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ABSTRACT 
  The present study investigates the structural stability of thin-walled long cylinders subjected to 

structural loads (bending and axial compression) and pressure (internal or external). A 

numerical technique is employed that uses the ‘‘tube-element’’, a special-purpose finite 

element. Within this framework, two large-strain material models for the description of 

isotropic and transversely isotropic cylinders are developed. Bending loading is primarily 

considered, where buckling is associated with a highly nonlinear prebuckling state due to cross-

sectional ovalization. Special emphasis is given on thin-walled elastic cylinders, and extensive 

numerical results are presented, concerning their buckling and postbuckling response, under 

uniform wrinkling conditions. Furthermore, the sensitivity of maximum moment on the 

presence of initial imperfections is also examined. The numerical results are compared with 

available bifurcation and postbuckling solutions presented elsewhere, and with analytical 

expressions developed for the purposes of the current study. The effects of anisotropy on 

buckling and postbuckling response are investigated. Finally, the stability of thin-walled 

inelastic metal cylinders under bending moments is also examined, using the aforementioned 

numerical technique, focusing on the determination of bifurcation moment and the localization 

of buckling deformations. 
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ΠΕΡΙΛΗΨΗ 
 

  Η εργασία αυτή έχει σαν κύριο στόχο την µελέτη της δοµικής ευστάθειας λεπτότοιχων 

κυλινδρικών κελυφών, που υπόκεινται σε δοµικά φορτία (κάµψη και αξονική συµπίεση) και 

πίεση. Έτσι στα πλαίσια της ∆ιατριβής αναπτύχθηκε µία αριθµητική τεχνική για την 

προσοµοίωση της συµπεριφοράς των κελυφών, στην οποία και ενσωµατώθηκαν καταστατικά 

µοντέλα µεγάλων παραµορφώσεων.  

  Πιο αναλυτικά, στο πρώτο µέρος της ∆ιατριβής παρουσιάστηκε η υπολογιστική τεχνική που 

εφαρµόστηκε για την επίλυση του προβλήµατος. Χρησιµοποιήθηκε πηγαίος κώδικας 

πεπερασµένων στοιχείων, ο οποίος αρχικώς είχε αναπτυχθεί για σωληνωτά δοµικά µέλη 

µεγάλου πάχους, και εδώ προσαρµόστηκε για την ανάλυση λεπτότοιχων κελυφών. Βασικά 

στοιχεία της υπολογιστικής τεχνικής αποτελούν (α) το πεπερασµένο στοιχείο «σωλήνα» (tube-

element), το οποίο έχει την δυνατότητα περιγραφής της παραµόρφωσης ενός επιµήκους 

σωληνωτού µέλους συνδυάζοντας την διαµήκη παραµόρφωση τύπου δοκού µε την 

παραµόρφωση της διατοµής του µέλους και (β) η χρησιµοποίηση ειδικών καταστατικών 

µοντέλων για την προσοµοίωση της συµπεριφοράς του υλικού µε έµφαση στα ανισότροπα 

ελαστικά υλικά. Τα ανωτέρω ενσωµατώθηκαν σε µία µεθοδολογία µη γραµµικής ανάλυσης 

κατασκευών, η οποία βασίζεται σε µία Λαγκρανζιανή περιγραφή του παραµορφώσιµου 

στερεού µε «ενσωµατωµένες» συντεταγµένες και µία τροποποιηµένη Newton-Raphson 

επίλυση των διακριτοποιηµένων εξισώσεων ισορροπίας µε τη µέθοδο µήκους-τόξου. Ιδιαίτερη 

έµφαση δόθηκε επίσης στον προσδιορισµό διακλάδωσης της λύσης στην ελαστοπλαστική 

περιοχή, µε την προσαρµογή της θεωρίας µοναδικότητας λύσης του Hill στην παρούσα 

αριθµητική τεχνική και διακριτοποίηση. 

  Η αποτελεσµατικότητα της υπολογιστικής τεχνικής εξετάστηκε στην επίλυση των 

«προτύπων» (benchmark) προβληµάτων ευστάθειας. Τα προβλήµατα αυτά είναι η ευστάθεια 

κυκλικών ελαστικών κυλίνδρων σε αξονική συµπίεση υπό αξονοµετρικές αρχικές ατέλειες, και 

η ευστάθεια και µεταλυγισµική συµπεριφορά µη-κυκλικών ελαστικών κυλίνδρων υπό αξονική 

συµπίεση. Και στα δύο προβλήµατα, τα αριθµητικά αποτελέσµατα της ∆ιατριβής είναι σε 

εξαιρετική συµφωνία µε ηµι-αναλυτικές λύσεις, τόσο στο κρίσιµο φορτίο όσο και στην 

µεταλυγισµική συµπεριφορά και την ευαισθησία σε αρχικές ατέλειες. 

  Η ευστάθεια κυλινδρικών σωληνωτών µελών αποτελεί το βασικό πρόβληµα της ∆ιατριβής. 

Στα πλαίσια, εποµένως αυτής της µελέτης εξετάστηκε η κάµψη λεπτότοιχων ελαστικών 

ισότροπων κυλίνδρων υπό πίεση (εσωτερική ή εξωτερική), ένα πρόβληµα µε σηµαντική µη-
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γραµµικότητα της προλυγισµικής κατάστασης, λόγω της «οβαλοποίησης» της κυλινδρικής 

διατοµής. Προσδιορίστηκαν τα φορτία λυγισµού και οι αντίστοιχες «ιδιοµορφές», καθώς και η 

µεταλυγισµική συµπεριφορά και η ευαισθησία σε αρχικές ατέλειες. Βασικό χαρακτηριστικό 

της διακλάδωσης είναι η συσχέτισή της µε µία και µόνον µορφή λυγισµού. Επίσης, βρέθηκε 

µία µεγάλη ευαισθησία των αποτελεσµάτων. Τα αριθµητικά αποτελέσµατα είναι σε πλήρη 

συµφωνία µε ασυµπτωτικές λύσεις για την αρχική µεταλυγισµική συµπεριφορά, και 

επιπρόσθετα προσδιορίζουν πλήρως τον µεταλυγισµικό δρόµο ισορροπίας. Επίσης, εξετάστηκε 

η ευαισθησία σε αρχικές ατέλειες, και τα αριθµητικά αποτελέσµατα επαληθεύουν την γενική 

θεωρία του Koiter και την εκθετική σχέση «2/3». Τέλος, προτάθηκε µία αναλυτική 

µεθοδολογία υπολογισµού του σηµείου διακλάδωσης, η οποία καταλήγει σε σχέσεις κλειστής 

µορφής και είναι σε πολύ καλή συµφωνία µε τα αριθµητικά αποτελέσµατα. 

  Στην συνέχεια εξετάστηκε ο λυγισµός και η µεταλυγισµική συµπεριφορά ανισότροπων 

ελαστικών κυλινδρικών κελυφών υπό κάµψη. Χρησιµοποιήθηκαν καταστατικά µοντέλα για 

εγκαρσίως ισοτροπικά υλικά και τα αριθµητικά αποτελέσµατα έδειξαν µία σηµαντική επιρροή 

της ανισοτροπίας στο σηµείο διακλάδωσης, καθώς και στην αντίστοιχη µορφή λυγισµού. Στην 

περίπτωση µεγάλης ανισοτροπίας κατά την αξονική διεύθυνση του κυλίνδρου, η µορφή 

λυγισµού έχει έντονο κυµατοειδή χαρακτήρα κατά την εγκάρσια διεύθυνση, και στην 

περίπτωση αυτή, προσεγγιστική αναλυτική λύση κλειστής µορφής δεν δίνει καλά 

αποτελέσµατα. Εξετάστηκε επίσης αριθµητικά η ευαισθησία σε αρχικές ατέλειες, 

επαληθεύοντας την γενική θεωρία του Koiter και την εκθετική σχέση «2/3» για τον αρχικό 

µεταλυγισµικό δρόµο ισορροπίας. 

  Τέλος, αναλύθηκε το φαινόµενο της αστοχίας λεπτότοιχων κυλινδρικών µεταλλικών κελυφών 

υπό καµπτική ένταση. Αρχικά εξετάστηκε η διακλάδωση λυγισµού µε βάση την αριθµητική 

εφαρµογή της θεωρίας του Hill, σε µία κυµατοειδή µορφή, οµοιόµορφη κατά µήκος του 

κυλίνδρου, καθώς και η ευαισθησία σε αρχικές ατέλειες. Επίσης, αποδείχθηκε αριθµητικά η 

µετέπειτα δηµιουργία «τοπικής» ζώνης της µεταλυγισµικής κυµατοειδούς παραµόρφωσης 

(buckling localization), η οποία συντελεί στην απότοµη αστοχία του δοµικού κυλινδρικού 

µέλους µε τη µορφή τοπικής κύρτωσης ή ήβωσης. 
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Chapter 1 

INTRODUCTION 
Equation Chapter 1 Section 1 

  The structural analysis of cylindrical shells constitutes a classical problem of mechanics, with 

numerous applications in civil, aerospace, mechanical and marine structures. In particular, the 

nonlinear response and the loss of strucutural stability of thin-walled structures, as well as, their 

postbuckling behavior is a topic of both fundamental and applied research. In the past, this 

problem has caused significant controversy due to the unreasonably high analytical predictions 

of buckling loads, compared with the low buckling loads obtained from relevant experiments. 

This controversy remained a major issue of concern and dispute among structural engineers and 

researchers, until the early 40’s. The works of von Karman et al. [1], [2] were a first major step 

towards understanding these discrepancies, pinpointing the sensitivity of the structure to 

deviations from the assumed initial ‘‘perfect’’ shape. The first rigorous confirmation of the 

influence of initial imperfections on the buckling load was given by Koiter [3], [4], [5]. In 

particular, Koiter was the first to relate the unstable postbuckling equilibrium path of a structure 

with its imperfection sensitivity. It is important to note that this imperfection sensitivity stems 

from the fact that the buckling (bifurcation) load is often associated with an infinite number of 

buckling modes. Other notable contributions on this subject were published by Kempner [6], 

[7], Kempner and Chen [8], Amazigo et al [9] and Budiansky and Hutchinson [10]. All the 

above works, underlined the important role of imperfection sensitivity, which was recognized 

as the major reason for the significant differences between analytical buckling predictions and 

experimental results. It was shown that, even small deviations from the perfect circular 

cylindrical geometry, result in a significant reduction of the theoretical buckling load. 

  The problem of circular cylinder under uniform axial compression, due to the above 

controversy, as well as because of its wide range of applications in structural engineering and 

mechanics, still remains a popular research topic. Therefore, a great number of relevant 

published works exists on this subject. For a concise presentation of those works related to 

imperfection sensitivity of cylindrical shells, the reader is referred to the books of Brush and 

Almroth [11] and Wempner and Talaslides [12]. Furthermore, the study of Teng [13] offers an 

extensive list of references for investigations of more practical problems. Finally, the recent 

book of Singer [14] contains an excellent literature review on this subject, with focus on 

experimental works. 
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  On the other hand, the problem of non-circular cylinders under uniform axial compression has 

received less attention over the years. Non-circular cylinders are used to aerospace and 

mechanical engineering applications, due to either special external shapes or (internal) storage 

requirements. The response of these non-circular geometries has several similarities with the 

corresponding problem of circular cylinders. However, there are several stricking differences, 

which allow its separate investigation. More specifically, the shell has a variation of curvature 

in the hoop direction and the buckling load is associated with a singe mode, which makes these 

shells less sensitive on initial imperfections. 

  Bending of cylinders is another problem of particular engineering importance. Most of the 

work on this subject was motivated by the structural design of pipelines and was mainly 

focused on relatively thick cylinders. In recent years, the problem of buckling of cylinders has 

gain significant attention due to its applications in composite-material structures, as well as, in 

biomechanics and carbon nanotubes. 

  The present study is motivated by the need for an accurate prediction of the response of thin-

walled cylinders subjected to axial compression, bending and pressure, using advanced 

numerical tools. Special emphasis is given on circular cylinders under structural loads (bending 

moments and uniform axial load) whereas issues of stability of non-circular cylinders are also 

examined. The analysis is numerical, using a special-purpose finite element technique. 

Analytical solutions for elastic cylinders are also reported.    

  Within this framework, the development of a rigorous numerical technique in order to 

investigate the stability of cylinders under structural loads and pressure, which uses the so-

called ‘‘tube-element’’, is considered, as described in Chapter 2. The development of two 

material models for the description of large-strain transverse-isotropy and isotropy is presented. 

These constitutive models are incorporated in the finite element technique.  

  Using the above mentioned numerical techniques nonlinear equilibrium paths, bifurcation and 

limit points are calculated, whereas issues of postbuckling response and imperfection sensitivity 

are considered, as well. Chapters 3 to 7 cover applications of classical stability theory for 

cylinders subjected to axial compression, bending and pressure. In particular, Chapters 3 and 4 

consider the case of uniform axial compression in both circular and non-circular cylinders. 

These problems are revisited for the purposes of this study and their numerical investigation 

constitutes a benchmark for the capabilities of the ‘‘tube-element’’, offering a verification of its 

accuracy and computational efficiency. The problem of elastic bending is examined in Chapters 

5 and 6 for isotropic and anisotropic cylinders, respectively. In these Chapters a number of 

parameters that affect the bending response and stability are discussed. In addition, an attempt 

to develop an approximate solution for bifurcation is also described in both Chapters. The 

bending response of inelastic cylinders is examined in Chapter 7. Bifurcation in the inelastic 

range in the form of wrinkled buckling patterns is detected using a numerical implementation of 
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the so-called “comparison solid” concept. Post-buckling response is calculated and 

imperfection sensitivity is examined. Special emphasis on buckling localization is also given. 

Finally, some important conclusions are summarized in Chapter 8. 
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Chapter 2 

NUMERICAL FORMULATION 
Equation Chapter 2 Section 2 

  In the present Chapter, a finite element technique is briefly presented, which simulates the 

nonlinear structural behavior of elastic and inelastic cylinders. It is a continuum-based 

formulation with finite-element discretization, through a special-purpose element, the so-called 

‘‘tube-element’’. The technique is based on the large-strain formulation of Needleman [15] and 

was employed in [16] for the analysis of inelastic thick-walled cylinders, mainly motivated by 

the study of offshore pipelines and tubular members. Herein, this element formulation is further 

elaborated and enhanced for the stability analysis (buckling and postbuckling) of thin-walled 

cylinders. Emphasis is given on modelling of the anisotropic elastic material behavior, through 

the development of two large-strain constitutive models, which consider both the cases of 

hypoelasticity and hyperelasticity. Issues of the stability analysis of inelastic metal cylinders are 

also discussed, within the context of Hill’s comparison solid. For the development of this 

numerical technique, some basic concepts of continuum mechanics that are necessary are 

shortly illustrated in the following. 

