1 =
�2 3⁄ 𝛥𝛥𝐞𝐞 + �𝑞𝑞𝑚𝑚 3𝐺𝐺⁄ + 𝜀𝜀𝑞𝑞|𝑚𝑚�𝐧𝐧𝑚𝑚

��2 3⁄ 𝛥𝛥𝐞𝐞 + �𝑞𝑞𝑚𝑚 3𝐺𝐺⁄ + 𝜀𝜀𝑞𝑞|𝑚𝑚�𝐧𝐧𝑚𝑚�
 (10.63) 

and its amplitude is calculated by solving: 

 ��2 3⁄ 𝛥𝛥𝐞𝐞 + �𝑞𝑞𝑚𝑚 3𝐺𝐺⁄ + 𝜀𝜀𝑞𝑞|𝑚𝑚�𝐧𝐧𝑚𝑚� = 𝑞𝑞𝑚𝑚+1 3𝐺𝐺⁄ + 𝜀𝜀𝑞𝑞|𝑚𝑚+1 (10.64) 

It is advantageous to square (10.64) and further using the consistency condition 𝑞𝑞𝑚𝑚+1 =

𝑑𝑑𝑚𝑚+1 = 𝑑𝑑�𝜀𝜀𝑞𝑞|𝑚𝑚+1�, equation (10.65) is obtained which is solved in terms of 𝜀𝜀𝑞𝑞|𝑚𝑚+1 to 

identify the size of the plastic part of the strain, to be used together with eq.(10.63) to find 

what is the new stress state. 

 
𝐹𝐹𝐷𝐷𝑇𝑇�𝛥𝛥𝜀𝜀𝑞𝑞� =  �

𝑑𝑑𝑚𝑚+1
3𝐺𝐺

+ 𝜀𝜀𝑞𝑞|𝑚𝑚+1�
2

− ��2 3⁄ ‖𝛥𝛥𝐞𝐞‖�
2
− �

𝑞𝑞𝑚𝑚
3𝐺𝐺

+ 𝜀𝜀𝑞𝑞|𝑚𝑚�
2

− 2 ��2 3⁄ � �
𝑞𝑞𝑚𝑚
3𝐺𝐺

+ 𝜀𝜀𝑞𝑞|𝑚𝑚� 𝐧𝐧𝑚𝑚 ⋅ 𝛥𝛥𝐞𝐞 = 0 
(10.65) 

And the derivative 
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 𝐹𝐹𝐷𝐷𝑇𝑇,𝜀𝜀𝑞𝑞  =  2 �
𝑑𝑑𝑚𝑚+1
3𝐺𝐺

+ 𝜀𝜀𝑞𝑞|𝑚𝑚+1� �
𝐻𝐻𝑚𝑚+1
3𝐺𝐺

+ 1� (10.66) 

A schematic representation of this implementation scheme is provided in Figure 10.1 

juxtaposed to the backward Euler integration for J2FT. 

 
Figure 10.1: Stress update algorithm for the J2FT and J2DT.  

The algorithmic moduli are obtained as described in paragraph 4, and their form is 

identical to the rate form and the tangent continuum rigidity 

 
𝐃𝐃𝑒𝑒𝑝𝑝
𝑐𝑐𝑐𝑐 = 3𝐾𝐾𝐈𝐈𝑣𝑣𝑜𝑜𝑒𝑒 +

2𝐺𝐺
1 + 3𝐺𝐺 ℎ𝑚𝑚+1⁄

[𝐈𝐈𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧𝑚𝑚+1 ⊗ 𝐧𝐧𝑚𝑚+1]

+
2𝐺𝐺

1 + 3𝐺𝐺 𝐻𝐻𝑚𝑚+1⁄
[𝐧𝐧𝑚𝑚+1 ⊗ 𝐧𝐧𝑚𝑚+1] 

(10.67) 

 

Implementation of the model by Simo (1987) 
The key properties of model by Simo (1987) were presented in paragraph 2.6. Below, a 

backward Euler integration scheme is presented, accounting for nonlinear isotropic 

 

𝐬𝐬𝑛+1
2𝐺  

𝛥𝛥𝐞𝐞𝒆𝒆 

𝐹𝐹𝑚𝑚 = 0 

𝐹𝐹𝑚𝑚+1 = 0 
𝐬𝐬𝑛
2𝐺 

Δ𝐞𝐞𝑝𝑝 Δ𝐞𝐞 

𝐬𝐬𝑒

2𝐺 

J2 Flow Theory 

𝛥𝛥𝐞𝐞𝒆𝒆 

J2 Deformation Theory 

𝐞𝐞𝑚𝑚
𝑝𝑝 

Δ𝐞𝐞𝑝𝑝 
Δ𝐞𝐞 

Δ𝐞𝐞 

𝐞𝐞𝑚𝑚+1
𝑝𝑝  

𝐬𝐬𝑛+1
2𝐺  

𝐬𝐬𝑛
2𝐺 

𝐹𝐹𝑚𝑚 = 0 

𝐹𝐹𝑚𝑚+1 = 0 
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hardening. This model can be directly addressed via the developed framework for J2NA, 

for any definition of the explicitly chosen function 𝛿𝛿�𝜃𝜃,𝛥𝛥𝜀𝜀𝑞𝑞�. The plastic strain increment 

is expressed as: 

 𝛥𝛥𝐞𝐞𝑝𝑝 = �3 2⁄ 𝛥𝛥𝜀𝜀𝑞𝑞 𝐧𝐧𝑚𝑚+1 +
1

1 + ℎ�𝑆𝑆𝑆𝑆 3𝐺𝐺⁄
[𝚰𝚰𝑑𝑑𝑒𝑒𝑣𝑣 − 𝐧𝐧𝑚𝑚+1 ⊗ 𝐧𝐧𝑚𝑚+1] 𝛥𝛥𝐞𝐞 (10.68) 

where ℎ�𝑆𝑆𝑆𝑆 is calculated by the demand tan𝜃𝜃𝑝𝑝 = 𝛿𝛿(𝜃𝜃 = 𝜃𝜃𝑒𝑒 + 𝜁𝜁∗,𝛥𝛥𝜀𝜀𝑞𝑞), and the internal 

variables are obtained by solving the system of: 

 𝐹𝐹1 = 𝐹𝐹𝛿𝛿��𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗� = �𝛥𝛥𝜀𝜀𝑞𝑞 +
𝑑𝑑𝑚𝑚+1
3𝐺𝐺

�
2

− �
𝑞𝑞𝑒𝑒

3𝐺𝐺
�
2

+ 𝛥𝛥𝜀𝜀𝑞𝑞2 𝛿𝛿2 = 0 (10.69) 

 𝐹𝐹2 = 𝐹𝐹𝛿𝛿�0�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗� = 3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞�̂�𝛿 − 𝑞𝑞𝑒𝑒 sin 𝜁𝜁∗ = 0 (10.70) 

and 

 𝐹𝐹𝛿𝛿� ,𝛥𝛥𝜀𝜀𝑞𝑞 = 2 �𝛥𝛥𝜀𝜀𝑞𝑞 +
𝑑𝑑𝑚𝑚+1
3𝐺𝐺

� �1 +
𝐻𝐻𝑚𝑚+1
3𝐺𝐺

� + 2𝛥𝛥𝜀𝜀𝑞𝑞𝛿𝛿2 + 2𝛥𝛥𝜀𝜀𝑞𝑞2𝛿𝛿�̂�𝛿,𝛥𝛥𝜀𝜀𝑞𝑞 (10.71) 

 𝐹𝐹𝛿𝛿� ,𝜁𝜁∗ = 2𝛥𝛥𝜀𝜀𝑞𝑞2𝛿𝛿𝛿𝛿,𝜃𝜃 (10.72) 