 

 

2.1  Governing Equations 

  A Lagrangian formulation of the cylinder is adopted, as described in detail in [15]. Therefore, 

a net of coordinate lines embedded in and deforming with the continuum (curvilinear 

coordinate system) is employed. These coordinates are denoted by , so that: ( =1,2,3)i iξ

  (2.1) 1 2 3( , , , )tξ ξ ξ=x x

is the position vector of a material point ( 1 2 3, ,ξ ξ ξ ) in the deformed configuration at time t . In 

particular, the position of the material point ( 1 2 3, ,ξ ξ ξ ) at t =0 serves as a reference 

configuration, which is denoted by: 

 1 2 3( , , )ξ ξ ξ=X X  (2.2) 

In the sequel,  and  are the position vectors in the current (deformed) and the reference 

(undeformed) configuration, respectively. 

x X

At any material point, the covariant base vectors in the reference configuration are: 
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 i iξ
∂

=
∂

XG  (2.3) 

and in the current configuration are: 

 i iξ
∂

=
∂

xg  (2.4) 

Furthermore,  and kG kg  denote the contravariant (reciprocal) base vectors in the reference and 

current configuration, respectively. 

  Deformation is described by the rate-of-deformation (stretch) tensor d , which is the 

symmetric part of the velocity gradient. Therefore, 

 ∂
= =∇
∂ x
vL
x

v  (2.5) 

 T1= ( )
2

+d L L  (2.6) 

 / /
1d (
2pq p q q pv v= + )  (2.7) 

whereas  are the components of the covariant derivative of the velocity vector in the current 

configuration, and can be written in the corresponding components in the reference 

configuration . More specifically, 

/i jv

/k lV

 / ,p q q p pqv
ξ
∂

= ⋅ = ⋅
∂

vv g g  (2.8) 

 / ,p q q p pqV
ξ
∂

= ⋅ = ⋅
∂

vv G G  (2.9) 

and from (2.8) and (2.9) one obtains 

 / / ( k
p q k q pv V )= ⋅G g  (2.10) 

Therefore, 

 ( / /
1 ( ) (
2

k k
pq k q p k p qd V V= ⋅ + ⋅G g G g ))  (2.11) 

It is noted that the anti-symmetric part of L  is the continuum spin , which expresses the 

average rotation of the material fibers at a specific material point.  

ω

  Equilibrium is expressed through the principle of virtual work, considering an admissible 

displacement field δu . For a continuum occupying the region  and V  in the reference and 

the deformed configuration, correspondingly, and with boundary 

0V

B  in the current 

configuration, the principle of virtual work is expressed as: 

 
0

/ 0( )k ij
k j i q

V B

U dV dB Mδ τ δ⋅ = ⋅ +∫ ∫G g u t δθ  (2.12) 
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where  is the surface traction, t M  is the bending moment at the cylinder end, δθ  is a 

variation of the end rotation, ijτ  are the contravariant components of the Kirchhoff stress tensor 

(ij
i jτ ⊗=τ )g g , which is parallel to the Cauchy stress tensor σ  ( , =det(J J )=τ σ F ) and 

 /
(δ )

k j kjUδ
ξ

∂
= ⋅

∂
u G  (2.13) 

The contravariant components ijτ  of the Kirchhoff stress tensor with respect to the current 

deformed configuration, can be correlated to the contravariant components  of the second 

Piola-Kirchhoff stress tensor with respect to the initial undeformed configuration. From 

continuum mechanics, 

ijS

  (2.14) T=τ FSF

therefore, 

 T( ) [S ( )]ij ij
i j i jτ ⊗⊗ =g g F G G F  (2.15) 

and taking itno account that for connected coordinates i i=g FG  one results in . Using 

this result, the principle of virtual work can also be expressed with respect to the components of 

the second Piola-Kirchhoff stress tensor as follows: 

ij ijSτ =

 
0

/ 0( ) =k ij
k j i q

V B

U S dV dB Mδ δ⋅ ⋅∫ ∫G g u t δθ+  (2.16) 

  Furthermore, on the same basis one can show, that applying the expression 

  (2.17) T=E F dF

for the case of the convected coordinates, the rate of the covariant components ijE  of the 

Lagrange-Green strain tensor , expressed in the initial configuration, are equal to the 

covariant components  of the rate-of-deformation tensor d ,expressed in the deformed 

configuration: 

E

ijd

 ij ijE d=  (2.18) 

  Regarding the constitutive relations to be used in the present formulation, hypoelastic and 

hyperelastic relationships are considered. In the case of hypoelasticity the rate of the 

contravariant components of Kirchhoff stress  are related to the covariant components of the 

rate-of-deformation tensor d  as follows: 

τ

 ij ijkl
klR dτ =  (2.19) 

where ijklR  are the components of , a fourth order tensor, with respect to the current base 

vectors.  

R

  Alternatively, in the framework of a hyperelastic constitutive model that employs a quadratic 

free energy function, the components  of the second Piola-Kirchhoff stress tensor S , with ijS
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respect to the reference base, are related to the components of Lagrange-Green strain tensor  

(also expressed with respect to the reference base) as follows: 

E

  (2.20) ij ijkl
e kS D E= l

l

where  is a fourth order rigidity tensor that depends exclusively on the material properties 

and it is independent of the deformation, when a quadratic function for the free energy is 

considered. Differentiation of (2.20) results in the following rate equation: 

eD

  (2.21) ij ijkl
e kS D E=

These two constitutive models will be discussed in the subsequent sections.  

 

 

2.2  Elastic Material Behavior 

  A major part of this study concerns the stability of elastic cylinders. In the following, 

constitutive models employed to describe elastic material response are presented for both 

isotropic and anisotropic elastic response with special emphasis on transversely isotropic 

material behavior. An isotropic material possesses no preferred directions, and its properties are 

the same in all directions. Furthermore, in the present study a particular anisotropic case, the 

transverse isotropy is considered, where the material possesses at every point a single preferred 

direction. The anisotropy axis in the undeformed and deformed configurations is demonstrated 

in Fig. 1. The anisotropy axis in the initial configuration is aligned in the axial direction of the 

undeformed cylinder, which is the direction of the covariant base vector . Therefore, the 

corresponding direction unit vector is expressed as follows: 

2G

 2
2

1
=N

G
G  (2.22) 

In the deformed (current) configuration, the direction of anisotropy axis is assumed in the 

direction of the local covariant base vector , so that the corresponding direction unit vector 

is: 

2g

 2
2

1
=n

g
g  (2.23) 

where 2G  and 2g  are the magnitudes of vectors  and , respectively. 2G 2g

An example of such a material is a composite material, which consists of a matrix reinforced by 

fibers arranged in parallel straight lines. These materials are employed in a variety of industrial 

applications and recently for the description of biomechanical materials (e.g. soft tissues). 
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N

n

N

n

 

Fig. 1 Axis of transverse isotropy in the reference and current configuration 

 

 

2.2.1  Hypoelastic Constitutive Model 

  A material is characterized as hypoelastic if an objective stress rate tensor is related to the 

rate-of-deformation tensor. Constitutive equations which model transversely isotropic 

materials, for finite elastic strains are presented in this section. Furthermore, the appropriate 

simplifications that lead to the case of isotropy are indicated. 

  From continuum mechanics, the rate of change of the unit vector n  in a deformable body is 

given by the following expression,  

 α=n ω n  (2.24) 

where the second order tensor  is given by the following expression αω

 ( ) ( )α = + ⊗ − ⊗ω ω d n n n n d  (2.25) 

and is the continuum spin. ω

Thus the following hypoelastic constitutive equation is considered  

  (2.26) = eτ D d

where  is a rate of Kirchhoff stress, which is co-rotational with the anisotropy direction vector 

, defined by (2.23),  

τ

n

  (2.27) α α= + −τ τ τω ω τ

and  is the fourth-order elastic rigidity tensor. The components eD ˆ ijkl
eD  of tensor  in a 

Cartesian system, defined by the following orthonormal vectors,  

eD
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 1
1 1

1
=e

g
g  (2.28) 

 2 =e n  (2.29) 

 3 1 2= ×e e e  (2.30) 

are given in the following matrix form [17], [18]: 

 

11 2

22

2 11

11 2

0 0
0 0
0 0

0 0 0 0 0
0 0 0 0 (1/ 2)( - ) 0
0 0 0 0 0

A λ λ
λ λ
λ λ

µ
λ

0
0
0

µ

⎡ ⎤
⎢ ⎥Α⎢ ⎥
⎢ ⎥Α
⎢ ⎥
⎢ ⎥
⎢ ⎥Α
⎢ ⎥
⎢ ⎥⎣ ⎦

11 22 33 12 13 23

11
22
33
12
13
23

 (2.31) 

and n is given by equation (2.23). It can be readily shown that tensor  is objective. τ

The five constants 11 22 2, , , ,A λ λ µΑ  designate the five independent effective properties of the 

media. These properties can be related to the engineering properties of the material through the 

following identities [18], [19]: 

 

11 13 13

2
22 22 13 21

13 21

2 13 13

12

4
2

-

A K

E
K
K

µ

µ ν
λ ν
λ µ
µ µ

= +

Α = +

=

=

=

 (2.32) 

where 

 11
13

13 12 21

1
2 1- - 2

EK
ν ν ν

=  (2.33) 

 11
13

13

1
2 1

Eµ
ν

=
+

 (2.34) 

It is noted that, in the above equations 11 22,E E are the uniaxial moduli and they are directly 

measurable from a tensile test, 12µ  is a shear modulus and 21 13,ν ν  are Poisson’s ratios. In the 

notation ijν a convention is employed so that the first index refers to the coordinate of the 

imposed stress or strain and the second index  refers to the response direction. Therefore, 

transverse isotropy can be described by five independent material constants, namely 

i

j

11 22 12 21, , ,E E µ ν  and 13ν . 

  Tensor , in this local Cartesian system defined in the deformed configuration, is expressed 

as follows 

eD

 ( )ˆ pqrs
e p q r sD= ⊗ ⊗ ⊗eD e e e e  (2.35) 
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Subsequently, the components  of tensor  can be written in terms of the embedded 

coordinates 

ijkl
eD eD

iξ , through the standard tensor transformation 

 ( )( )( )( )ˆ=ijkl pqrs i j k l
e e p q rD D s⋅ ⋅ ⋅ ⋅g e g e g e g e  (2.36) 

Using the definition of Jaumann stress rate  

  (2.37) -
∇

+τ=τ ωτ τω

the stress rate , co-rotational with the anisotropy direction vector , can be related to τ n
∇

τ  as 

follows 

  (2.38) ( ) (α

∇

= + − − −τ τ τ ω ω ω ω τ)α
where  

 ( ) ( )α− = ⊗ − ⊗ω ω n n d d n n  (2.39) 

Equivalently, 

  (2.40) ( ) ( ) ( ) ( )
∇

= + ⎡ ⊗ − ⊗ ⎤ − ⎡ ⊗ − ⊗ ⎤⎣ ⎦ ⎣eτ D d τ n n d d n n n n d d n n τ⎦

Using simple tensor algebra, one can write 

 ( ) (2 22
2

1 k
kld δ⊗ = ⊗n n d )lg g

g
 (2.41) 

and 

 ( ) (22
2

1 l k
kld δ⊗ = ⊗d n n )2g g

g
 (2.42) 

where k
mδ  is Kronecker’s delta. Furthermore, using equations (2.41) and (2.42), one readily 

obtains 

 ( ) ( )2 22
2

1 k im jl
m i j klg gδ τ⊗ = ⊗τ n n d g g

g
d  (2.43) 

 ( ) ( )2 22
2

1 mj l ik
m i j klg gτ δ⊗ = ⊗d n n τ g g

g
d  (2.44) 

 ( ) ( )2 22
2

1 jl k i
i j dτ δ δ⊗ = ⊗n n dτ g g

g
kl  (2.45) 

 ( ) ( )2 22
2

1 ik l j
i j dτ δ δ⊗ = ⊗τd n n g g

g
kl

)d

 (2.46) 

Therefore, equation (2.40) can be written as follows 

  (2.47) (
∇

= eτ D + A

where the components of fourth-order order tensor A , using (2.43)-(2.46), are 
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 ( ) ({ }2 2 2 2 2 2 22
2

1 -ijkl k im jl l jm ik jl i k ik j l
mg g g )δ τ δ τ τ δ δ τ δ δ= + +

g
A  (2.48) 

From continuum mechanics, the convected stress rate, defined as: 

 ( )  (2.49) ij
i jτ ⊗=τ g g

is related to the Jaumann stress rate through the following expression: 

  (2.50) 
∇

= −τ τ dL

where L  is the geometric rigidity fourth-order tensor, with components: 

 1 [
2

ijpq ip jq jp iq iq jp jq ipg g g g ]τ τ τ τ= + + +L  (2.51) 

Using (2.50) and (2.47), one finds: 

  (2.52) ( )= − =eτ D d+ A L Rd

where  is a fourth order tensor, with components equal to: R

  (2.53) ijkl ijkl+ijkl ijkl
eR D= −A L

In component form, equation (2.52) is written as follows: 

 ( )ijkl= + -ij ijkl ijkl
e klD dτ A L  (2.54) 

The rigidity tensor components in equation (2.53) will be used in the linearized equilibrium 

equation (2.12), to be discussed in a subsequent section. At this point it is pointed out, that the 

main advantage of this hypoelastic model is that the stress rate  is always expressed co-

rotationally with the anisotropy direction vector n  at the current configuration. In other words, 

the constitutive equation ‘‘follows’’ the current orientation of the anisotropy axis. 

τ

  The hypoelastic material model has a simpler form when the elastic material response is 

isotropic. In such a case, the continuum spin , expressing the average rotation of the material 

fibers at a specific material point, can be used in equation (2.27) instead of , and in this case 

the co-rotational rate  becomes the Jaumann stress rate 

ω

αω

τ
∇

τ : 

  (2.55) -
∇

+τ=τ ωτ τω

and 

  (2.56) 
∇

= eτ D d

where the rigidity tensor  in equation (2.56) now depends on two material constants, namely 

the Young’s modulus 

eD

E  and the Poisson’s ratio ν . It is noted that this simplification is 

obtained if the following assumptions are adopted in (2.31): 

 11 22A A=  (2.57) 

 22λ λ=  (2.58) 
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 11 2
1 (
2

A )µ λ= −  (2.59) 

With respect to the current basis, the components  of the rigidity tensor  have the 

following form: 

ijkl
eD eD

 2[
2(1 ) 1- 2

ijkl jq ip iq jp ij pq
eD g g g g g

ν ν
Ε

= + +
+

]g  (2.60) 

whereas matrix L  is given by equation (2.51), as well. Therefore, equation (2.54) for elastic 

isotropic response is reformed as: 

 ( )-ij ijkl ijkl ijkl
e kl klD L d R dτ = =  (2.61) 

 

 

2.2.2  Hyperelastic Constitutive Model 

  The main assumption in hyperelasticity is the existence of a Helmholtz free-energy function 

, also referred to as strain-energy function, which is defined per unit reference volume. 

Herein, the Helmholtz free-energy function 

Ψ

Ψ  is considered a function of the Lagrange-Green 

strain tensor , and the general form of a constitutive equation in hyperelasticity can be 

expressed by: 

E

 0

( )ρ ∂Ψ
=

∂
ES

E
 (2.62) 

where  is the second Piola-Kirchhoff stress tensor, E  is the Lagrange-Green strain tensor 

( ) and 

S
T2 = −E F F I 0ρ is the mass density in the initial configuration. The rate form of this 

hyperelastic constitutive model is obtained by differentiation of (2.62), so that: 

  (2.63) = eS D E

with given by: eD

 
2

0
( )ρ ∂ Ψ

=
∂ ∂e

ED
E E

 (2.64) 

  In this study the free energy  is expressed through a quadratic function of the 

components of  ([19], [20], [21]), as follows:  

( )Ψ E

E

 0
1( ) ( )
2

ρ Ψ = eE D E ⋅E  (2.65) 

so that a linear constitutive equation between  and E  and their rates will be obtained. It is 

mentioned that in this way tensor  depends on the material constants only, and may include 

any type of material anisotropy. 

( )S E

eD

  In the special case of transversely isotropic materials, tensor  can be expressed in a 

Cartesian system in the undeformed configuration as follows: 

eD
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 ( )ˆ pqrs
e p q r sD= ⊗ ⊗ ⊗eD e e e e  (2.66) 

where the components  are given by (2.31)-(2.33) with respect to the Cartesian system, 

defined in the reference configuration by the following orthonormal vectors: 

ˆ pqrs
eD

 1
1 1

1
=e

G
G  (2.67) 

 2 =e N  (2.68) 

 3 1 2= ×e e e  (2.69) 

  Subsequently, the components of  of tensor  can be written in terms of the embedded 

coordinates, defined in the initial configuration, through the tensor transformation 

ijkl
eD eD

 ( )( )( )( )i j k lˆ=ijkl pqrs
e e p q rD D s⋅ ⋅ ⋅ ⋅G e G e G e G e  (2.70) 

It is mentioned that, in the case of transversely isotropy,  can be expressed in a general 

tensor notation as follows [19], [20], [21]: 

eD

  (2.71) 2 2 2 (a b c d e= ⊗ + + ⊗ + + ⊗ + ⊗eD I I J Α Α P I Α Α I)

where  is the second-order identity tensor,  is the fourth-order identity tensor, the 

orientation tensor is defined as: 

I J

A

 = ⊗A N N  (2.72) 

the components of tensor  are defined as: P

 1 (
2ijkl ik jl il jk ik jl il jkP A A A Aδ δ δ δ= + + + )  (2.73) 

with respect to a Cartesian system, 

and  are related to the five independent elastic constants of the transversely isotropic 

material 

, , , ,a b c d e

11 22 12 21, , ,E E µ ν  and 13ν  as follows [19]: 

 13 13
1 ( -
2

a K )µ=  (2.74) 

 13b µ=  (2.75) 

 2
22 13 12 21 13

1 ( - - 2 (1- 2 ) )
2

c E Kµ µ ν= +  (2.76) 

 12 132( - )d µ µ=  (2.77) 

 13 21 13- (1- 2 )e Kµ ν=  (2.78) 

with 13 13,K µ given by (2.33) and (2.34), respectively. 

  One should note that this hyperelastic material modeling refers always to the initial 

configuration and, therefore, it does not ‘‘follow’’ the local anisotropy axis throughout the 

deformation history. However, it is applicable to the more general cases of anisotropy (e.g. 
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orthotropy), where the anisotropy axes and their orientation in the deformed (current) 

configuration can not be defined through a hypoelastic model.  

  In the framework of hyperelasticity with quadratic free energy functions, the special case of 

isotropy can be described in the same basis as above. In such a case, the fourth-order tensor  

obtains a more simple form as:  

eD

 2λ µ= ⊗ +eD I I J  (2.79) 

where the so-called Lame constants ,λ µ  are given in terms of the physical parameters ,E ν  as 

follows: 

 
21- - 2

1
2 1

E

E

νλ
ν ν

µ
ν

=

=
+

 (2.80) 

 

Note 

  In the present work, and for the purposes of conducting an extensive parametric study, the 

local components ˆ ijkl
eD of tensor  (2.31) are reformed in a more convenient manner. It is 

reminded that the axis of anisotropy is directed along axis 2, which corresponds to the 

longitudinal direction of the cylinder (Fig. 1). More specifically, the following equations are 

assumed for the five independent material constants (

eD

11A , 22A , 2λ , λ  and µ ). 

 ( )1
11 22 A λ µ− =  (2.81) 

 2λ λ=  (2.82) 

In such a case, from expressions (2.81) and (2.82), one trivially obtains: 

 11 2A λ µ= +  (2.83) 

It is further assumed that: 

 22 11A SA=  (2.84) 

where  is a parameter that indicates the level of anisotropy. Therefore, the components S ˆ ijkl
eD  

of tensor  in a local Cartesian system are now given by: eD

 

2 0 0 0
( 2 ) 0 0 0

2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0

S
λ µ λ λ
λ λ µ λ
λ λ λ µ

µ
µ

0
0
µ

+⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11 22 33 12 13 23

11

22

33

12

13

23

 (2.85) 

Clearly, if , the material is isotropic elastic, and 1S = λ  and µ  become the well-known Lamé 

constants. 
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  Using the above three independent material constants , ,Sλ µ  and assuming uniaxial stress 

states in the direction of axes 1 and 2, one obtains the uniaxial moduli 11E , 22E  and the 

corresponding Poisson’s ratios 12 13 21 23, , ,ν ν ν ν : 

 11

4(1- ) - 4 (2 3 )

(1- ) - 4 (1 )

S S

S S

µ µ
λ λΕ λ

λ
µ λ

+
=

+
µ

 (2.86) 

 22

(3 2 ) - (1- )

1

S Sµ λ
λ µΕ λ

λ
µ

+
=

+
 (2.87) 

 12
2

4 (1 ) - (1- )S S
ν

µ λ
λ µ

=
+

 (2.88) 

 13

(1- ) - 2

(1- ) - 4 (1 )

S S

S S

λ
µν

λ µ
µ λ

=
+

 (2.89) 

 21 23
1

2(1 )
ν ν

µ
λ

= =
+

 (2.90) 

Using (2.86) and (2.87) a dependent variable q  can be introduced, that expresses the ratio of 

the longitudinal uniaxial moduli 22E  over the hoop moduli 11E .  

 2 22

11

(1 )

4(1 )

S
Eq S
E

λ
µ

µ
λ

−
= = −

+
 (2.91) 

From (2.91), one concludes that the 22 11/E E  ratio depends on the level of anisotropy  and the S

/λ µ  ratio. Employing (2.91) the corresponding values of 2
22 11/q E E=  are shown graphically 

in Fig. 2 in terms of  for three different values of S /λ µ  ratio. 
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Fig. 2 Values of 22 11/E E  in terms of  S

 

 
 

2.3  Inelastic Constitutive Model 

  To model inelastic material behavior, J2 flow theory of plasticity with isotropic hardening is 

adopted. The hypoelastic constitutive equations relate the Jaumann rate of Kirchhoff stress to 

the rate-of-deformation. The deviatoric Kirchhoff stress is defined as: 

 1 ( )
3

= − ⋅s τ τ I I  (2.92) 

with contravariant components (on the current basis vectors)  

 1
3

ij ij ij kl
kls g gτ τ= −  (2.93) 

The von Mises (effective) stress is defined as: 

 2
3 33J
2 2

ij kl
ik jlY = = ⋅ =s s g g s s  (2.94) 

where  is the second invariant of .  2J s

Yielding occurs when  

 max and 0Y Y Y= >  (2.95) 

where  is equal to the maximum value of Y  throughout the deformation history but not 

less than , which is the initial yielding value for the case of uniaxial tension. If at least one 

of the conditions of (2.95) is violated elastic behavior occurs and the constitutive equations are 

the ones described in section 2.2.1 (isotropic material behavior). Furthermore, it is assumed that 

maxY

max,0Y
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the rate-of-deformation tensor  is decomposed in an additive manner to an elastic and a 

plastic part  

d

 e p= +d d d  (2.96) 

Furthermore, it is assumed that the material obeys the normality rule imposed by the Drucker’s 

stability postulate. Upon yielding the plastic part  of the rate-of-deformation tensor is: pd

 3
2

pp d
Y

=d s  (2.97) 

where it can be easily shown that the equivalent plastic strain  is equal to pd

 
0

2
3

t
p p

pd = ⋅∫ d d dt  (2.98) 

The above equation indicates that is a monotonically increasing parameter that offers a 

measure of the total plastic deformation. Based on this observation, it is assumed that  is 

also a monotonically increasing function of , where =0 and  at initial 

yielding. The function can be found from a standard calibration procedure using a uniaxial 

stress-strain curve, as outlined at the end of this section. During elastoplastic loading,  

and therefore: 

pd

maxY

pd pd max max,0Y Y=

maxY Y=

 max
max and p

p

dYY Y Y d
dd

= =  (2.99) 

It can be shown that the differentiation of (2.94) gives: 

 3
2

Y
Y

∇

= ⋅s τ  (2.100) 

The hypoelastic constitutive equation relates the Jaumann rate of Kirchhoff stress to the elastic 

part of rate-of-deformation tensor e p= −d d d  as follows: 

  (2.101) e
∇

= eτ D d

where  is the elastic rigidity matrix and for the case of isotropic elasticity is given by (2.60).  eD

  Using (2.101) and (2.97)-(2.100), and after some manipulations the following equation is 

obtained: 

  (2.102) 
∇
=τ Dd

where  is the fourth-order elastic-plastic rigidity tensor whose contravariant components with 

respect to the current basis are: 

D

 2

3 1
1 ( / 3 )

ijkl ijkl ij kl
e

GD D s s
Y H G

= −
+

 (2.103) 
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where  components are given by (2.60) and ijkl
eD max

p

dYH
dd

= . Consequently, the convected rate 

of Kirchhoff stress  is found to be: τ

  (2.104) ( )= − =τ D d RL d

where the contravariant components of tensor  are computed from (2.51). L

It can be easily checked that the components of tensor  exhibit the symmetries R

ijkl jikl ijlkR R R= = (due to symmetry of  and d ) and the nontrivial symmetry 
ο
τ ijkl klijR R= . 

  To complete the development of the constitutive equations, the function  must be 

appropriately defined from the uniaxial tension stress-strain curve. It is assumed that the 

uniaxial curve 

max ( )pY d

σ̂  versus ε̂  is known, where σ̂  is the nominal strain and ε̂  is the nominal 

strain. If  is the applied load, are the initial and current bar lengths, respectively, so 

that  and 

P 0 ,L L

0L L L∆ = − 0 ,A A  are the initial and current cross-sectional areas, respectively, the 

following are obtained: 

 

 

axial nominal stress 

 
0

ˆ P
A

σ =  (2.105) 

axial nominal strain 

 ˆ
0

∆Lε=
L

 (2.106) 

axial Cauchy stress 

 0ˆ AP
A A

σ σ= =  (2.107) 

axial Kirchhoff stress 

 
0 0

ˆˆ (1 )V L
V L

ˆτ σ σ ε= = = + σ  (2.108) 

deviatoric Kirchhoff stress components  

 

11

22 33

2
3

1
3

0,ij

s

s s

s i j

τ

τ

=

= = −

= ≠

 (2.109) 

plastic rate-of-deformation stress components 
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11 11

22 33 11
1
2

0,

p p

p p

p
ij

d d

d d d

d i j

=

= = −

= ≠

p  (2.110) 

total rate-of-deformation in the axial direction 

 11
/dL Ld

dt
=  (2.111) 

elastic part of rate-of-deformation in the axial direction 

 11
e τd

Ε
=  (2.112) 

plastic deformation parameter  

  (2.113) 11
p

pd d=

furthermore, the von Mises stress is 

  (2.114) ˆ ˆ( )Y = τ = 1+ ε σ

from  

 11 11 11
pd d d e= −  (2.115) 

and therefore, 

 1
p

dLd
dt L

τ
= −

Ε
 (2.116) 

Integration of this quantity gives: 

 
ˆˆ ˆln( ) ( )pd 1+ ε - 1+ ε
E
σ

=  (2.117) 

Expressions (2.105)-(2.108), (2.114) and (2.117) provide  and  in terms of the 

‘‘engineering’’ values of stress 

maxY pd

σ̂  and strain . ε̂

 

 

2.4  Linearization of Equilibrium Equations 

  The numerical solution of the nonlinear equilibrium equations is based on the linearization of 

principle of virtual work (2.12) and (2.16). For this purpose, the principle of virtual work is 

considered at a ‘‘nearby’’ configuration : 'x

 
0

k
/ i 0

'

( )
q

ij
k j q

V B

U dV dB Mδ τ δ′ ′ ′ ′ ′ ′ ′⋅ = ⋅ +∫ ∫G g u t δθ ′  (2.118) 

This configuration corresponds to stress tensor ′τ , boundary traction ′t  and bending moment 

M ′ . The increment of displacement ∆u , is defined as: 

 
'

=
x

x

t

t

dt′∆ = − ∫u x x x   (2.119) 
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The covariant base vectors at the nearby configuration are expressed as: 