 𝐹𝐹𝛿𝛿� ,𝛥𝛥𝐞𝐞 = −6𝐺𝐺𝐬𝐬e + 2𝛥𝛥𝜀𝜀𝑞𝑞2𝛿𝛿𝛿𝛿,𝜃𝜃𝜃𝜃,𝛥𝛥𝐞𝐞
𝑒𝑒  (10.73) 

 

 𝐹𝐹𝛿𝛿�0,𝛥𝛥𝜀𝜀𝑞𝑞 = 3𝐺𝐺 𝛿𝛿 + 3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞𝛿𝛿,𝛥𝛥𝜀𝜀𝑞𝑞 (10.74) 

 𝐹𝐹𝛿𝛿�0,ζ∗ = 3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞�̂�𝛿,𝜃𝜃 − 𝑞𝑞𝑒𝑒 cos 𝜁𝜁∗ (10.75) 

 𝐹𝐹𝛿𝛿�0,𝛥𝛥𝐞𝐞 = −3𝐺𝐺
𝐬𝐬𝑒𝑒

𝑞𝑞𝑒𝑒
sin 𝜁𝜁∗ + 3𝐺𝐺𝛥𝛥𝜀𝜀𝑞𝑞�̂�𝛿,𝜃𝜃𝜃𝜃,𝛥𝛥𝐞𝐞

𝑒𝑒  (10.76) 

The derivatives 𝛿𝛿,𝜃𝜃 and 𝛿𝛿,𝛥𝛥𝜀𝜀𝑞𝑞 are known. Furthermore, due to the geometric meaning of 

the specific 𝛿𝛿 = tan[max(𝜃𝜃,𝜃𝜃𝑐𝑐)] in eq.(2.35), further simplification of this scheme is 

achieved, eliminating 𝜁𝜁∗ from (10.69). For the first branch of the model the procedure is 

given below, while for the second branch the result is identical to the second branch of 

the model presented in in paragraph 3.1.2 and Appendix 1. A geometric representation of 

the return mapping scheme for the two branches of this model is offered in Figure 10.2 

In the first branch, the straining angle is 𝜃𝜃 ≤ 𝜃𝜃𝑐𝑐 and 𝛿𝛿 = tan 𝜃𝜃 = tan𝜃𝜃𝑝𝑝, so the plastic 

strain increment forms an angle 𝜃𝜃 𝑝𝑝 = 𝜃𝜃. The sine law offers a simple way for expressing 

angle 𝜃𝜃 from further calculations: 
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 tan2 𝜃𝜃 =
(𝑞𝑞𝑒𝑒 sin𝜃𝜃𝑒𝑒)2

𝑞𝑞𝑚𝑚+12 − (𝑞𝑞𝑒𝑒 sin 𝜃𝜃𝑒𝑒)2 (10.77) 

Which inserted to (10.69) and accounting for consistency, leaves only the plastic strain 

increment 𝛥𝛥𝜀𝜀𝑞𝑞 as an unknown. The system of equations (10.78), (10.79) must then be 

solved.  

 𝐹𝐹𝑆𝑆𝑆𝑆1�𝛥𝛥𝜀𝜀𝑞𝑞� = �𝛥𝛥𝜀𝜀𝑞𝑞 +
𝑑𝑑𝑚𝑚+1
3𝐺𝐺

�
2

− �
𝑞𝑞𝑒𝑒

3𝐺𝐺
�
2

+ 𝛥𝛥𝜀𝜀𝑞𝑞2
(𝑞𝑞𝑒𝑒 sin𝜃𝜃𝑒𝑒)2

𝑑𝑑𝑚𝑚+12 − (𝑞𝑞𝑒𝑒 sin𝜃𝜃𝑒𝑒)2 = 0 (10.78) 

 𝐹𝐹𝑆𝑆𝑆𝑆2�𝛥𝛥𝜀𝜀𝑞𝑞 , 𝜁𝜁∗� = tan2(𝜃𝜃𝑒𝑒 + 𝜁𝜁∗) −
(𝑞𝑞𝑒𝑒 sin 𝜃𝜃𝑒𝑒)2

𝑞𝑞𝑚𝑚+12 − (𝑞𝑞𝑒𝑒 sin𝜃𝜃𝑒𝑒)2 = 0 (10.79) 

 With the derivatives  

 
𝐹𝐹𝑆𝑆𝑆𝑆1,𝛥𝛥𝜀𝜀𝑞𝑞 = 2 �𝛥𝛥𝜀𝜀𝑞𝑞 +

𝑑𝑑𝑚𝑚+1
3𝐺𝐺

� �1 +
𝐻𝐻𝑚𝑚+1
3𝐺𝐺

� + 2𝛥𝛥𝜀𝜀𝑞𝑞
(𝑞𝑞𝑒𝑒 sin𝜃𝜃𝑒𝑒)2

𝑑𝑑𝑚𝑚+12 − (𝑞𝑞𝑒𝑒 sin𝜃𝜃𝑒𝑒)2

− 𝛥𝛥𝜀𝜀𝑞𝑞2
(𝑞𝑞𝑒𝑒 sin𝜃𝜃𝑒𝑒)2

[𝑑𝑑𝑚𝑚+12 − (𝑞𝑞𝑒𝑒 sin𝜃𝜃𝑒𝑒)2]2
[2𝑑𝑑𝑚𝑚+1𝐻𝐻𝑚𝑚+1] 

(10.80) 

 𝐹𝐹𝑆𝑆𝑆𝑆1,𝜁𝜁∗ = 0 (10.81) 

 
𝐹𝐹𝑆𝑆𝑆𝑆1,𝛥𝛥𝐞𝐞 = +𝛥𝛥𝜀𝜀𝑞𝑞2

𝑑𝑑𝑚𝑚+12 (𝑞𝑞𝑒𝑒 sin𝜃𝜃𝑒𝑒)2

[𝑑𝑑𝑚𝑚+12 − (𝑞𝑞𝑒𝑒 sin𝜃𝜃𝑒𝑒)2]2 2𝑞𝑞𝑒𝑒 sin𝜃𝜃𝑒𝑒 �6𝐺𝐺𝐬𝐬𝑒𝑒 sin𝜃𝜃𝑒𝑒

+ 𝑞𝑞𝑒𝑒 cos 𝜃𝜃𝑒𝑒 𝜃𝜃,𝛥𝛥𝐞𝐞
𝑒𝑒 � − 2

𝐬𝐬𝑒𝑒

3𝐺𝐺
 

(10.82) 

 

 𝐹𝐹𝑆𝑆𝑆𝑆2,𝛥𝛥𝜀𝜀𝑞𝑞 = +
(𝑞𝑞𝑒𝑒 sin𝜃𝜃𝑒𝑒)2

[𝑑𝑑𝑚𝑚+12 − (𝑞𝑞𝑒𝑒 sin𝜃𝜃𝑒𝑒)2]2
[2𝑑𝑑𝑚𝑚+1𝐻𝐻𝑚𝑚+1] (10.83) 

 𝐹𝐹𝑆𝑆𝑆𝑆1,𝜁𝜁∗ = 2 tan(𝜃𝜃𝑒𝑒 + 𝜁𝜁∗) [1 + tan2(𝜃𝜃𝑒𝑒 + 𝜁𝜁∗)] (10.84) 

 

𝐹𝐹𝑆𝑆𝑆𝑆1,𝛥𝛥𝐞𝐞 = 2 tan(𝜃𝜃𝑒𝑒 + 𝜁𝜁∗) [1 + tan2(𝜃𝜃𝑒𝑒 + 𝜁𝜁∗)]𝜃𝜃,𝛥𝛥𝐞𝐞
𝑒𝑒

−
2𝑑𝑑𝑚𝑚+12 𝑞𝑞𝑒𝑒 sin𝜃𝜃𝑒𝑒

[𝑑𝑑𝑚𝑚+12 − (𝑞𝑞𝑒𝑒 sin𝜃𝜃𝑒𝑒)2]2 �6𝐺𝐺𝐬𝐬
𝑒𝑒 sin𝜃𝜃𝑒𝑒 + 𝑞𝑞𝑒𝑒 cos 𝜃𝜃𝑒𝑒 𝜃𝜃,𝛥𝛥𝐞𝐞

𝑒𝑒 � 
(10.85) 