 ( ) ( )
i i i i iiξ ξ ξ ξ

′∂ ∂ ∂ ∆ ∂ ∆′ = = + = +
∂ ∂ ∂ ∂

x x u ug g  (2.120) 

Moreover, 
'x

x

t
ij ij ij

t

dtτ τ τ′ = + ∫  (2.121) 

Assuming a hypoelastic material behavior in the form of expression (2.104), which includes the 

case of plasticity, expression (2.121) is written as follows: 

 
x'

x

t
ij ij ijpq

pq
t

R d dtτ τ′ = + ∫  (2.122) 

where the values of ,x xt t ′  express the ‘‘time-like’’ parameter t in the two configurations,  and 

 respectively. 

x

′x

  After some straightforward calculations the principle of virtual work (2.12) can be written 

linearized in the following linearized form 

  (2.123) ( ) ( )
0 0

/ / 0 /

jiijpq
i j p q q i j

V B V

U U dV δ dB M M U dVδ δ∆ = ⋅ + ∆ + + ∆ −∫ ∫ ∫u t tD 0θ δ σ

In the above equation,  and t∆ M∆  are the increments of the surface traction and bending 

moment, respectively. Furthermore, /p qUδ  is defined by (2.13), and similarly: 

 /
( )

p q qU
ξ

∂ ∆
p∆ = ⋅

∂
u G  (2.124) 

where  are the incremental displacements, whereas ∆u
ij

σ  are the components of the nominal 

stress tensor defined as follows: 

 
-1

0

-1

dV dV

J

=

=

σ F σ

σ F σ
 (2.125) 

where  is the deformation gradient and , and finally: F det( )J = F

  (2.126) (
ij ij j

iτ= ⋅g Gσ )

  In addition, the fourth-order tensor components  are equal to: ijpqD

 ( ) ( )ijpq i kjmq p jq ip
k mR Gτ= ⋅ ⋅ +G g g GD  (2.127) 

where tensor  is defined by (2.104).  R

  Equation (2.123) is the linearized form of the principle of virtual work, based on hypoelastic 

material behavior, which includes plasticity effects. In the case of hypoelasticity, the linearized 

principle of virtual work is given by the same expression (2.123), where in equation (2.127) 

tensor components ijklR are replaced by tensor components  given by (2.70). ijkl
eD
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2.5  Galerkin Discretization 

  The numerical solution is based on the finite element discretization of linearized equilibrium 

equations described in the previous section. Using appropriate shape functions, the incremental 

displacement field can be written as: 

 ˆ[ ]∆ = ∆u N U  (2.128) 

in which [  is the interpolation matrix that contains shape functions and  contains the 

increments of nodal degrees of freedom. Using the same functions for the virtual displacements,  

]N ˆ∆U

 ˆ[ ]δ δ=u N U  (2.129) 

Covariant differentiation of equations (2.128) and (2.129), and using the following equations 

 
/ p

/ p

( )

( )

p q q

p q q

U

U

ξ
δδ
ξ

∂ ∆
∆ = ⋅

∂
∂

= ⋅
∂

u G

u G
 (2.130) 

one results in: 

 { }/
ˆ( ) [ ]k lgrad U∆ = ∆ = ∆u B U  (2.131) 

 { }/
ˆ( ) [ ]k lgrad Uδ δ= =u δB U  (2.132) 

where [  contains the derivatives of the elements of the interpolation matrix. ]B

Furthermore, the traction component normal to any shell lamina is imposed to be zero at any 

stage of deformation =0, following classical shell theory. 33τ

  On account of the symmetry of the Kirchhoff stress, and because =0, the five-component 

column vector of stress components  is written as: 

33τ

τ

 

11

22

12

23

31

=

τ
τ
τ
τ
τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

τ  (2.133) 

Applying the condition that =0 (since =0 at all times) the constitutive equation in terms 

of the convected rate of Kirchhoff stress (hypoelasticity) can be written in matrix form as: 

33τ 33τ

 [ ]=τ R d  (2.134) 

in which 

 

11
11

22
22

12
12

23
23

31
31

d
d

= d
d
d

τ
τ
τ
τ
τ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

τ d  (2.135) 

 
 

27



and [ ]R  is a 5x5 matrix, containing the components of the appropriate rigidity tensor. 

  On the basis of the symmetries of the components ijpqR , it can be shown that matrix [ ]R  is 

symmetric. Another auxiliary matrix [ ]C  (9x9) is defined so that:  

 ( ) ( ) ( ) ( )j I q J i I p J
IJC Gτ=  (2.136) 

with the relations between the indices given by: 

  (2.137) 

, or or
1 1 1
2 2 1
3 3 1
4 1 2
5 2 2
6 3 2
7 1 3
8 2 3
9 3 3

I J i p j q

This arrangement is consistent with that of gradient components in (2.131). 

 { }

1/1

2 /1

3/1

1/ 2

p / q 2 / 2

3/ 2

1/ 3

2 / 3

3/ 3

U
U
U
U

U U
U
U
U
U

∆⎡ ⎤
⎢ ⎥∆⎢ ⎥
⎢ ⎥∆
⎢ ⎥∆⎢ ⎥
⎢ ⎥∆ = ∆
⎢ ⎥
∆⎢ ⎥
⎢ ⎥∆⎢ ⎥
∆⎢ ⎥
⎢ ⎥∆⎣ ⎦

 (2.138) 

It can be readily verified that [  is symmetric (because ]C jk il kj liG Gτ τ= ).  

Recalling that the mixed components of the deformation gradient with respect to the reference 

base vectors are written as follows, 

 i i i i
j j j( ) ( )F ⊗= ⋅ = ⋅ = ⋅F G G FG G G jgi  (2.139) 

a 5x9 matrix [ ]W  containing these components is introduced: 

 [ ]

1 2 3
.1 .1 .1

1 2 3
.2 .2 .2

1 2 3 1 2 3
.2 .2 .2 .1 .1 .1

1 2 3 1 2 3
.3 .3 .3 .2 .2 .2

1 2 3 1 2 3
.3 .3 .3 .1 .1 .1

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
0 0 0

0 0 0

F F F
F F F

F F F F F F
F F F F F F

F F F F F F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

W  (2.140) 

Moreover, another 5x5 matrix [ ]D  is introduced,  
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 [ ] [ ] [ ][ ] [ ]T= W R W CD +

T T

 (2.141) 

  Using the matrices and column vectors defined above, the linearized form of the principal of 

virtual work (2.123) can be written as: 

   (2.142) [ ] [ ][ ] [ ] [ ] [ ]
0 0

T TT T
0 0

ˆ ˆ ˆ '
q

q
V B V

dV dB dVδ δ
⎛ ⎞⎛ ⎞
⎜ ⎟∆ = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫ ∫U B B U U N t B W τD

Requiring that (2.142) holds for arbitrary virtual displacements ˆδU , the following set of 

equations is obtained: 

 [ ] ext int
ˆ∆ = −Κ U F F  (2.143) 

where [ ]Κ  is the incremental stiffness matrix  

 [ ] [ ] [ ][ ]
0

T
0

V

dV= ∫K B BD  (2.144) 

and  are the external and internal load vectors respectively. ext int,F F

 [ ]T
ext

q

q
B

dB′= ∫F N t  (2.145) 

 [ ] [ ]
0

T T
int 0

V

dV= ∫F B W τ  (2.146) 

  After assembling the stiffness matrices and load vectors of all elements, using the above 

relations, the system of equations for the displacement increment is solved. Upon computing 

the displacement increment, the corresponding increments of strains and stresses are calculated 

and thus an estimate for the nearby state of equilibrium is obtained. The iterative procedure is 

continued until equilibrium is achieved ( ext int=F F ). 

 

 

2.6  ‘‘Tube-Element’’-Description 

  In the past, several attempts have been reported to apply ‘‘pipe’’ or ‘‘elbow’’ elements for 

modelling of elongated cylinders, as alternatives to shell elements. These elements combine 

longitudinal (beam-type) deformation of the cylinder’s axis with cross-sectional deformation of 

the cylinder wall, and have been employed for the analysis of tubes and pipelines. Such 

elements been shown to be quite effective for the modelling of tubular members, pipelines, 

elbows and piping systems. Among other advantages of those elements over shell elements, one 

should underline the more convenient application of boundary conditions and kinematic 

constraints, as well as the clearest interpretation of numerical results.  

  The first attempt to combine the longitudinal deformation of the tube axis with cross-sectional 

ovalization was described in the studies of Bathe and Almeida [22], [23] for linear analysis and 

in a subsequent work of Bathe et al [24], where some nonlinear capabilities were investigated. 
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Militello and Huespe [25] proposed a further improvement of the above element including 

warping deformation, but keeping the inextensionality condition, which implies that the 

circumference length of the cylinder does not change during deformation. Hermite polynomials 

were used to ensure inter-element continuity. In a more recent paper, Yan et al [26] have 

proposed an enhanced ‘‘pipe-elbow element’’, which further improves the above concepts and 

capabilities. Their element included warping deformation, and accounted for a certain degree of 

cross-sectional extentionality and for non-symmetric cross-sectional deformation. Moreover, 

the contribution of pressure on the stiffness matrix (i.e. the ‘‘pressure stiffness’’ effects) was 

considered. This element was used for the numerical calculation of limit plastic response of 

tubes. 

  Hibbit et al [27] have developed an elbow element for the elastic and elastic-plastic analysis of 

initially straight and bent tubes under pressure and structural loads. The element is incorporated 

in the Finite Element program ABAQUS. It is based on the Koiter–Sanders linear shell 

kinematics and on a discrete Kirchhoff concept, imposed through a penalty formulation. Cross-

sectional warping is included and the corresponding deformation parameters are discretized 

through the use of trigonometric functions up to the 6th degree. Finally, the element accounts for 

pressure effects rigorously. 

  A nonlinear ‘‘tube-element’’ is presented in this section, which is employed for the purposes 

of this study in simulating the behavior of cylinders (initially straight or bent) subjected to 

bending within the plane of the cylinder. This ‘‘tube-element’’ combines longitudinal (beam-

type) with cross-sectional deformation. Isoparametric beam finite element concept is used to 

describe longitudinal deformation and three nodes are defined along the cylinder’s axis (Fig. 3). 

Geometry and displacements are interpolated using quadratic polynomials. Bending is applied 

about axis 1x  (i.e. 2 3x x−  is the plane of bending) and each node possesses three degrees of 

freedom (two translational and one rotational), which define its position and orientation.  

  A reference line is chosen within the cross-section at node  and a local Cartesian 

coordinate system is defined, so that the 

( )k

,x y  axes define the cross-sectional plane. The 

orientation of node  is defined by the position of three orthonormal vectors ( )k ( )k
xe , ( )k

ye  and 

( )k
ze . For in-plane (ovalization) deformation, fibers initially normal to the reference line remain 

normal to the reference line. Furthermore, those fibers may rotate in the out-of-plane direction 

by angle ( )γ θ . Using quadratic interpolation in the longitudinal direction, the position vector 

( , , )θ ζ ρx  of an arbitrary point at the deformed configuration is: 

 ( )
3

( ) ( ) ( ) (k) ( )
z

1
( , , ) ( ) ( ) ( ) ( )k k k kN

κ

θ ζ ρ θ ρ θ ργ θ ζ
=

⎡ ⎤= + + +⎣ ⎦∑x x r n e  (2.147) 
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where  is the position vector of node , ( )kx ( )k ( ) ( )k θr  is the position of the reference line at a 

certain cross-section relative to the corresponding node ( , )k ( ) ( )k θn  is the ‘‘in-plane’’ outward 

normal of the reference line at the deformed configuration and ( ) ( )kN ζ  is the corresponding 

Lagrangian quadratic polynomial.  
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Fig. 3 Tube element and deformation parameters; 2 3x x−  is the plane of bending 

    

The position of the reference line ( ) ( )k θr  at the deformed cross-section corresponding to node 

 is  ( )k

  (2.148) (k) (k) (k) (k)
x y( ) ( ) ( ) ( )r r rx y zθ θ θ θ= + +r e e ze

where  

 

[ ]
[ ]

( ) ( ) cos - ( ) sin

( ) ( ) sin ( ) cos

( ) ( )

r

r

r

x r w v

y r w v

z u

θ θ θ θ θ

θ θ θ θ

θ θ

= +

= + +

=

θ  (2.149) 

are the components of ( ) ( )k θr  with respect to the cross-section vector triplet (Fig. 3). In the 

above expressions, ( ), ( )w vθ θ  and ( )u θ  are displacements of the reference line in the radial, 

tangential and out-of-plane (axial) direction, respectively, whereas, angle rotation ( )γ θ  

corresponds to the material out-of-plane fiber rotation (Fig. 3). For an extensive presentation of 

ring analysis, the reader is referred to the book by Brush and Almroth [11]. 

The deformation functions ( ), ( ), ( )w v uθ θ θ  and ( )γ θ  are discretized as follows: 
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( ) sin cos sin

( ) sin sin cos
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( ) cos sin
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n n

n n
n n

n n
n n

n n
n n
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v a b n b n

u c n c n

n

θ θ θ

θ θ θ θ

θ θ θ

γ θ γ θ γ

= =

= =

= =

= =

= + + +

= − + +

= +

= +

θ∑ ∑

∑ ∑

∑ ∑

∑ ∑ nθ

 (2.150) 

Coefficients ,n nbα  refer to in-plane cross-sectional deformation (‘‘ovalization’’ parameters) 

and ,n nc γ  refer to out-of-plane cross-sectional deformation (‘‘warping’’ parameters). In the 

above expressions, symmetry with respect to the 2 3x x−  plane is considered because of in-

plane bending and only half of the tube is analyzed ( / 2 / 2π θ π− ≤ ≤ ). 