The algorithmic material moduli are obtained as in the Appendix 1 using the above data. 
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Figure 10.2: Geometric interpretation of the return mapping of the model by Simo 
(1987):(a) in the corner branch (𝜃𝜃 ≤ 𝜃𝜃𝑐𝑐) and (b) in the critical angle branch (𝜃𝜃 > 𝜃𝜃𝑐𝑐), for 
a given stress state and strain increment 
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APPENDIX 3: BUCKLING STRESS OF AXIALLY COMPRESSED 
SHELLS IN THE PRESENCE OF PRESSURE 

In this Appendix, the principle of virtual work is employed to obtain the analytical 

expressions for the bifurcation stress of elastic-plastic cylindrical shells under 

compressive loads. Buckling under axial compression and pressure loads is addresses 

first, which leads to an axisymmetric wrinkling mode, uniform along the cylinder. 

Followingly, bifurcation into an ovalization mode is examined for inelastic cylinders 

under external pressure and axial load. 

 
Figure 10.3: Cylindrical shell and displacement field in cylindrical coordinates 

Kinematics 
Considering a circular cylindrical shell of mean radius 𝑅𝑅 and wall thickness 𝑡𝑡, described 

in a cylindrical coordinate system (𝑥𝑥,𝜃𝜃, 𝑧𝑧) , with the corresponding displacements 

(𝑢𝑢, 𝑣𝑣,𝑤𝑤) and employing the Donnell kinematic relations, the membrane and bending 

components of the strains are expressed as: 

 𝜀𝜀𝑥𝑥𝑥𝑥 = 𝑢𝑢,𝑥𝑥 +
𝑤𝑤,𝑥𝑥
2

2
 (10.86) 

 𝜀𝜀𝜃𝜃𝜃𝜃 =
𝑣𝑣,𝜃𝜃+ 𝑤𝑤
𝑅𝑅

+
1
2
�
𝑤𝑤,𝜃𝜃− 𝑣𝑣
𝑅𝑅

�
2
 (10.87) 

 𝜀𝜀𝑥𝑥𝜃𝜃 =
1
2
�
𝑢𝑢,𝜃𝜃
𝑅𝑅

+ 𝑣𝑣,𝑥𝑥 �+
1
2
𝑤𝑤,𝑥𝑥

(𝑤𝑤,𝜃𝜃− 𝑣𝑣)
𝑅𝑅

 (10.88) 

 𝜅𝜅𝑥𝑥𝑥𝑥 = −𝑤𝑤,𝑥𝑥𝑥𝑥 (10.89) 

 𝜅𝜅𝜃𝜃𝜃𝜃 = −
1
𝑅𝑅2

(𝑤𝑤,𝜃𝜃𝜃𝜃− 𝑣𝑣,𝜃𝜃 ) (10.90) 
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 𝜅𝜅𝑥𝑥𝜃𝜃 = −
1

2𝑅𝑅
[𝑤𝑤,𝑥𝑥𝜃𝜃+ (𝑤𝑤,𝑥𝑥𝜃𝜃− 𝑣𝑣,𝑥𝑥 )] (10.91) 

The strain at all points across the shell thickness is calculated as: 

 𝜀𝜀�̅�𝛼𝑏𝑏 = 𝜀𝜀𝛼𝛼𝛼𝛼 + 𝑧𝑧 𝜅𝜅𝛼𝛼𝛼𝛼 (10.92) 

and the stresses are connected to the strains though the instantaneous constitutive relations 

of the material model under consideration, is expressed as: 

 𝜎𝜎�̇𝛼𝛼𝑏𝑏 = 𝐷𝐷𝛼𝛼𝛼𝛼𝛼𝛼𝛿𝛿𝜀𝜀̅�̇�𝛼𝛿𝛿 (10.93) 

where 𝐷𝐷𝛼𝛼𝛼𝛼𝛼𝛼𝛿𝛿 are the instantaneous material moduli (material tangent tensor -eq. (2.51)) 

accounting for 𝜎𝜎𝑧𝑧𝑧𝑧 = 0 (condensed material moduli – eq. (3.58)). The force and moment 

intensities are: 

 𝑁𝑁𝛼𝛼𝛼𝛼 = � 𝜎𝜎�𝛼𝛼𝑏𝑏 𝑑𝑑𝑧𝑧
 𝑡𝑡/2

−𝑡𝑡/2
 (10.94) 

 𝑀𝑀𝛼𝛼𝛼𝛼 = � 𝜎𝜎�𝛼𝛼𝑏𝑏𝑧𝑧 𝑑𝑑𝑧𝑧
 𝑡𝑡/2

−𝑡𝑡/2
 (10.95) 

Bifurcation stress and wavelength of pressurized cylindrical shells 
under compression 
A thick-walled cylindrical shell of mean diameter 𝐷𝐷𝑜𝑜, radius 𝑅𝑅 = 𝐷𝐷𝑜𝑜 2⁄ , thickness 𝑡𝑡, and 

cross-section area 𝐴𝐴 is loaded with internal fluid pressure 𝑝𝑝 and subjected to an axial 

compressive force 𝐹𝐹 , as shown in Figure 10.4. Gellin (1979) showed that the first 

bifurcation mode of shells under compression takes place in an axisymmetric, periodic 

mode. A similar instability mode is encountered in cases of cylinders under internal 

pressure (Paquette & Kyriakides, 2006). The shell experiences instability at a 

compressive axial stress 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝 , whence it transitions to an axisymmetric, uniformly 

wrinkled buckling mode, periodic along its length, with a wavelength equal to 2𝜆𝜆𝑐𝑐 , 

indicated in Figure 10.4. 

Axis-symmetry implies that displacement 𝑣𝑣 = 0  and 𝑢𝑢,𝜃𝜃 = 𝑤𝑤,𝜃𝜃 = 0 , so the shell 

kinematics reduce to the following: 

 𝜀𝜀𝑥𝑥𝑥𝑥 = 𝑢𝑢,𝑥𝑥 + 𝑤𝑤,𝑥𝑥
2 2⁄  (10.96) 

 𝜀𝜀𝜃𝜃𝜃𝜃 = 𝑤𝑤 𝑅𝑅⁄  (10.97) 

 𝜀𝜀𝑥𝑥𝜃𝜃 = 0 (10.98) 
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 𝜅𝜅𝑥𝑥𝑥𝑥 = −𝑤𝑤,𝑥𝑥𝑥𝑥 (10.99) 

 𝜅𝜅𝜃𝜃𝜃𝜃 = 0 (10.100) 

 𝜅𝜅𝑥𝑥𝜃𝜃 = 0 (10.101) 

 
Figure 10.4: Bifurcation into a periodic axisymmetric wrinkled shape of pressurized 
cylindrical shells under axial compression 

The principle of virtual work (PVW) for shells under conservative external forces is 

expressed as: 

 𝛿𝛿𝛿𝛿 = 𝛿𝛿𝑈𝑈𝑠𝑠 + 𝛿𝛿𝑈𝑈𝑏𝑏 + 𝛿𝛿𝛺𝛺 = 0 (10.102) 

where 𝑈𝑈𝑠𝑠 is the membrane strain energy of the shell, 𝑈𝑈𝑏𝑏 the bending strain energy, and 

Ω is the potential energy of the external conservative loads, equal to the negative of the 

work done by the loads as the structure is deformed.  

For compressed pressurized cylinders, in the prebuckling configuration deformation is 

longitudinally uniform, while it remains periodic axisymmetric when buckling onsets. So, 

it is sufficient to address a single halfwave of the shell to identify instability, and the 

virtual work terms reduce to: 

 𝛿𝛿𝑈𝑈𝑠𝑠 = ��𝑁𝑁𝛼𝛼𝛼𝛼𝛿𝛿𝜀𝜀𝛼𝛼𝛼𝛼�
𝑆𝑆

𝑑𝑑𝑑𝑑 = �{𝑁𝑁𝑥𝑥𝑥𝑥𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥  + 𝑁𝑁𝜃𝜃𝜃𝜃𝛿𝛿𝜀𝜀𝜃𝜃𝜃𝜃}
𝑆𝑆

𝑑𝑑𝑑𝑑 (10.103) 

 𝛿𝛿𝑈𝑈𝑏𝑏 = ��𝑀𝑀𝛼𝛼𝛼𝛼𝛿𝛿𝜅𝜅𝛼𝛼𝛼𝛼�
𝑆𝑆

𝑑𝑑𝐴𝐴 = �{𝑀𝑀𝑥𝑥𝑥𝑥𝛿𝛿𝜅𝜅𝑥𝑥𝑥𝑥}
𝑆𝑆

𝑑𝑑𝑑𝑑 (10.104) 

 𝛿𝛿𝛺𝛺 = � −𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡𝛿𝛿 �𝑤𝑤 +
1

2𝑅𝑅
(𝑣𝑣2 + 𝑣𝑣𝑤𝑤,𝜃𝜃− 𝑣𝑣,𝜃𝜃 𝑤𝑤 + 𝑤𝑤2)�

𝑆𝑆

𝑑𝑑𝑑𝑑 (10.105) 

t

p
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      = −𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡𝑅𝑅� � 𝛿𝛿 �𝑤𝑤 +
1

2𝑅𝑅
(𝑤𝑤2)� 𝑑𝑑𝑥𝑥𝑑𝑑𝜃𝜃

2𝜋𝜋

0

𝜅𝜅

0
 

where 𝑑𝑑 is the surface of the one halfwave long cylinder segment. To identify the onset 

of buckling, an arbitrary small perturbation of the displacement field is assumed: 

 𝑢𝑢 = 𝑢𝑢0 + 𝑢𝑢1 (10.106) 

 𝑣𝑣 = 0 (10.107) 

 𝑤𝑤 = 𝑤𝑤0 + 𝑤𝑤1 (10.108) 

So, the membrane strains and curvatures are: 

 𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜀𝜀𝑥𝑥𝑥𝑥0 + 𝜀𝜀𝑥𝑥𝑥𝑥1 + 𝜀𝜀𝑥𝑥𝑥𝑥2 =     𝑢𝑢0,𝑥𝑥     + 𝑢𝑢1,𝑥𝑥     + 𝑤𝑤1,𝑥𝑥
2 2⁄  (10.109) 

 𝜀𝜀𝜃𝜃𝜃𝜃 = 𝜀𝜀𝜃𝜃𝜃𝜃0 + 𝜀𝜀𝜃𝜃𝜃𝜃1             = 𝑤𝑤0 𝑅𝑅⁄      + 𝑤𝑤1 𝑅𝑅⁄  (10.110) 

 𝜅𝜅𝑥𝑥𝑥𝑥 = 𝜅𝜅𝑥𝑥𝑥𝑥0 + 𝜅𝜅𝑥𝑥𝑥𝑥1            =         0      −𝑤𝑤1,𝑥𝑥𝑥𝑥  (10.111) 

 𝜅𝜅𝜃𝜃𝜃𝜃 = 0 (10.112) 

In the above, the notation by (Bardi, 2006) is used, where the additional indices 0,1,2 

refer to the order of different terms of strain and curvature components. The force and 

moment intensities, accounting for the prebuckling equilibrium, are expressed as: 

 𝑁𝑁𝑥𝑥𝑥𝑥 = 𝑁𝑁𝑥𝑥𝑥𝑥0 + 𝑁𝑁𝑥𝑥𝑥𝑥1          =   −𝜎𝜎𝑡𝑡      + 𝑡𝑡[𝐷𝐷11𝜀𝜀𝑥𝑥𝑥𝑥1 + 𝐷𝐷12𝜀𝜀𝜃𝜃𝜃𝜃1] (10.113) 

 𝑁𝑁𝜃𝜃𝜃𝜃 = 𝑁𝑁𝜃𝜃𝜃𝜃0 + 𝑁𝑁𝜃𝜃𝜃𝜃1         = 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡𝑅𝑅      + 𝑡𝑡[𝐷𝐷12𝜀𝜀𝑥𝑥𝑥𝑥1 + 𝐷𝐷22𝜀𝜀𝜃𝜃𝜃𝜃1] (10.114) 

 𝑀𝑀𝑥𝑥𝑥𝑥 = 𝑀𝑀𝑥𝑥𝑥𝑥0 + 𝑀𝑀𝑥𝑥𝑥𝑥1        =        0       + 𝑡𝑡3 12⁄ [𝐷𝐷11𝜅𝜅𝑥𝑥𝑥𝑥1] (10.115) 

 𝑀𝑀𝜃𝜃𝜃𝜃 = 0 (10.116) 

where 𝐷𝐷11 = 𝐷𝐷𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, 𝐷𝐷12 = 𝐷𝐷𝑥𝑥𝑥𝑥𝜃𝜃𝜃𝜃, 𝐷𝐷22 = 𝐷𝐷𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃. 

Substituting (10.103)-(10.116) to (10.102) the PVW takes the form: 

 

� {   (𝑁𝑁𝑥𝑥𝑥𝑥0𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥1 + 𝑁𝑁𝜃𝜃𝜃𝜃0𝛿𝛿𝜀𝜀𝜃𝜃𝜃𝜃1 + 𝑀𝑀𝑥𝑥𝑥𝑥0𝛿𝛿𝜅𝜅𝑥𝑥𝑥𝑥1 − 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡𝛿𝛿𝑤𝑤)
𝜅𝜅

0
 

+(𝑁𝑁𝑥𝑥𝑥𝑥1𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥1 + 𝑁𝑁𝑥𝑥𝑥𝑥0𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥2 + 𝑁𝑁𝜃𝜃𝜃𝜃1𝛿𝛿𝜀𝜀𝜃𝜃𝜃𝜃1 + 𝑀𝑀𝑥𝑥𝑥𝑥1𝛿𝛿𝜅𝜅𝑥𝑥𝑥𝑥1 − 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡 𝑤𝑤𝛿𝛿𝑤𝑤 𝑅𝑅⁄ ) 

                                                                          +(𝑁𝑁𝑥𝑥𝑥𝑥1𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥2)    } 2𝜋𝜋𝑅𝑅𝑑𝑑𝑥𝑥 = 0 

(10.117) 

Keeping only the second order terms, the stability equation is obtained: 
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𝛿𝛿2Π = �{   𝑁𝑁𝑥𝑥𝑥𝑥1𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥1 + 𝑁𝑁𝑥𝑥𝑥𝑥0𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥2  + 𝑁𝑁𝜃𝜃𝜃𝜃1𝛿𝛿𝜀𝜀𝜃𝜃𝜃𝜃1 + 𝑀𝑀𝑥𝑥𝑥𝑥1𝛿𝛿𝜅𝜅𝑥𝑥𝑥𝑥1

𝜅𝜅

0

 

                                                                          −𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡 𝑤𝑤𝛿𝛿𝑤𝑤 𝑅𝑅⁄     } 2𝜋𝜋𝑅𝑅𝑑𝑑𝑥𝑥 = 0 

(10.118) 

The buckling mode is assumed to be axisymmetric, periodic expressed as: 

 𝑤𝑤� = 𝑎𝑎 cos 𝑝𝑝𝑥𝑥 (10.119) 