  The outward unit vector ( ) ( )k θn , normal to the reference line can be written as: 

  (2.151) ( ) ( ) ( )( )k k
x x y yn nθ = +n e ke

where 

 

( / )
( / )

( /
( /

r
x

r

r
y

r

dy dn
ds d

dx dn
ds d

)
)

θ
θ
θ
θ

=

= −
 (2.152) 

and 

 

2 2

[ ( ) '( )]sin [ '( ) ( )]cos

[ ( ) '( )]cos [ '( ) ( )]sin

2 [ '( ) ( )] [ '( ) ( )] [ '( ) ( )]

r

r

r

dy r w v w v
d
dx r w v w v
d
ds r r v w v w w v
d

θ θ θ θ θ θ
θ

θ θ θ θ θ θ
θ

2θ θ θ θ θ θ
θ

= − + + + −

= − + + − −

= + + + + + −

 (2.153) 

  The position vector expressed through (2.147) can be written alternatively as follows 

 ( )
3

(k) (k) (k) (k) ( )
x y z

1
( , , ) ( ) ( ) ( ) ( )k

r x r y r
k

x n y n z Nθ ζ ρ ρ ρ ργ ζ
=

⎡ ⎤= + + + + + +⎣ ⎦∑x x e e e  (2.154) 

and differentiating this expression with respect to the time variable and omitting higher order 

terms the following for the velocity vector is obtained: 

 

3
(k) (k) (k) (k)

x y
1

(k) (k) ( )
y z

( , , ) ( ) ( ) ( )

( ) ( ) ) (

r x r y r
k

k
r y r

x n y n z

y n z N

θ ζ ρ ρ ρ ργ z

)ρ ργ ζ
=

⎡= = + + + + + +⎣

⎤+ + + + ⎦

∑x v x e e e

e e

+

y

( )]

 (2.155) 

Equation (2.155) can be rewritten in terms of incremental displacements: 

 

3
(k) (k) (k)

x
1

(k) (k) ( )
z y

( , , ) [( ( ) ( )

( ) ( ) )

r x r y
k

k
r r y

x n y n

z y n N

θ ζ ρ ρ ρ

ρ γ ρ ζ
=

∆ = ∆ + ∆ + ∆ + ∆ + ∆

+ ∆ + ∆ + + ∆

∑u u e e

e e

+
 (2.156) 
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Considering vector ˆ∆U , which contains the increments of nodal degrees of freedom of the 

‘‘tube-element’’ as follows: 
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⎢ ⎥
⎢ ⎥
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⎢ ⎥∆
⎢ ⎥
⎢ ⎥⎣ ⎦

U

 (2.157) 

the incremental displacements in equation (2.156) can be written in the form of equation 

(2.128), so that matrix [ ]Ν  is defined. 

  The covariant base vectors, tangential to the coordinate lines ( , , )θ ζ ρ , can by calculated by 

differentiation with respect to the local coordinates of the position vector as follows: 

 
(k) (k)3

(k) ( )
1 z

1

( ) ( ) ( ) ( )k
θ

k

d d d N
d d d

θ θ γ θρ ρ ζ
θ θ θ θ=

⎡ ⎤⎛ ⎞∂
= = = + +⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦

∑x r ng g e  (2.158) 

 ( )
( )3

(k) (k) (k) (k)
2 ζ z

1

( )( ) ( ) ( )
k

k

N
d

ζθ ρ θ ργ θ
ζ ζ=

⎡ ⎤∂
= = = + + +⎢ ⎥∂ ⎣ ⎦

∑g g x r n ex  (2.159) 

 ( )
3

(k) (k) ( )
3 ρ z

1
( ) ( ) ( )k

k
Nθ γ θ ζ

ρ =

∂ ⎡ ⎤= = = +⎣ ⎦∂ ∑xg g n e  (2.160) 

Considering the covariant base vectors in the reference configuration , appropriate 

differentiation of (2.156) and the definition of vector 

1 2 3, ,G G G

ˆ∆U , matrix [ ]B  is formed to be used in 

equation (2.131). 

  In this study, the numerical results are obtained through the implementation of the described 

nonlinear ‘‘tube-element’’, exploring issues of stability, post-buckling response and 

imperfection sensitivity, considering a number of parameters that affect the structural response 

of thin-walled cylinders. 
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2.7  Tracing of Unstable Equilibrium Paths 

  The nonlinear governing equations are solved through an incremental Newton-Raphson 

numerical procedure, enhanced to enable the tracing of unstable equilibrium paths. For the 

purposes of the present study an ‘‘arc-length’’ path follower technique is implemented. Path 

follower techniques in structural mechanics were originally introduced by Riks [28], [29], and 

Wempner [30], and modified by Crisfield [31] in a more efficient form. These methods enable 

Newton-Raphson step-by-step solution algorithms to overcome limit points (maximum 

loads/moments), which may be characterized by ‘‘snap-through’’ or ‘‘snap-back’’ behavior in 

the load-deflection equilibrium path (Fig. 4). 

  To illustrate the above ‘‘continuation techniques’’, the set of discretized equilibrium equations 

can be written as: 

 i ef( , ) ( ) 0λ λ= − =g u q u q  (2.161) 

where vector expresses the internal forces, which are functions of the displacements , 

vector  is a fixed external loading vector, which is kept fixed, and the scalar 

i ( )q u u

efq λ  is a ‘‘load-

level’’ parameter that multiplies .  efq

 

 load 

displacement

limit point 

“ snap - through ” 

load

displacement 

limit point

“snap-back”

  
                                       (a)                                                                           (b)  

Fig. 4 ‘‘Snap-through’’ and ‘‘snap-back’’ behavior in load/displacement curves. 

 

  The major limitation of employing a load-control marching scheme that specifies the value of 

λ  is that at or beyond a limit point, there is no intersection between the equilibrium path of 

(2.161) and the line λ =constant. Furthermore, the adoption of a displacement-control marching 

scheme would allow tracing of a path in the form of Fig. 4a, but may fail to follow the path 

shown in Fig. 4b. Various forms of arc-length methods have stemmed from [28], [29], [30], 

aiming at the determination of the equilibrium path through the intersection of (2.161) with a 

‘‘hyper-plane’’ in the space of incremental load and displacements. In this methodology, the 
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load increment λ∆  is considered as an extra unknown. Towards this purpose, an additional 

equation is introduced, prescribing the “radius” of the “hyper-plane” to be used, for the 

intersection with the equilibrium path. More specifically, if l∆  is a prescribed constant which 

expresses the fixed ‘‘radius’’ of the desired intersection, then the following constrain equation 

is employed 

 T
ef ef( ) ( ) ( )l δ δ λ δλ ψ∆ = ∆ + ∆ + + ∆ +u u u u q q2 T  (2.162) 

where δu  is the correction to the incremental displacements ∆u , δλ  is the correction of the 

load increment λ∆  and ψ  is a scaling parameter that varies between 0 and 1. 

  In Fig. 5, starting form point (1) on the path, the method provides point (2) as the intersection 

of the path with an ‘‘arc’’ of radius l∆  about point (1) (Fig. 5). It is noted that vector  and 

the scalar quantity 

∆u

λ∆  are incremental (not iterative) quantities from the last converged 

equilibrium state [point(1)]. 

  The main essence of the arc-length methods is that the load parameter λ  becomes now an 

extra variable. Hence, together with the  displacement variables n ∆u , there is an additional 

unknown λ∆ , so that a total of 1n +  variables exist, and 1n +  equations, namely n  

equilibrium equations of (2.161) and one constraint equation from (2.162) are to be solved. An 

efficient method to solve those equations within a Newton-Raphson methodology has been 

proposed by Crisfield [31].  

  The present nonlinear study is based on the implementation of the above arc-length method in 

the Newton-Raphson step-by-step numerical solution. When bending is examined, the 

marching scheme is controlled by the non-dimensional arc-length parameter  defined as: l∆

 
2T

T
r r r

Ml
M

ψ
⎛ ⎞∆ ∆ ∆

∆ = + ⎜ ⎟∆ ∆ ∆⎝ ⎠

u u
u u

 (2.163) 

which comes from (2.162) and is a combination of bending moment increment M∆  with the 

increment of some ‘‘selected’’ degrees of freedom ∆u , where rM∆  is a normalization 

moment, and  are normalization displacements, both obtained from a preliminary load-

control small step. In proportion, when axial compression is examined expression (2.163) is 

reformed as: 

r∆u

 
2T

T
r r 0

Pl
P

ψ
⎛ ⎞∆ ∆ ∆

∆ = + ⎜ ⎟∆ ∆ ∆⎝ ⎠

u u
u u

 (2.164) 

where  is the load increment and P∆ 0P∆  is a normalization load parameter. It has been 

recognized that the success of the method depends in the appropriate selection of degrees of 

freedom in vector ∆u . In general, convergence near and beyond the limit point is facilitated 

when monotonically increasing degrees of freedom are included in vector ∆u . 

 
 

35



  In this work, for cases where buckling instability is due to bending loads, the incremental 

values the two translational degrees of freedom at each node  of the ‘‘tube-element’’ , 

are employed to form the vectors of incremental displacements  and reference 

displacements  in (2.163) and the value of 

( )k ( )
2
ku∆

( )
3

ku∆ ∆u

r∆u ψ is taken equal to 1 (spherical arc-length). 

  When axial compression of cylinders is examined, all the degrees of freedom are considered 

(translational, rotational, ovalization and warping) in forming the incremental displacement 

vector  and the reference displacement vector ∆u r∆u , to trace post-buckling equilibrium paths. 

In these cases the implementation of cylindrical arc-length procedure (ψ =0) has been found to 

facilitate convergence near the bifurcation point. 

  Finally, to enable the incremental analysis to follow the post-buckling path at the bifurcation 

point, a very small initial imperfection of the tube is imposed, in both cases (bending and axial 

compression). The initial imperfection is considered in the shape of the first instability mode, 

obtained by an appropriate eigenvalue analysis at the bifurcation stage. The imperfection is a 

small fraction (e.g. 10-6) of the shell thickness, but it is yet sufficient to improve convergence 

near the buckling point and ‘‘trigger’’ bifurcation. 
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Fig. 5 Schematic representation of arc-length procedure 
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2.8  Bifurcation in the Inelastic Range  

  Detection of bifurcation in the inelastic regime is described in this section based on the so-

called ‘‘comparison solid’’ concept, introduced in the work of Hill [32]. 

  For the case of hypoelastic constitutive modeling the general form of an elastic-plastic 

material model with smooth yield surface is considered, as follows: 

 ij ijkl
klR dτ =  (2.165) 

which, using (2.18), can be written as: 

 ij ijkl
klR Eτ =  (2.166) 

When the material response is elastic (including elastic unloading) components ijklR  are equal 

to:  

       for    ijkl ijkl ijkl
eR D= − L 0ij

ijm E ≤  (2.167) 

whereas for plastic loading 

 1ijkl ijkl ijkl ij kl
eR D

g
= − −L m m       for     (2.168) 0ij

ijm E ≥

where g  depends on the deformation history and the current state of stress and tensor m is 

normal to the yield surface.  

  Bifurcation is associated with loss of uniqueness of incremental solution. It is supposed that at 

the current state of stress and deformation, a load increment is imposed. Loss of uniqueness 

means that at least two incremental solutions exist, namely  and . The corresponding 

increments of Green-Lagrange tensor are  and , and the corresponding increments of 

Kirchhoff stress are  and . Form the equilibrium equations (2.12) one can readily show 

that loss of uniqueness is equivalent to the following condition 

au bu

aE bE

aτ bτ

  (2.169) 
0

/ 0
ˆˆ ˆ ˆ( )ij ij k

ij i k j
V

H E u u dVτ τ= +∫ 0=

where functional depends on the current stress state H ijτ  and 

 ˆ b a= −u u u  (2.170) 

 ˆ
b a= −E E E  (2.171) 

 ˆ b a= −τ τ τ  (2.172) 

The question on whether plastic loading or elastic unloading occurs for stress points on the 

yield surface causes a difficulty in evaluating functional  in equation (2.169). To overcome 

this difficulty, Hill [32] introduced the so-called ‘‘comparison solid’’, a fictitious solid with 

moduli 

H

ijkl
CL  equal to the elastic moduli (2.167) when the current stress is within the yield 

surface and equal to the elastic-plastic moduli (2.168) when the current state is on the yield 

surface.  
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It can be shown [33], that in any case, 

  (2.173) ˆ ˆ ˆˆijkl ij
C ij kl ijL E E Eτ≤

Therefore, introducing the quadratic functional 

 
0

/ / 0
ˆ ˆ ˆ ˆ( ijkl ij k

C ij kl j k j
V

)F L E E u u dVτ= +∫  (2.174) 

and using (2.169) and (2.173) one may readily conclude that in any case 

 F H≤  (2.175) 

Therefore, the condition  

  (2.176) 0F >

is a sufficient condition for uniqueness of solution. Furthermore, the non-positive definiteness 

of F  (i.e. F =0) constitutes an approximate condition for loss of uniqueness and provides 

upper-bound estimates of the buckling load. 

  In the present work, an implementation of the above concept is incorporated in the finite 

element technique, considering the following quadratic functional: 

 / /( ijkl ij k
C ij kl j k j

V

)F L E E U U dVτ= ∆ ∆ + ∆ ∆∫  (2.177) 

where  

 / / /
ij k ij mk

/j k j m j k jU U G U Uτ τ∆ ∆ = ∆ ∆  (2.178) 

 /
1 ( ) ( )
2

k k
pq p k q q k pE U⎡∆ = ⋅ ∆ + ⋅ ∆⎣ G g G g /U ⎤⎦  (2.179) 

Subsequently, following the discretization described in detail in section 2.5, the quadratic 

functional F  can be written in the following discretized form 

 [ ]1 ˆ
2

T
CF K ˆ= ∆U ∆U  (2.180) 

where 

 [ ] [ ] [ ]
0

T
0C

V

K = ⎡ ⎤⎣ ⎦∫ B BCD dV  (2.181) 

 [ ] [ ] [ ]T
C⎡ ⎤= +⎡ ⎤⎣ ⎦ ⎣ ⎦W L W CCD   (2.182) 

and  is the constitutive matrix with moduli C⎡ ⎤⎣ ⎦L ijkl
CL  as defined above. Therefore, the positive 

definiteness of functional  is equivalent to the positive definiteness of matrix [F ]CK . 