 𝑢𝑢� = 𝑏𝑏 sin𝑝𝑝𝑥𝑥  (10.120) 

with 𝑝𝑝 = 𝜋𝜋/𝜆𝜆, and the stability equation (10.118) becomes 

 

𝛿𝛿2Π = ��𝑁𝑁𝑥𝑥𝑥𝑥0𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥2,𝑚𝑚𝑏𝑏 + 𝑁𝑁𝑥𝑥𝑥𝑥1,𝑚𝑚𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥1,𝑏𝑏  + 𝑁𝑁𝜃𝜃𝜃𝜃1,𝑚𝑚𝛿𝛿𝜀𝜀𝜃𝜃𝜃𝜃1,𝑏𝑏

𝜅𝜅

0

+ 𝑀𝑀𝑥𝑥𝑥𝑥1,𝑚𝑚𝛿𝛿𝜅𝜅𝑥𝑥𝑥𝑥1,𝑏𝑏 − 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡 𝑅𝑅⁄  𝑤𝑤1,𝛼𝛼 𝑤𝑤1,𝛼𝛼 �𝛿𝛿𝑞𝑞𝑚𝑚𝛿𝛿𝑞𝑞𝑏𝑏 2𝜋𝜋𝑅𝑅𝑑𝑑𝑥𝑥 

= 𝐻𝐻𝑚𝑚𝑏𝑏𝛿𝛿𝑞𝑞𝑚𝑚𝛿𝛿𝑞𝑞𝑏𝑏 = 0 

(10.121) 

where (∙),𝑚𝑚 = 𝜕𝜕(∙)/𝜕𝜕𝑞𝑞𝑚𝑚 and 𝑞𝑞 = [𝑎𝑎 𝑏𝑏]𝑇𝑇, hence 

 𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥1,1    = 0,                           𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥1,2   = 𝑝𝑝 cos 𝑝𝑝𝑥𝑥 (10.122) 

 𝛿𝛿 𝜀𝜀𝑥𝑥𝑥𝑥2,11 = 𝑝𝑝2 sin2 𝑝𝑝𝑥𝑥 , 𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥2,11 = 𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥2,12 = 𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥2,21 = 0 (10.123) 

 𝛿𝛿𝜀𝜀𝜃𝜃𝜃𝜃1,1   = cos 𝑝𝑝𝑥𝑥 𝑅𝑅⁄ ,           𝛿𝛿𝜀𝜀𝜃𝜃𝜃𝜃1,2   = 0 (10.124) 

 𝛿𝛿𝜅𝜅𝑥𝑥𝑥𝑥1,1   = −𝑝𝑝2 cos 𝑝𝑝𝑥𝑥 ,       𝛿𝛿𝜅𝜅𝑥𝑥𝑥𝑥1,2   = 0 (10.125) 

And the integration identities: 

 � cos2 𝑝𝑝𝑥𝑥 𝑑𝑑𝑥𝑥
𝜅𝜅=𝜋𝜋/𝑝𝑝

0
= � sin2 𝑝𝑝𝑥𝑥 𝑑𝑑𝑥𝑥

𝜅𝜅=𝜋𝜋/𝑝𝑝

0
=

𝜋𝜋
2𝑝𝑝

 (10.126) 

Using (10.119)-(10.126), the components 𝐻𝐻𝛼𝛼𝛼𝛼  of tensor 𝐇𝐇 , defined in (10.121), are 

expressed as: 

 𝐇𝐇 =
𝜋𝜋2𝑡𝑡
�̅�𝜆
�−�̅�𝜆

2𝜎𝜎 + (𝐷𝐷22 − 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡 𝛥𝛥⁄ ) + �̅�𝜆4
𝛥𝛥2

12
𝐷𝐷11         �̅�𝜆𝐷𝐷12

�̅�𝜆𝐷𝐷12         �̅�𝜆2𝐷𝐷11
� (10.127) 

where 𝛥𝛥 = 𝑡𝑡 𝑅𝑅⁄ , and �̅�𝜆 = 𝑝𝑝𝑅𝑅 = 𝜋𝜋𝑅𝑅 𝜆𝜆⁄ . The determinant of 𝐇𝐇 should vanish at bifurcation: 

 det(𝐇𝐇) = 𝐻𝐻11𝐻𝐻22 − 𝐻𝐻12𝐻𝐻21 = 0 (10.128) 
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         = (𝜋𝜋2𝑡𝑡)2𝐷𝐷11�̅�𝜆2 �−𝜎𝜎 +
𝐷𝐷22 − 𝐷𝐷122 /𝐷𝐷11 − 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡 𝛥𝛥⁄

�̅�𝜆2
+ �̅�𝜆2

𝛥𝛥2

12
𝐷𝐷11� = 0 

or 

 𝜎𝜎 = 𝐷𝐷11 �
1
�̅�𝜆2
𝑑𝑑𝑒𝑒𝑡𝑡 𝐷𝐷 − 𝐷𝐷11 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡 𝛥𝛥⁄

𝐷𝐷112
+ �̅�𝜆2

𝛥𝛥2

12
� (10.129) 

where 𝑑𝑑𝑒𝑒𝑡𝑡 𝐷𝐷 = 𝐷𝐷11𝐷𝐷22 − 𝐷𝐷12𝐷𝐷12. Minimizing 𝜎𝜎 in terms of �̅�𝜆, the critical halfwave 𝜆𝜆𝑐𝑐.𝑒𝑒𝑝𝑝 

and the bifurcation stress 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝 are obtained 

 𝜆𝜆𝑐𝑐.𝑒𝑒𝑝𝑝 = 𝜋𝜋 �
𝐷𝐷112

12(𝑑𝑑𝑒𝑒𝑡𝑡 𝐷𝐷 − 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡𝐷𝐷11𝑅𝑅 𝑡𝑡⁄ )�
1/4

(𝑅𝑅𝑡𝑡)1/2 (10.130) 

and 

 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝 = �
𝑑𝑑𝑒𝑒𝑡𝑡 𝐷𝐷 − 𝐷𝐷11𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡 𝑅𝑅 𝑡𝑡⁄

3
�
1/2

�
𝑡𝑡
𝑅𝑅
� (10.131) 

For any given shell 𝑅𝑅/𝑡𝑡 and pressure 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡, accounting for the stress-controlled loading, 

the bifurcation stress 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝 is obtained by solving (10.132) in terms of 𝜎𝜎𝑥𝑥 and the applied 

axial load 𝐹𝐹 𝐴𝐴⁄  using (10.133): 

 𝑎𝑎𝑏𝑏𝑠𝑠(𝜎𝜎𝑥𝑥) − 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝(𝜎𝜎𝑥𝑥,𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡,𝑅𝑅 𝑡𝑡⁄ ) = 0 (10.132) 

 𝐹𝐹 𝐴𝐴⁄ = 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝 +
𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡𝑅𝑅 𝑡𝑡⁄

2
 (10.133) 

As 𝜎𝜎𝑥𝑥 appears in both terms of (10.132), a local iterative scheme for nonlinear equations 

is employed to solve it. An exception is the case of bifurcation occurring in the elastic 

range of the material, where 𝜎𝜎𝑥𝑥 is eliminated from the material moduli in the second term, 

hence the solution is found in a straightforward manner.  

Equation (10.132) may, equivalently, be used to identify the 𝑅𝑅/𝑡𝑡(𝜎𝜎𝑥𝑥, 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡) of the shell 

that is pressurized with 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡 and does not bifurcate before the axial stress reaches 𝜎𝜎𝑥𝑥. Or 

it may be used to obtain the pressure 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡(𝜎𝜎𝑥𝑥,𝑅𝑅/𝑡𝑡) that must be applied in advance of 

axial compression, so that a shell of a given 𝑅𝑅/𝑡𝑡 does not bifurcate before the axial stress 

reaches 𝜎𝜎𝑥𝑥. Additionally, the dependence of eq. (10.132) on the 𝑅𝑅/𝑡𝑡 ratio and not on the 

radius 𝑅𝑅 itself, indicates that all long shells of a given material and 𝑅𝑅/𝑡𝑡, bifurcate at the 

same stress 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝  independent of their scale. As soon as eq. (10.132) is solved, eq. 

(10.130) is used to obtain the wrinkling halfwave. 
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Buckling formulas for shells under uniform compression equivalent to (10.130), (10.131) 

have been presented in several publications e.g. (Batterman, 1965; Reddy, 1979; 

Tvergaard, 1983). The analysis by (Bardi & Kyriakides, 2006) provided the formulas in 

(4.1), (4.2) for 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝, 𝜆𝜆𝑐𝑐.𝑒𝑒𝑝𝑝which are identical to (10.130), (10.131) for the case of no 

pressure �𝑝𝑝𝑘𝑘𝑛𝑛𝑡𝑡 = 0� . Formulas (4.1), (4.2) were further suggested by (Paquette & 

Kyriakides, 2006) for compressed cylinders under internal pressure. The above proof 

demonstrates that an additional term �−𝐷𝐷11𝑝𝑝𝑘𝑘𝑛𝑛𝑡𝑡 𝑅𝑅 𝑡𝑡⁄ �  arises from the potential of the 

internal pressure, which should not be neglected a priori. However, this term is found to 

be generally small, and the two sets of formulas produce very similar predictions. 

The components of 𝐷𝐷𝛼𝛼𝛼𝛼 may be equivalently obtained from the respective components of 

the flexibility moduli 𝐶𝐶𝛼𝛼𝛼𝛼, which are readily available, which allows circumventing the 

complexity of performing static condensation of the material rigidity tensor. 

 �𝐷𝐷11 𝐷𝐷12
𝐷𝐷12 𝐷𝐷22

� =
1

det𝐶𝐶
� 𝐶𝐶11 −𝐶𝐶12
−𝐶𝐶12 𝐶𝐶22

� (10.134) 

where det𝐶𝐶 = 𝐶𝐶11𝐶𝐶22 − 𝐶𝐶122 . An explicit expression for the flexibility tensor 𝐶𝐶 for the 

axisymmetric problem is given in eq.(10.135), which is applicable for several isotropic 

material models in plane stress conditions, upon appropriate definition of the parameters 

ℎ� offered in Table 2.2. 

 𝐶𝐶 =
1
𝐸𝐸𝑇𝑇

⎣
⎢
⎢
⎢
⎡ 1 − �̅�𝜂

3
4
𝜎𝜎𝜃𝜃𝜃𝜃2

𝑞𝑞𝑒𝑒2
     −𝜈𝜈𝑇𝑇 + �̅�𝜂

3
4
𝜎𝜎𝑥𝑥𝑥𝑥𝜎𝜎𝜃𝜃𝜃𝜃
𝑞𝑞𝑒𝑒2

−𝜈𝜈𝑇𝑇 + �̅�𝜂
3
4
𝜎𝜎𝑥𝑥𝑥𝑥𝜎𝜎𝜃𝜃𝜃𝜃
𝑞𝑞𝑒𝑒2

1 − �̅�𝜂
3
4
𝜎𝜎𝑥𝑥𝑥𝑥2

𝑞𝑞𝑒𝑒2
     
⎦
⎥
⎥
⎥
⎤
 (10.135) 

where 

 �̅�𝜂 = 1 −
𝐸𝐸𝑇𝑇
𝐸𝐸�𝑆𝑆

=
1 − 𝐻𝐻 ℎ�⁄
1 + 𝐻𝐻 𝐸𝐸⁄

 (10.136) 

 𝜈𝜈𝑇𝑇 =
1
2
−
𝐸𝐸𝑇𝑇
𝐸𝐸
�

1
2
− 𝜈𝜈� (10.137) 

In the above, 𝐸𝐸,𝐸𝐸𝑇𝑇, 𝐸𝐸�𝑆𝑆 are the elasticity (Young), tangent and modified secant material 

moduli -see eq. (10.138)- , 𝜈𝜈 is the Poisson ratio, 𝐻𝐻 is the material hardening modulus and 

𝑞𝑞𝑒𝑒2 = 𝜎𝜎𝑥𝑥𝑥𝑥2 + 𝜎𝜎𝜃𝜃𝜃𝜃2 − 𝜎𝜎𝑥𝑥𝑥𝑥𝜎𝜎𝜃𝜃𝜃𝜃 is the Von Mises stress. Note that 3𝜎𝜎𝑥𝑥𝑥𝑥2 4𝑞𝑞𝑒𝑒2⁄ ≤ 1 and: 

 
1
𝐸𝐸𝑇𝑇

=
1
𝐻𝐻

+
1
𝐸𝐸

,          
1
𝐸𝐸�𝑆𝑆

=
1
ℎ�

+
1
𝐸𝐸

 (10.138) 
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Finally, the bifurcation stress 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝 and half wavelength 𝜆𝜆𝑐𝑐.𝑒𝑒𝑝𝑝 for the pressurized shell 

under compression may be written as: 

 
𝜆𝜆𝑐𝑐.𝑒𝑒𝑝𝑝 = 𝜋𝜋 �

𝐶𝐶222

12 det𝐶𝐶 (1 − 𝐶𝐶22𝜎𝜎𝜃𝜃𝜃𝜃)�
1/4

(𝑅𝑅𝑡𝑡)1/2

= 𝜋𝜋𝑅𝑅 �
C22

2(1 − 𝐶𝐶22𝜎𝜎𝜃𝜃𝜃𝜃)𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝�
1/2

 

(10.139) 

and 

 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝 = �
1 − 𝐶𝐶22𝜎𝜎𝜃𝜃𝜃𝜃

3 det𝐶𝐶
�
1/2

�
𝑡𝑡
𝑅𝑅
� (10.140) 

It is noted that in the absence of pressure and using J2DT to model inelastic behaviour 

(𝐸𝐸�𝑆𝑆 = 𝐸𝐸𝑆𝑆 ), these formulas reduce to the ones obtained by (Gellin, 1979) for axially 

compressed cylinders: 

 𝜎𝜎𝑐𝑐.𝑒𝑒𝑝𝑝|0 =
𝐸𝐸𝑇𝑇

�1 − 𝜈𝜈𝑑𝑑2
𝑡𝑡
𝑅𝑅

,    𝜈𝜈𝑑𝑑2 = 𝜈𝜈𝑇𝑇2 +
3
4
�̅�𝜂 (10.141) 

and 

 𝜆𝜆𝑐𝑐.𝑒𝑒𝑝𝑝|0 =
𝜋𝜋√𝑅𝑅𝑡𝑡

�12(1 − 𝜈𝜈𝑑𝑑2)4
�

1
4
�1 +

3𝐸𝐸𝑇𝑇
𝐸𝐸𝑆𝑆

� (10.142) 

Bifurcation into the elastic range 
For elastic shells or when bifurcation takes place while the material is loaded into the 

elastic range, the calculation of the elastic bifurcation stress in (10.140) and the elastic 

wavelength from (10.139) simplifies to: 

 𝜎𝜎𝑐𝑐.𝑒𝑒𝑒𝑒 = �
𝐸𝐸

√1 − 𝜈𝜈2
𝑡𝑡
𝑅𝑅
��1 − 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡𝑅𝑅 (𝐸𝐸𝑡𝑡)⁄ = 𝜎𝜎𝑐𝑐.𝑒𝑒𝑒𝑒|0�1 − �̅�𝑝 (10.143) 

 𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒 = �
𝜋𝜋

�12(1 − 𝜈𝜈2)4 √𝑅𝑅𝑡𝑡�
1

�1 − 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡𝑅𝑅 (𝐸𝐸𝑡𝑡)⁄4 = 𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒|0
1

�1 − �̅�𝑝4  (10.144) 