  Using J2 flow theory of plasticity, matrix [ ]CK  can be evaluated using the corresponding 

elastic and inelastic moduli. More specifically, if the stress state is within the yield surface then 
ijklR are equal to the elastic moduli  

  (2.183) ijkl ijkl ijkl
eR D= −L

where 
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 2
2(1 ) 1 2

ijkl jl ik il jk ij kl
e

ΕD g g g g g g
ν ν

⎛= + +⎜+ −⎝ ⎠
⎞
⎟  (2.184) 

and 

 1
2

ijkl ik jl jk il il jk jl ikg g g gτ τ τ τ⎡= + + +⎣L ⎤⎦  (2.185) 

On the other hand, if the stress state is on the yield surface ijklR are equal to 

 ( ) 1ijkl ijkl ijkl ij kl
eR D

q
= − −L s s  (2.186) 

where  

 
2

1
3 3
Y Hq
G G
⎛= +⎜
⎝ ⎠

⎞
⎟  (2.187) 

and Y  is the effective von Mises stress and max

p

dYH
dd

= ,  is defined by (2.188). pd

  It has been recognized that in order to obtain accurate predictions of bifurcation in the inelastic 

range, a material model more elaborate than the J2 flow plasticity model. This observation was 

denoted in early works on axially compressed cylinders [34], [35] where analytical works based 

on J2 flow plasticity provided buckling load predictions, which were quite high compared with 

available experimental data. On the other hand, it has been demonstrated that bifurcation 

predictions that employ the moduli of J2 deformation theory of plasticity are much closer to 

experimental data. A recent series of experiments on axially-loaded very-thick cylindrical shells 

that buckle well into the plastic range, together with analytical predictions using J2 flow and J2 

deformation theory moduli, have been reported by Bardi and Kyriakides [36]. The reason for 

the good agreement of deformation theory predictions with test data, as opposed to the poor 

predictions of flow theory, is that plastic strain increments based on deformation theory are not 

normal to the von Mises yield surface and this makes the material behaviour significantly 

‘‘softer’’ when abrupt changes in the direction of the stress path occurs at the buckling stage. 

  To evaluate matrix [ ]CK  in the framework of a J2 deformation theory of plasticity, the 

corresponding elastic and inelastic moduli should be considered. More specifically, the elastic 

moduli are those indicated by equations (2.183), and the inelastic moduli are 

 ( ) 1ijkl ijkl ijkl ij kl
s

s

R D
q

= − −L s s  (2.189) 

where  

 2
2(1 ) 1 2

ijkl jl ik il jk ij kls
s

s s

ΕD g g g g
ν ν

⎛ ⎞
= + +⎜+ −⎝ ⎠

g g ⎟  (2.190) 

and 
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2

s

2

2(1 )
3

1 1 1
2

1 3 1 1
2

s
s s

s

s s

s s

hq Y
E

E E E E

h Y E E

ν

ν ν

= + +

⎛ ⎞
= + −⎜

⎝ ⎠

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎟  (2.191) 

In the above expressions ,t sE E  are the tangent modulus and the secant modulus, respectively, 

and Y  is the effective von Mises stress.  

  In the framework of the present step-by-step Newton-Raphson solution procedure, at the end 

of each loading step (i.e. after convergence is achieved), matrix [ ]CK  is formed using J2 

deformation theory moduli and its positive definiteness is examined through its eigenvalues. 

Bifurcation occurs when the smallest eigenvalue of [ ]CK  becomes equal to zero. The 

eigenmode that corresponds to the first zero eigenvalue is the buckling mode. This instability 

mode is imposed subsequently as an initial imperfection for the analysis of the imperfect 

cylinder, as described in Chapter 7.  
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Chapter 3 

THIN-WALLED ELASTIC CYLINDERS UNDER AXIAL 

COMPRESSION – EFFECTS OF AXISYMMETRIC INITIAL 

IMPERFECTIONS  
 

  In the earlier Chapter the numerical technique employed for the purposes of this study were 

briefly discussed with special emphasis on the ‘‘tube-element’’ and constitutive modeling 

issues. In the following, this technique is employed for the buckling strength of elastic circular 

cylinders under axial compression, in the presence of axisymmetric initial imperfections. This 

problem can be considered as a benchmark for the capabilities of the ‘‘tube-element’’, offering 

a verification of its accuracy and computational efficiency, as the obtained numerical results are 

in very good agreement with semi-analytical results reported elsewhere.  

Equation Chapter 3 Section 3 

 

3.1  Introduction 

  The circular cylindrical shell under axial compression constitutes one of the most classical and 

challenging problems in structural mechanics. This problem has caused significant controversy 

in the 40’s and 50’s, as great discrepancies between theoretically predicted and experimentally 

observed buckling loads were reported. It is now generally accepted that the poor correlation 

between theory and tests is due, to a large extent, to the significant imperfection sensitivity of 

the cylinder buckling load. Imperfection sensitivity expresses a measure of the effect of small 

deviations from the assumed shape on the buckling load and for elastic structures it is directly 

related to the initial postbuckling behavior. 

  A major contribution towards understanding of the role of initial imperfections on buckling 

strength of circular cylinders was given by von Karman and Tsien [37]. In this landmark study, 

it was shown that the postbuckling structural capacity drops sharply, immediately after the 

bifurcation point. Using simple models to simulate the shell behavior, it was suggested that for 

these structures in the presence of initial imperfections buckling would occur at remarkably 

lower load values compared to the critical loads of the corresponding perfect structures. 

  Another rigorous confirmation of the dominant role of initial imperfections on the buckling 

load, was given by Koiter [3]. The initial postbuckling behavior was examined in an asymptotic 

sense and a perturbation technique, which relies on the principle of stationary potential energy, 
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was adopted. Similar results were derived by Budiansky and Hutchinson [10] and Budiansky 

[38], writing the field equations in variational form through the principle of virtual work. 

Subsequent studies that correlated the reductions in the buckling strength of shells (cylindrical 

and spherical) with assumed initial imperfections were reported by Cohen [39], Fitch [40] and 

Fabian [41]. It is mentioned that an overview of imperfection sensitivity in isotropic shells was 

given in a review paper by Hutchinson and Koiter [42]. 

  Furthermore, special mention should be made in another study of Koiter [4], where upper 

bounds to the loads at which non-axisymmetric bifurcation from axisymmetric state occurs, 

were determermined. Axisymmetric imperfection amplitudes of just one shell thickness were 

found to reduce the bifurcation load to a fifth of the classical load. In contradiction to the 

general theory [3], this particular study [4] was not based on the restrictive assumption that the 

amplitude of the initial imperfection is small. 

  In the present Chapter, infinitely long cylindrical shells with axisymmetric initial 

imperfections are analyzed. Non-axisymmetric modes and bifurcations along the equilibrium 

path are identified by the implementation of the ‘‘tube-element’’. The body of this Chapter 

includes a summary of the numerical results and their interpretation, whereas a direct 

comparison of the obtained results with the corresponding given by Koiter [4] is offered for the 

case of isotropic cylinders. Finally, results for transversely isotropic cylinders are also reported, 

illustrating the effects of the anisotropy level on the buckling strength of imperfect cylinders. 

 

 

3.2  Axisymmetric Buckling of Perfect Elastic Cylinders  

  The circular cylindrical shell under uniform compression has served as a reference in many 

studies of shell buckling. In this section a brief presentation of the analytical expressions that 

describe the axisymmetric bucking of cylinders is given. When a cylindrical shell is uniformly 

compressed buckling (axisymmetric or asymmetric) occurs at a critical stress, which is 

determined by the following expression [11], [43]: 

 
23(1 )

cr
E t

r
σ

ν
=

−
 (3.1) 

where E  is the Young’s modulus, ν is the Poisson’s ratio,  is the shell thickness and  is the 

cylinder radius. It is important to note that this buckling load corresponds to an infinite number 

of instability modes (axisymmetric or not). Specializing in the case of axisymmetric buckling, 

where no dependence of deformation with respect to hoop coordinate exists, the length  of 

the half-waves into which the shell buckles is equal to: 

t r

hwL

 
2 2

4
212(1 )hw

r tL π
ν

⎛ ⎞
= ⎜⎜ −⎝ ⎠

⎟⎟  (3.2) 
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It is noted that for metals Poisson’s ratio ν is equal to 0.3 and therefore 1.73hwL r= t  

  For orthotropic cylindrical shells the critical load that corresponds to axisymmetric buckling 

can also be determined for a perfect cylinder [11]: 

 2
11 22 21

1
3cr

t C C C
r

σ = −  (3.3) 

whereas, the corresponding buckling wavelength is determined by: 

 
2

11 444
2

11 22 21
hw

C C rL
C C C

π=
−

 (3.4) 

with the parameters  given by: ijC

 11
11

12 211
EC
ν ν

=
−

 (3.5) 

 22
22

12 211
EC
ν ν

=
−

 (3.6) 

 21 22
21

12 211
EC ν
ν ν

=
−

 (3.7) 

 
3

44 11 12
tC C=  (3.8) 

 

 

3.3  Non-Axisymmetric Bifurcation of Imperfect Cylinders - Semi-Analytical Solution  

  In this section the study of Koiter [4] is rewritten in a systematic manner, for the sake of 

completeness. Buckling behavior can be readily studied through the quasi-shallow equations 

suggested by Donnell [44], [45], which give accurate results for cylindrical shells, whose 

deformation components in the deformed configuration are rapidly varying functions of the 

circumferential coordinate.  

  The nonlinear set of equations for quasi-shallow shells as originally introduced by Donnell 

[44], [45], is given above: 

 
, ,

, ,

4
, , ,

0
0

1 ( 2 )

x x xs s

xs x s s

s x xx xs xs s ss

N N
N N

D w N N w N w N w
r

+ =

+ =

∇ + − + + = 0

 (3.9) 

where  

 4
, , ,xxxx xxss ssssw w w w∇ ≡ + +  (3.10) 

 
3

212(1 )
EtD
ν

=
−

 (3.11) 

and s  is a circumferential coordinate ( s rθ= ).  
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  Considering a small axisymmetric initial imperfection denoted by and assuming that the 

unloaded shell, which includes , is stress-free, the following strain-displacements relations 

for the imperfect shell are obtained: 

* ( )w x

*w

 

( ) ( )
2 2* * 2

, , ,,

2
, ,

*
, , , , , ,

1 1 1
2 2 2

1
2

*
, , ,x x x xx

s s s

xs s x x s x s

ε u w w w u w w

wε v w
r

γ u v w w w w

⎡ ⎤= + + − = + +⎢ ⎥⎣ ⎦

= + +

= + + +

x x xw

 (3.12) 

and the third equation in (3.9) can be replace by: 

 4 *
, , ,

1 [ ( ) 2 ] 0s x xx xs xs s ssD w N N w w N w N w
r

∇ + − + + + =  (3.13) 

which is in accordance with the expressed equilibrium for a slightly crooked column.  

  Linearization of the equilibrium equations is performed by introducing the following 

displacements   , ,u v w

  (3.14) 
0 1

0 1

0 1

u u u
v v v
w w w

→ +
→ +
→ +

where  correspond to equilibrium configuration (prebuckling) and is an 

infinitesimally small increment of displacements in addition to the prebuckling displacements. 

For axisymmetric configurations on the primary path, . 

Introduction of these terms into the equilibrium equations and simplification by neglecting 

higher order terms, results in the following linearized expression of equilibrium:  

0 0 0{ , , }u v w 1 1 1{ , , }u v w

0 0 0 0 0( ), 0, ( )u u x v w w x= = =

 

( )

1, 1,

1, 1,

4
1 1 0 1, 0 1, 0 1 1

0
0

1 * 0

x x xs s

xs x s s

s x xx s ss x x

N N
N N

D w N N w N w w N w N
r

+ =

+ =

′′ ′′∇ + − + + + =

 (3.15) 

where: 

 
( )
( )

1 1

1 1

1 1
1

2

1

1

x xx ss

s ss xx

xs xs

N C e ve

N C e ve

vN C e

= +

= +

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.16) 

and  

 

*
1 1, 0 1, 1,

1 1, 1

*
1 1, 1, 0 1, 1,

1
xx x x x

ss s

xs x s s

e u w w w w

e v w
r

e u u w w w w

′′= + +

= +

s
′′= + + +

 (3.17) 
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( ′ ) prime denotes differentiation with respect to x . 

  Expressions (3.15)-(3.17) can be reduced to three linear homogeneous equations with variable 

coefficients 0 0, , 0x s xsN N N  and . The three equations can now be further reduced to two by 

introducing a stress function 

*w

( , )f x s  for which: 

 
1 ,

1 ,

1 ,

x ss

s xx

xs xs

N f
N f
N f

=

=

= −

 (3.18) 

For geometric compatibility, from (3.17) the following is imposed   

 *
1, 1, 1, 1, 0 1, 1,

1
xx ss ss xx xs xs xx ss sse e e w w w w w

r
′′′′+ − = − −  (3.19) 

and using (3.16) an expression in terms of f  and is obtained: 1w

 4
1, 0 1, 1,

1 0xx ss ssf Et w w w w w
r
⎡ ′′′′∇ − − − =⎢⎣ ⎦

* ⎤
⎥  (3.20) 

Finally, the third equation in (3.15) becomes  

 4 *
1 , 0 1, 0 1, 0 , ,

1 0xx x xx s ss ss ssD w f N w N w w f w f
r

⎡ ′′′′ ⎤∇ + − + + + =
⎣ ⎦  (3.21) 

The last two expressions form two equations in the unknown functions f  and , and 

constitute an eigenvalue problem, the solution of which determines the critical load. Due to 

axisymmetric initial configuration, , , and , there is no 

dependence of the hoop variable 

1w

0 0 ( )u u x= 0 0v = 0 0 ( )w w x= 0 0xsN =

s  ( (.) / 0s∂ ∂ = ). Therefore, the non-linear equations (3.9) and 

(3.21) are now written: 

 0 0xN ′ =  (3.22) 

 ( ) ( )4 *
0 0 0 0

1 0s xDw N N w w
r

′′′′+ − + =  (3.23) 

and represent a system of non-linear equations in terms of .From (3.22), 0 0,u w 0xN is 

independent of x  and considering end conditions, one obtains:  

 0 2x
PN

r
σ L t

π
= = ⋅  (3.24) 

Furthermore, the constitutive relations are given by: 

 
( )
( )

0 0

0 0

x x

s s

N C v

N C v
0

0

s

x

ε ε

ε ε

= +

= +
 (3.25) 

and the non-linear kinematics (3.12) are: 

 

2
0 0, 0,

0
0

1
2x x x

s

u w

w
r

ε

ε

= +

=
 (3.26) 
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Combining (3.25) and (3.26) one obtains: 

 

0
0 0

0 0
0 0 0

x
x s

x
s s s

N v
C

N Etw
LN C v v v

C r

ε ε

tε ε σ

= −

⎡ ⎤⎛ ⎞= + − = −⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 (3.27) 

and substituting into (3.22) leads to the expression: 

 ( ) ( )4 *
0 0 02L L

Et vDw t w w t w
r r

σ σ⎛ ⎞ ⎛ ⎞′′′′+ + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.28) 

Expression (3.28) determines the nonlinear prebuckling equilibrium configuration. 

  In the following, we assume that axisymmetric initial imperfection  has the form: *( )w x

 ( )* 2cos mxw x ξt
r

=−  (3.29) 

where  is a wavelength parameter, m ξ  denotes the amplitude of the deviation of the middle 

surface as a fraction of the shell thickness,  is the cylinder radius. The minus sign in (3.29) 

signifies that the imperfect shell bulges inward at 

r

0x = . Introduction of (3.29) into (3.28) 

gives: 

 ( ) ( )4 2
0 0 02

24 cosL L
t t t πxDw σ t w w σ ν m ξ

r r r α
⎛Ε ⎟⎜′′+ + = − ⎟⎜ ⎟⎜⎝ ⎠

⎞
 (3.30) 

A solution of the following form is assumed 

 ( )0
2cosLσ mxw x ν r B

E r
= +  (3.31) 

where B is a constant expressed by:  

 
2

4

4
4 1 4

λgB ξ
g λg

=−
+ − 2  (3.32) 

andλ  and g  are non-dimensional load and wavelength parameters, respectively, defined by the 

expressions 

 
,

L

L cr

σλ
σ

=  (3.33) 

 
( )

2
2

23 1

mg
rν

⎛ ⎞= ⎜ ⎟
⎝ ⎠−

t  (3.34) 

 
( ), 23 1

L cr
E t

r
σ

ν

⎛ ⎞= ⎜ ⎟
⎝ ⎠−

 (3.35) 

Quantity ,L crσ is the classical value of the critical stress for the corresponding perfect cylinder.  

  Therefore,  
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( )

( )

0

0

0

*

2cos

2cos

2cos

x L

s

L

N σ t
t mxN E B
r r
σ mxw x ν r B
E r

mxw x ξt
r

=−
⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠

= +

=−

 (3.36) 

and introducing constant and function k Φ    

 

4

4 2

2

4 2

4 1
4 1 4

41
4 1 4

k

k

ρ
ρ λρ

λρ
ρ λρ

+
=

+ −

− =
+ −

 (3.37) 

 
( )2

3

3 1 ν
f

Et

−
Φ=  (3.38) 

equations (3.20) and (3.21) may be written 

 4 2
1, 1,2

24 cosxx ss
C mw cξkg w
rt r

0x⎡ ⎤
⎢∇ Φ+ − + ⎥=
⎢ ⎥⎣ ⎦

 (3.39) 

 ( )4 2
1 , , 1, 1,

4 2 24 cos 1 cosxx ss xx ss
c mx λ cξ mxw cξkg w k w
r r t t r

0
⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥∇ + Φ − Φ + + − =⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠⎣ ⎦

 (3.40) 

These equations constitute the linearized stability problem. Non-trivial solutions of the 

homogeneous equations exist only for discrete values of the load parameter λ . The resulting 

minimum eigenvalue represents an upper bound for the actual critical load. These variable-

coefficient equations can be solved numerically. It is noted that only even-ordered derivatives 

appear in (3.39) and (3.40), and that the coefficients are functions of the axial coordinate x  

alone. Therefore, as indicated by Koiter [3] it is reasonable to assume the existence of solutions 

which are functions of s  through a factor , where  is an integer. Koiter followed a 

numerical procedure and employed a Galerkin method, introducing a solution of the form: 

cos( )ns n

 ( )1 , ( )cos(w x s W x ns= )  (3.41) 

The displacement  employed by Koiter [3] was in the form: ( )W x

 ( )
1

cos[(2 1) / ]j
j

W x C j mx r
=

= −∑  (3.42) 

so the existence of an asymmetric buckling pattern with nodal lines where the circumferential 

tensile stresses attain their maximum is possible. The axial period of such a mode is thus twice 

the period of the axisymmetric equilibrium configuration. 

  Furthermore, the imperfection wavelength parameter g  was taken equal to: 

 1
2

g =  (3.43) 
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so that the axisymmetric deviation (3.29) coincides with the axisymmetric buckling mode of a 

perfect cylindrical shell. Indeed, for the axisymmetric buckling of axially compressed cylinders 

the buckling half-wavelength [43] is  

 
( )

1
44

0 212
πL
ν

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟Ι− ⎟⎜⎝ ⎠
rt  (3.44) 

and from (3.29) one results in 

 
( )0 2

π m
rL

=  (3.45) 

whereas the definition of constant g  in (3.33) leads to 

 ( )2 23 1 rm ν g
t

⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜⎝ ⎠
2  (3.46) 

Combing (3.44)-(3.46) one obtains that g  is equal to 1/ 2 . 

  Koiter [4] presented results of the critical value of the applied load for an imperfect cylinder 

over the classical critical load of the corresponding perfect cylinder for various values of the 

imperfection amplitude ξ . For initially imperfect cylindrical shells, the critical loads were 

found to be markedly reduced, for example for imperfection amplitude that is only half of the 

cylinder wall thickness, the critical load  is reduced to less than 30% of the corresponding 

value of the perfect shell . Despite the fact that from the engineering point-of-view this 

problem concerns the idealized case of axisymmetric imperfections, this study [3] provides a 

rigorous demonstration of the fact that small initial imperfections can substantially reduce the 

load carrying capacity of cylindrical shells. In the following, the above problem is revisited 

using our numerical tools. 

crP

,0crP

 

 

3.4  Numerical Results 

  For the purposes of this study, an elastic thin-walled cylinder ( =100) is examined under 

axial compression with axisymmetric imperfections. The axisymmetric imperfection shape is 

obtained from an appropriate bifurcation analysis. In such a case, the hoop dependence of 

cross-sectional deformations functions 

/r t

( ), ( ), ( )w v uθ θ θ  and ( )γ θ   is omitted in equations 

(2.150). The ‘‘tube-element’’ allows a convenient application of this axisymmetry; the only 

non-zero coefficients that are employed in the numerical analysis are and 0a 0γ . In the context 

of an initial numerical analysis, an axisymmetric buckling mode is obtained (Fig. 6), and it is 

imposed as an imperfection in a subsequent analysis. The imperfection amplitude 0 /W tξ =  is 

defined as the total wave height , normalized by the cylinder thickness t  (Fig. 7). Following 0W
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the study of Koiter [4], only a tube portion corresponding to twice the period of the 

axisymmetric equilibrium configuration is examined, applying the appropriate boundary 

conditions. 

 

Fig. 6 Axisymmetric buckling mode 
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Fig. 7 Amplitude of the initial imperfection ( 0 /W tξ = ) 

 

  In the context of the present study a comparison between hypoelastic and hyperelastic material 

modeling is also conducted. Therefore, for the same specific imperfection amplitudes (ξ = 0.1, 

0.5 and 1.0) and for a 16th degree expansion in (2.150), numerical results are reported for 
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various anisotropy levels in Fig. 8-Fig. 10. The numerical results indicate insignificant 

differences between the two material models.  
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Fig. 8 Comparison of hypoelastic and hyperelastic material models with respect to anisotropy level 

for ξ =0.1 ( =100) /r t
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Fig. 9 Comparison of hypoelastic and hyperelastic material models with respect to anisotropy level 

for ξ =0.5 ( =100) /r t
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Fig. 10 Comparison of hypoelastic and hyperelastic material models with respect to anisotropy 

level forξ =1.0 ( =100) /r t

 

  In the following, parametric study is conducted to determine the number of Fourier 

coefficients for the ovalization  and warping ,n na b ,n nc γ  parameters that are necessary for this 

analysis. The convergence of the results is verified by increasing the number of terms in the 

trigonometric series (2.150) until the required accuracy was achieved, as it is depicted in Fig. 

11. The results show that a 10th degree expansion for ( ), ( ), ( )w v cθ θ θ  and ( )γ θ is found to be 

adequate to provide satisfactory convergence for the load reduction factor ( ), and this 

is verified by a direct comparison of the obtained numerical results and the results reported in 

[3]. Moreover, for the purposes of this study a cylindrical arc-length algorithm (

max / crP P

ψ =0) is 

adopted, which monitors the increments of all the degrees of freedom of the ‘‘tube-element’’, 

and 23 equally spaced integration points around the half-circumference are employed. 
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Fig. 11 Convergence study for the expansion of the Fourier coefficients, comparison with the 

results reported in [3]( =100)  /r t

 

  Transversely isotropic cylinders are also considered, adopting the parameterization of 

anisotropy through the anisotropy parameter . Therefore, in the following figures (Fig. 12-

Fig. 14) the asymmetric buckling modes obtained for a transversely isotropic cylinder ( =5) 

are depicted with respect to the amplitude of the initial imperfection 

S

S

ξ , together with the 

number of  waves along the hoop direction. It is noted that in those Figures for visualization 

purposes the buckling patterns are properly magnified.  

n

 

 

  

Fig. 12 Non-axisymmetric buckling mode ( =5, S ξ =0.1, =9, =100) n /r t
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Fig. 13 Non-axisymmetric buckling mode ( =5, S ξ =0.5, =8, =100) n /r t

  

Fig. 14 Non-axisymmetric buckling mode ( =5, S ξ =1.0, =6, =100) n /r t
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Fig. 15 Load reduction factors for various levels of anisotropy; formation of waves along the 

circumference (hypoelastic model, =100) 
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  In Fig. 15 the load reduction factor is given with respect to the imperfection amplitude ξ  for 

various levels of anisotropy. The load reduction is more drastic as the anisotropy level 

increases. Moreover, for the particular cases with imperfection amplitudes ξ = 0.1, 0.5, 1.0 the 

number of waves  along the circumferential direction is given. It is noted that this number is 

independent of the level of anisotropy S  but it is affected by the initial imperfection amplitude 

n

ξ . It was also found that the value of buckling wavelength is affected by the presence of 

anisotropy, and it increases with increasing level of anisotropy. 
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Chapter 4 

THIN-WALLED NON-CIRCULAR ELASTIC CYLINDERS UNDER 

AXIAL COMPRESSION 
 

  Non-circular cylinders of small or large eccentricities are used to aerospace and mechanical 

engineering applications, due to either special external shapes or (internal) storage 

requirements. The problem of non-circular cylinders under axial compression has several 

similarities with the corresponding problem of circular cylinders under axial compression. 

However, there are several stricking differences, which refer to imperfection sensitivity and 

postbuckling response and allow its separate investigation. 

  In the following, buckling and postbuckling response of non-circular elastic cylinders under 

uniform axial compression is examined numerically, using large-strain hypoelastic and 

hyperelastic constitutive models, and the numerical results are compared with a semi-analytical 

asymptotic solution. Imperfection sensitivity issues are also discussed, and the influence of the 

level of anisotropy on the buckling characteristics is investigated. It is mentioned, that non-

circular cylinders under uniform axial compression, due to the variation of hoop curvature 

around the cylinder, can serve as a reference problem for the stability of bent cylinders, to be 

examined extensively in the subsequent Chapters. 

Equation Chapter (Next) Section 4 

 

4.1  Introduction 

  In this section, a brief review of the relevant literature for the axial compression of non-

circular elastic cylinders is presented focusing mainly on the studies of isotropic cylinders. 

Important contributions on buckling of anisotropic cylinders are reported, as well. It should be 

noted that although the number of studies dealing with the behavior of non-circular cylinders is 

constantly increasing over the years, this number is rather limited compared to the vast 

literature in the topic of circular cylinders under axial compression. 

  The elastic stability of non-circular cylinders under axial compression constituted a structural 

mechanics problem for which a specific discrepancy between theoretical and experimental 

results was observed. In contrast to the circular cylinder case and despite the fact that initial 

postbuckling response was calculated to be unstable [46], [47], ultimate loads higher than initial 

buckling load have been observed in experiments for non-circular cylinders with moderate-to-
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large eccentricities. Circular cylinders under axial compression exhibit buckling, which is 

associated with an infinite number of modes, occurs instantaneously over the entire 

circumference of the shell and it is accompanied by a very pronounced drop in the load-bearing 

capability of the shell. Thus, for the circular shell, the initial buckling results immediately in 

collapse. On the other hand, in the case of non-circular cylinders, experiments have shown that 

initial buckling occurs in the region of the minimum curvature of the circumference and is 

accompanied by a relatively little initial drop in the load-bearing capability. Subsequently, 

buckling patterns gradually propagate outside the regions of maximum curvature in the 

circumference and this allows the non-circular cylinder to use some reserved strength. This 

behavior is more noticeable, as the eccentricity of the non-circular cross-section is increasing. 

For highly-eccentric cross-sections, the initial postbuckling path was found less sensitive to 

imperfections. This behavior is reasonable, constituting a smooth transition from the significant 

imperfection sensitivity of the circular cylinder to the flat plate buckling behavior.  

  Numerical studies [47]-[52] for non-circular cylinders under uniform axial compression have 

confirmed the experimental observations regarding the strong buckling stress dependence on 

the amount of cross-sectional eccentricity. From these experimental observations it was 

assumed that a reasonable estimate of this critical stress for thin-walled shells of moderate 

eccentricities can be obtained from the corresponding buckling stress of an axially compressed 

circular cylinder, which has a radius equal to the maximum radius  of hoop curvature of the 

non-circular cylinder. Therefore, the critical stress 

maxr

crσ can be obtained by the following 

expression: 

 2

max

3(1 )cr
Etv

r
σ = −  (4.1) 

For the particular case of non-circular cylinders of elliptic shape  is the radius of curvature 

at the ends of the minor axis of the ellipse, defined by: 

maxr

 2
max / (r A B A B)= >  (4.2) 

where  is used for the length of the semi-major axis of the non-circular cross-section and A B  

for the length of the semi-minor axis (Fig. 16). Buckling initiates in the region of minimum 

curvature at the ends of the minor axis, which was also confirmed by numerical results [47]-

[52]. It is noted that from expressions (4.1) and (4.2) it can be readily concluded that the 

buckling load of a non-circular cylinder is lower than that of an equivalent circular cylinder 

with the same perimeter. Furthermore, for a given value of cylinder perimeter, the buckling 

load decreases, as cross-sectional eccentricity increases.  
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Fig. 16 Non-circular elliptic geometry 

 

  The early numerical results of the initial postbuckling behavior presented by Kempner and 

Chen in their early studies [7], [48], [49] indicated a significant and sharp drop in the load 

displacement path when the buckling load was attained similar to the one appeared in circular 

cylinders. However, this was not verified by experiments [46], [47] and subsequent theoretical 

studies [50], [51], [52]. Initial postbuckling behavior of infinitely long oval cylinders was 

examined by Hutchinson [50] within the context of Koiter’s postbuckling theory [3]. 