These formulas reduce to the well know expressions for the buckling stress 𝜎𝜎𝑐𝑐.𝑒𝑒𝑒𝑒|0 and 

halfwave length 𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒|0 of the non-pressurized shell under compression (�̅�𝑝 = 0). Further 

considering that �̅�𝑝 = 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡𝑅𝑅 (𝐸𝐸𝑡𝑡)⁄ = 𝜎𝜎𝜃𝜃 𝐸𝐸⁄ ≪ 1 the above may be written as: 

 
𝜎𝜎𝑐𝑐.𝑒𝑒𝑒𝑒

𝜎𝜎𝑐𝑐.𝑒𝑒𝑒𝑒|0
= �1 − �̅�𝑝 ≈ 1 − �̅�𝑝 2⁄  (10.145) 
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𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒

𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒|0
=

1
�1 − �̅�𝑝4 ≈ 1 + �̅�𝑝 4⁄  (10.146) 

It is seen that pressurization tends to increase the wrinkling wavelength of the shell, while 

it reduces the axial stress at buckling. The external axial compression leading to buckling 

is 𝐹𝐹𝑐𝑐.𝑒𝑒𝑒𝑒 = [𝜎𝜎𝑐𝑐.𝑒𝑒𝑒𝑒 + 𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡𝑅𝑅 2𝑡𝑡⁄ ]𝐴𝐴 (accounting for the axial tension induced by pressurization 

through cap forces). Normalizing by the buckling force under pure compression (𝑝𝑝 = 0) 

𝐴𝐴𝜎𝜎𝑐𝑐.𝑒𝑒𝑒𝑒|0, it is expressed as:  

 

𝐹𝐹𝑐𝑐.𝑒𝑒𝑒𝑒 𝐴𝐴⁄
𝜎𝜎𝑐𝑐.𝑒𝑒𝑒𝑒|0

= �1 − �̅�𝑝 +
�̅�𝑝√1 − 𝜈𝜈2

2𝑡𝑡/𝑅𝑅
≈ 1 − �̅�𝑝 2⁄ +

�̅�𝑝√1 − 𝜈𝜈2

2𝑡𝑡/𝑅𝑅
 

              ≈ 1 + �̅�𝑝 2⁄ �
√1 − 𝜈𝜈2

𝑡𝑡 𝑅𝑅⁄
− 1� ≈ 1 +

�̅�𝑝
2𝑡𝑡/𝑅𝑅

≈ 1 +
𝑝𝑝𝑖𝑖𝑚𝑚𝑡𝑡 2𝐸𝐸⁄
(𝑡𝑡 𝑅𝑅⁄ )2  

(10.147) 

This shows that by applying internal pressure a shell can sustain greater axial loads before 

buckling occurs than the case of pure compression, as expected. This effect is more 

pronounced in the thin-walled shells, with large 𝑅𝑅 𝑡𝑡⁄  values. It is noted that for metal 

shells, �̅�𝑝 = 𝜎𝜎𝜃𝜃 𝐸𝐸⁄ ≪ 𝜎𝜎𝑜𝑜 𝐸𝐸⁄ ≈ 0.5% , so any influence in 𝜎𝜎𝑐𝑐.𝑒𝑒𝑒𝑒,  𝜆𝜆𝑐𝑐.𝑒𝑒𝑒𝑒  due to pressure is 

limited. 

Bifurcation under external pressure 
Using the PVW, the bifurcation pressure is calculated for a tube subjected to external 

fluid pressure 𝑝𝑝𝑒𝑒𝑥𝑥𝑡𝑡 and axial load 𝐹𝐹, leading to an axially uniform ovalization buckling 

mode. The second order terms of the PVW reduce to: 

 

𝛿𝛿2Π = � {𝑁𝑁𝑥𝑥𝑥𝑥𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥  + 𝑁𝑁𝜃𝜃𝜃𝜃𝛿𝛿𝜀𝜀𝜃𝜃𝜃𝜃 + 𝑀𝑀𝜃𝜃𝜃𝜃𝛿𝛿𝜅𝜅𝜃𝜃𝜃𝜃
𝑆𝑆

 

−(−𝑝𝑝𝑒𝑒𝑥𝑥𝑡𝑡)𝛿𝛿2 �𝑤𝑤 +
1

2𝑅𝑅
(𝑣𝑣2 + 𝑣𝑣𝑤𝑤,𝜃𝜃− 𝑣𝑣,𝜃𝜃 𝑤𝑤 + 𝑤𝑤2)�� 𝑑𝑑𝑑𝑑 = 0 

(10.148) 

To identify the onset of buckling, an arbitrary small perturbation of the displacement field 

is assumed: 

 𝑢𝑢 = 𝑢𝑢0 (10.149) 

 𝑣𝑣 = 𝑣𝑣0  +  𝑣𝑣1    = 0   + 𝑏𝑏 sin𝑛𝑛𝜃𝜃 (10.150) 

 𝑤𝑤 = 𝑤𝑤0 + 𝑤𝑤1    = 𝑤𝑤0 + 𝑎𝑎 cos𝑛𝑛𝜃𝜃 (10.151) 
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Figure 10.5: Bifurcation into an axially uniform ovalization buckling mode of cylindrical 
shells under external pressure and axial compression. 

The membrane strains and curvatures are: 

 𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜀𝜀𝑥𝑥𝑥𝑥0 = 𝑢𝑢0,𝑥𝑥     (10.152) 

 

𝜀𝜀𝜃𝜃𝜃𝜃 = 𝜀𝜀𝜃𝜃𝜃𝜃0 + 𝜀𝜀𝜃𝜃𝜃𝜃1 + 𝜀𝜀𝜃𝜃𝜃𝜃2 

        =
𝑤𝑤0

𝑅𝑅
  +

(𝑏𝑏𝑛𝑛 + 𝑎𝑎)
𝑅𝑅

cos𝑛𝑛𝜃𝜃      +
(𝑏𝑏 − 𝑎𝑎𝑛𝑛)2

2𝑅𝑅2
sin2 𝑛𝑛𝜃𝜃 

(10.153) 

 𝜅𝜅𝑥𝑥𝑥𝑥 = 0 (10.154) 

 𝜅𝜅𝜃𝜃𝜃𝜃 = 𝜅𝜅𝜃𝜃𝜃𝜃0 + 𝜅𝜅𝜃𝜃𝜃𝜃1 = 0  + 𝑛𝑛
(𝑏𝑏 + 𝑎𝑎𝑛𝑛)

𝑅𝑅2
cos𝑛𝑛𝜃𝜃 (10.155) 

The force and moment intensities are given by: 

 𝑁𝑁𝑥𝑥𝑥𝑥 = 𝑁𝑁𝑥𝑥𝑥𝑥0 + 𝑁𝑁𝑥𝑥𝑥𝑥1    =       −𝜎𝜎𝑡𝑡    + 𝑡𝑡𝐷𝐷12(𝑏𝑏𝑛𝑛 + 𝑎𝑎) 𝑅𝑅⁄ cos𝑛𝑛𝜃𝜃 (10.156) 

 𝑁𝑁𝜃𝜃𝜃𝜃 = 𝑁𝑁𝜃𝜃𝜃𝜃0 + 𝑁𝑁𝜃𝜃𝜃𝜃1   = −𝑝𝑝𝑒𝑒𝑥𝑥𝑡𝑡𝑅𝑅   + 𝑡𝑡𝐷𝐷22(𝑏𝑏𝑛𝑛 + 𝑎𝑎) 𝑅𝑅⁄ cos𝑛𝑛𝜃𝜃  (10.157) 

 𝑀𝑀𝑥𝑥𝑥𝑥 = 𝑀𝑀𝑥𝑥𝑥𝑥0 + 𝑀𝑀𝑥𝑥𝑥𝑥1  =            0   + 𝑡𝑡3 12⁄ 𝐷𝐷12𝑛𝑛(𝑏𝑏 + 𝑎𝑎𝑛𝑛) 𝑅𝑅2⁄ cos𝑛𝑛𝜃𝜃 (10.158) 

 𝑀𝑀𝜃𝜃𝜃𝜃 = 𝑀𝑀𝜃𝜃𝜃𝜃0 + 𝑀𝑀𝜃𝜃𝜃𝜃1 =            0   + 𝑡𝑡3 12⁄ 𝐷𝐷22𝑛𝑛(𝑏𝑏 + 𝑎𝑎𝑛𝑛) 𝑅𝑅2⁄ cos𝑛𝑛𝜃𝜃 (10.159) 

The PVW takes the form: 

 

𝛿𝛿2Π = 2𝜋𝜋𝑅𝑅𝐿𝐿� �𝑁𝑁𝜃𝜃𝜃𝜃0𝛿𝛿𝜀𝜀𝜃𝜃𝜃𝜃2,𝑚𝑚𝑏𝑏  + 𝑁𝑁𝜃𝜃𝜃𝜃1,𝑚𝑚𝛿𝛿𝜀𝜀𝜃𝜃𝜃𝜃1,𝑏𝑏  + 𝑁𝑁𝑥𝑥𝑥𝑥1,𝑚𝑚𝛿𝛿𝜀𝜀𝑥𝑥𝑥𝑥1,𝑏𝑏

2𝜋𝜋

0
 

     +𝑀𝑀𝜃𝜃𝜃𝜃1,𝑚𝑚𝛿𝛿𝜅𝜅𝜃𝜃𝜃𝜃1,𝑏𝑏 +
𝑝𝑝𝑒𝑒𝑥𝑥𝑡𝑡
2𝑅𝑅

𝛿𝛿(𝑣𝑣2 + 𝑣𝑣𝑤𝑤,𝜃𝜃− 𝑣𝑣,𝜃𝜃 𝑤𝑤 + 𝑤𝑤2),𝑚𝑚𝑏𝑏  � 𝑑𝑑𝜃𝜃𝛿𝛿𝑞𝑞𝑚𝑚𝛿𝛿𝑞𝑞𝑏𝑏 

                                                                                             = 𝐻𝐻𝑚𝑚𝑏𝑏𝛿𝛿𝑞𝑞𝛼𝛼𝛿𝛿𝑞𝑞𝛼𝛼  = 0 

(10.160) 

t

p
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Accounting for (10.149)-(10.159) and the identities: 

 � cos2 𝑛𝑛𝜃𝜃 𝑑𝑑𝜃𝜃
2𝜋𝜋

0
= � sin2 𝑛𝑛𝜃𝜃 𝑑𝑑𝜃𝜃

2𝜋𝜋

0
= 𝜋𝜋 (10.161) 

the tensor 𝐇𝐇 takes the form: 

 𝐇𝐇 = 𝜋𝜋𝜆𝜆𝑐𝑐𝛥𝛥𝐷𝐷22

⎣
⎢
⎢
⎢
⎡−

𝑝𝑝𝑒𝑒𝑥𝑥𝑡𝑡
𝛥𝛥𝐷𝐷22

(𝑛𝑛2 − 1) + 1 +
𝛥𝛥2

12
𝑛𝑛4         𝑛𝑛 �1 +

𝛥𝛥2

12
𝑛𝑛2�

𝑛𝑛 �1 +
𝛥𝛥2

12
𝑛𝑛2� 𝑛𝑛2 �1 +

𝛥𝛥2

12
�
⎦
⎥
⎥
⎥
⎤
 (10.162) 

where 𝛥𝛥 = 𝑡𝑡 𝑅𝑅⁄ . The shell becomes unstable when det𝐇𝐇 = 𝐻𝐻11𝐻𝐻22 − 𝐻𝐻12𝐻𝐻21 = 0 which 

solved in terms of 𝑝𝑝𝑒𝑒𝑥𝑥𝑡𝑡 reduces to 

 𝑝𝑝𝑒𝑒𝑥𝑥𝑡𝑡 =
(𝑛𝑛2 − 1)𝐷𝐷22
(1 + 𝛥𝛥2 12⁄ )

𝛥𝛥3

12
 (10.163) 

For 𝑛𝑛 = 1, the bucking mode represents solid body translation of the tube, which is 

postulated to be constrained, so the critical (minimum) buckling pressure 𝑝𝑝𝑐𝑐 is obtained 

for 𝑛𝑛 = 2, in which case 𝑏𝑏 ≈ −𝑎𝑎 2⁄  and the eigenmode represents uniform ovalization 

at: 

 𝑝𝑝𝑐𝑐 =
𝐷𝐷22

4[1 + (1 12⁄ )(𝑡𝑡 𝑅𝑅⁄ )2] �
𝑡𝑡
𝑅𝑅
�
3
 (10.164) 

Or equivalently using (10.134) 

 𝑝𝑝𝑐𝑐 =
𝐶𝐶11 det𝐶𝐶⁄

4[1 + (1 12⁄ )(𝑡𝑡 𝑅𝑅⁄ )2] �
𝑡𝑡
𝑅𝑅
�
3
 (10.165) 

The critical axial stress for cylindrical shells under a specified external pressure 𝑝𝑝𝑐𝑐 can 

be obtained by solving iteratively eq. (10.165) in terms of 𝜎𝜎𝑥𝑥 , which appears in the 

material flexibility moduli in 𝐶𝐶. For linear elastic thin-walled cylinders it reduces to the 

well know expression:  

 𝑝𝑝𝑐𝑐.𝑒𝑒𝑒𝑒 =
𝐸𝐸

4(1 − 𝜈𝜈2) �
𝑡𝑡
𝑅𝑅
�
3
 (10.166) 

The analysis by (Ju & Kyriakides, 1992) resulted in a formula almost identical to (10.164) 

for 𝑝𝑝𝑐𝑐, with the sole difference of an additional term 𝛥𝛥 in the denominator, which takes 

the form [1 + (1 12𝛥𝛥⁄ )(𝑡𝑡 𝑅𝑅⁄ )2] . The term 𝛥𝛥 = 1 − 𝐷𝐷122 𝐷𝐷11𝐷𝐷22⁄  originates from the 

demand for (𝑁𝑁𝑥𝑥𝑥𝑥1 = 0), meaning no change in the axial stress may occur at any point of 

the cross section. However, this demand implies that axial strain is non-zero (𝜀𝜀𝑥𝑥𝑥𝑥1 =
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−𝐷𝐷12 𝐷𝐷11⁄ 𝜀𝜀𝜃𝜃𝜃𝜃1) and it does not conform with the assumed buckling mode in (10.149)-

(10.151) that is the basis of both the present analysis and the one by (Ju & Kyriakides, 

1992). It is assumed that the intended demand was for no change in the overall axial force 

in the cross section, expressed as: 

 𝛿𝛿𝐹𝐹1 = � 𝑁𝑁𝑥𝑥𝑥𝑥1
2𝜋𝜋

0
𝑅𝑅𝑑𝑑𝜃𝜃 = 0 (10.167) 

This more reasonable demand is satisfied by identity, considering the definition of 𝑁𝑁𝑥𝑥𝑥𝑥1 

in (10.156) and the assumed buckling mode.  

The obtained bifurcation formula (10.164) refers to any axial loading conditions 

(hydrostatic stress, zero axial stress, zero axial strain) adopting the relevant stress values 

when calculating the stiffness component 𝐷𝐷22. It is noted that in all cases, the term 𝛥𝛥 is 

close to unity and it is multiplied by a small quantity small value (1 12⁄ )(𝑡𝑡 𝑅𝑅⁄ )2 so it has 

very limited influence in the calculated critical values by (Ju & Kyriakides, 1992), which 

are practically identical to the ones obtained by (10.164). 
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