Hutchinson [50] reported negative values for the Koiter’s initial postbuckling coefficient b  

(Appendix-(11)), and concluded that non-circular cylinders are imperfection sensitive for all 

but the most highly eccentric cross-sections. In the subsequent studies of Kempner and Chen 

[51], [52] a more accurate formulation was adopted as proposed in [50], and the results showed 

that the postbuckling curve of an oval cylinder is characterized by a less drastic drop in the 

load-displacement path compared with circular cylinders, especially for highly-eccentric shells. 

Analogous conclusions for the buckling and postbuckling response were drawn in the study of 

Almroth et al [53]. Other theoretical studies were reported by Bushnell [54] and Semenyuk 

[55], which aimed at the calculation of the buckling load of simply supported elliptical 

cylinders, considering edge effects.  

  Sun [56] and Firer and Sheinman [57], [58] investigated the anisotropic response of non-

circular cylinders under axial compression based on Donnell type kinematic relations. In these 

studies, buckling and postbuckling behavior of non-circular shells was examined with emphasis 

on the effect of fiber orientation in angle-ply laminated shell configurations. Sun [56] extended 

Hutchinson’s asymptotic analysis [50] to include oval cylinders made of anisotropic composite 

laminates, and concluded that the buckling load and the initial postbuckling behavior, as 

expressed through the value of coefficient , are significantly affected by the wall laminate 

structure. 

b
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  The significant effect of the fiber orientation in angle-ply laminated cylinders has also been 

verified in the works of Firer and Sheinman [57], [58]. In these works non-circular cylinders 

were studied and edge conditions were considered. Isotropic cylinders were also considered as 

a special case, and previous results in isotropic cylinders [50] were verified.  

  Soldatos [59], [60] dealt with the buckling of axially compressed laminated oval cylinders 

subjected to simply supported boundary conditions, and pointed out the significant effect of the 

laminate configuration on the buckling and postbuckling behavior. For an up-to-date extensive 

review on the subject of mechanics of non-circular cylinders the reader is referred to the review 

paper of Soldatos [61].  

  In the current study, numerical results are presented for non-circular (elliptic) cylinders with 

moderate values of eccentricity ( /B A >0.9), focusing on buckling, postbuckling and 

imperfection sensitivity. These results are obtained through an appropriate implementation of 

the ‘‘tube-element’’ in the numerical technique, as described in the next section.  

 

 

4.2  Modeling of Non-Circular Geometries 

  In this section, modelling of non-circular cross-sections is described in the framework of the 

‘‘tube-element’’ formulation. Non-circular cross-sections can be expressed through an 

appropriate definition of the radial and tangential initial deviations from a circular reference 

line of radius , denoted as refr ( )w θ  and ( )v θ   

  The elliptic cross-section obeys the following parametric equation (Fig. 16): 

 2 2( / ) ( / ) 1x A y B+ =  (4.3) 

where  and A B  denote the semi-major axis and the semi-minor axis, respectively ( ). 

This equation can be rewritten in a simple parametric form, as follows: 

A B>

 
cos
sin

x A
y B

θ
θ

=
=

 (4.4) 

where θ is a parameter, which can be interpreted as a hoop angular coordinate ( π θ π− ≤ ≤ ). 

  Considering elliptic cross-sections at which the horizontal and the vertical deviations of the 

circular reference geometry of radius , refr δΗ  and Vδ , respectively, are equal,  

 Vδ δ δΗ = =  (4.5) 

one obtains:  

 refA r δ= +  (4.6)\ 

 refr δΒ = −  (4.7) 

Next, equation (4.6) is replaced in equation (4.4): 
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( )co

( )sin
ref

ref

x r

y r

sδ θ

δ θ

= +

= −
 (4.8) 

and after some straight forward calculations, it can be shown that (4.8) can be reformed as: 

 
( cos2 )cos sin 2 si

( cos2 )sin sin 2 sin
ref

ref

x r

y r

nδ θ θ δ θ θ

δ θ θ δ θ

= + +

= + − θ
 (4.9) 

From simple circular ring kinematics [11], the coordinates of a point on the undeformed elliptic 

cross-section are given by 

 
[ ( )]cos ( )sin

[ ( )]sin ( )sin
ref

ref

x r w v

y r w v

θ θ θ θ

θ θ θ

= + −

= + + θ
 (4.10) 

Therefore, combining (4.9) and (4.10) the in-plane initial deviations from circular geometry 

( ), ( )w vθ θ  are found equal to: 

 
( ) cos2
( ) cos2

w
v
θ δ θ
θ δ θ

=
= −

 (4.11) 

and from equations (2.150) one readily obtains 

 2 2a b δ= − =  (4.12) 

where δ  is a parameter that defines the ellipse eccentricity ratio /B A  

( / ( ) /( )ref refB A r rδ δ= − + ). In conclusion, imposing initial values of  according to (4.12) 

while all the other coefficients’s initial values are equal to zero, the elliptic geometric is 

accurately described.   

2 2,a b

  Another type of non-circular geometry is the consideration of a cylinder with an ‘‘oval’’ 

cross-section. Again, deviations ( )w θ  and ( )v θ  from a reference circular cross-section should 

be defined. In this case, deviations ( )w θ  and ( )v θ  are assumed as follows: 

 
( ) cos2

( ) cos2
2

w

v

θ δ θ
δθ θ

=

= −
 (4.13) 

so the following expression is adopted, which satisfies the first-order inextentionality condition: 

 2 22a b δ= − =  (4.14) 

The above inextentionality condition means that the circumference length of the oval cylinder is 

equal to the corresponding length of the equivalent circular cylinder, within a first order 

approximation.  

  Therefore, ‘‘tube-element’’ formulation allows the examination of non-circular geometries, in 

general. For the purposes of this study both elliptic and oval cross-sections were examined and 

the differences between these non-circular cross-sections were found negligible, especially for 

cylinders of moderate eccentricities.  
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4.3  Numerical Results 

  Numerical results for non-circular elliptic cylinders of various eccentricities are presented, 

with special emphasis on cylinders of moderate eccentricities ( /B A >0.9). For consistency with 

previous studies in isotropic cylinders, the values of stresses are normalized by the following 

stress Nσ .  

 11 22
12 21

max

3(1 )N

E E t
r

σ = −ν ν  (4.15) 

where 11E  and 22E  refer to hoop and longitudinal elastic modulus, respectively, 12ν  and 21ν  are 

Poisson’s ratios (section 2.2) and  is the radius of curvature at the ends of the minor axis.. 

In isotropic cylinders, this normalization stress 

maxr

Nσ results in the critical stress of an elliptic 

cylinder. 

  The shortening of the cylinder is expressed by the dimensionless parameter Kε ε= , where ε  

is the axial strain of the cylinder and  is a geometric parameter proportional to the radius of 

curvature at the ends of minor axis , defined as: 

K

maxr

 max
12 213(1 )rK

t
ν ν= −  (4.16) 

Furthermore, the value of the axial half-wavelength  is normalized by . Based on 

the equivalent radius , which is defined as the radius of the circle with exactly the same 

perimeter as the elliptic cross-section, another non-dimensional parameter q , is introduced, 

denoted by: 

hwL 1/ 2
max( )r t

0r

 1/ 4
12 21 0(12(1 )) /q ν ν= − r t  (4.17) 

  Calculations were conducted with both hypoelastic and hyperelastic constitutive models 

resulting in identical buckling and postbuckling response. Equilibrium paths were traced 

through the cylindrical arc-length algorithm (ψ =0), which monitors the increments of all the 

degrees of freedom of the ‘‘tube-element’’, as described in section 2.7. To trace the secondary 

postbuckling path a slight initial imperfection is imposed, with amplitude  equal to 100W -7 

times the cylinder thickness  (t 0W tξ = ). The imperfection shape is considered in the form of 

the buckling mode, obtained by an eigenvalue analysis just prior to bifurcation, as described in 

section 3.4 for circular cylinders. 

  A parametric study is conducted to determine the number of Fourier coefficients for the 

ovalization  and warping ,n na b ,n nc γ  parameters that are necessary for this analysis, as in the 

previous Chapter. The convergence of the results is verified by increasing the number of terms 

in the trigonometric series (2.150) until the required accuracy was achieved. The results show 

that a 8th degree expansion for relatively thick cylinders (Fig. 17) and a 16th degree expansion 
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for thinner shells (Fig. 18) are adequate to provide satisfactory convergence not somuch for ther 

the load reduction factor ( ) but for the postbuckling equilibrium path. This feature can 

be correlated with the abrupt changes in the shell configuration that take place in thin-walled 

structures. Furthermore, for the purposes of this study 23 equally spaced integration points 

around the half-circumference are employed. 

max / crP P
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Fig. 17 Effect of the degree of trigonometric expansion used in equation (2.150) ( =0.907, 

=30, =1) 
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Fig. 18 Effect of the degree of trigonometric expansion used in equation (2.150) ( =0.907, 

=190, =1) 
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Fig. 19 Buckling mode for an elliptic isotropic cylinder ( =0.907, =190, =1) /B A /or t S

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20 Buckling mode for a transversely isotropic elliptic cylinder ( =0.907, =190, =5) / /or t SAB

 

  The buckling modes of a thin-walled elliptic cylinder with small eccentricity are shown in  

Fig. 19 and Fig. 18, considering two values of the anisotropy parameter  . It is noted that the 

buckling load of a non-circular cylinder subjected to axial compression is associated with only 

one instability mode as opposed to the case of circular shells, where buckling load is 

characterized by an infinite number of modes. This difference relies on the ovalized initial 

configuration and the variation of the hoop curvature along the cross-section. This is also 

responsible for the ‘‘local’’ character of buckling in the circumferential direction, especially for 

the case of isotropic cylinders. When anisotropy effects are negligible, a smooth buckle at each 

end of the minor axis is developed (Fig. 19). On the other hand, the buckling shape of 

anisotropic cylinders is characterized by multiple short-length waves within the hoop direction, 

S
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which are located in more extended part of the circumference (Fig. 20). These multiple wave 

configurations in the hoop direction explain the significant variation of the buckling 

wavelengths with respect to the level of anisotropy. For the case of isotropic cylinders the axial 

wavelength of the buckling mode of an elliptic cylinder is very close to the wavelength of the 

axisymmetric buckling mode of a circular cylinder with radius  

(

maxr

2 1/ 4 1/ 2
max[12(1 )] ( )hwL r tπ ν −= − ), and approaches this value for thinner cylinders. The numerical 

results verify these observations; for an elliptic with =190 and =1 and 5 the 

corresponding half wavelengths are calculated equal to 1.74

/or t S

Br t , and 5.80 Br t , respectively. 

  The efficiency and the capabilities of the ‘‘tube-element’’ are investigated through the 

comparison of the present numerical results with observations presented elsewhere [50]. These 

results (Fig. 21-Fig. 26) illustrate that a non-circular isotropic cylinder under axial compression 

undergoes snap-back bifurcation, but not a complete collapse. The buckling response of perfect 

and imperfect elliptical cross-sections with relatively large minor-to-major axis ratio 

/B A =0.907 (i.e. small eccentricity) is depicted in Fig. 21-Fig. 24 for two different values of 

the  parameter. The results show that imperfect cylinders buckle at load level below the 

critical load of a perfect elliptical cylinder, in the form of a snap-back buckling, but can still 

sustain further load increase. More specifically, the buckling response of a relatively thick 

cylinder is depicted in Fig. 21 and Fig. 22, where  is equal to 10 ( =30), and the case of a 

thinner cylinder is examined in Fig. 23 and Fig. 24, with =25 ( =190). For comparison 

purposes the geometric parameters 

q

q 0 /r t

q 0 /r t

/B A  and  are similar to the ones considered by 

Hutchinson [50], although in that study only initial postbuckling was examined and no 

numerical results of the full non-linear equilibrium path were presented. 

q
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Fig. 21 Numerical results of the load-deflection path of an isotropic elliptic cylinder 
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Fig. 22 Detail of the bifurcation point for an isotropic elliptic cylinder; arrows (↓) indicate 

maximum load points ( =0.907, =10, S =1) /B A q
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Fig. 23 Numerical results of the stress-deformation curve of an isotropic elliptic cylinder 

( =0.907, =25, =1) /B A q S
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Fig. 24 Detail of the bifurcation point for an elliptic cylinder, arrows (↓) indicate maximum load 

points ( =0.907, =25, =1) /B A q S
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Fig. 25 Numerical results of the stress-deformation curve of an elliptic cylinder ( /B A =0.746, 

=30, =1) 0 /r t S
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Fig. 26 Numerical results of the stress-deformation curve of an elliptic cylinder ( /B A =0.746, 

=190, =1) 0 /r t S

 

  Results for two values of the  parameter ( =10 and 25) are also presented in Fig. 25 and 

Fig. 26, for a more eccentric cross-section (

q q

/B A =0.746). In these Figures, a similar response is 

obtained, which verifies that the postbuckling structural capacity of non-circular geometries 

exceeds the initial bifurcation load. 
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  Based on the numerical results, one may observe that for thinner cylinders (e.g. =25), in 

addition to the first sharp load reduction the postbuckling curve has a ‘‘wavy’’ form, with local 

limit points, which correspond to a kind of secondary buckling, as reported in [53].  

q

  In the following, the response of transversely isotropic imperfect cylinders is illustrated for 

different values of the imperfection amplitude ξ . The numerical results show that an increase 

of the imperfection amplitude ξ  results in a reduction of the maximum load carrying capacity. 
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Fig. 27 Load-displacement path for an imperfect elliptic cylinder; arrows (↓) indicate maximum 

load points ( /B A =0.907, =190, =3) 0 /r t S
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Fig. 28 Detail of the bifurcation point for an imperfect elliptic cylinder; arrows (↑) indicate 

maximum load points ( /B A =0.746, =190, =3) 0 /r t S
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  Numerical results for imperfection sensitivity numerical are also presented for both isotropic 

and transversely isotropic cylinders. The case of isotropic cylinders is considered first, to allow 

for a direct comparison of the present numerical results with results reported in [50]. Applying 

Koiter’s postbuckling theory [3] (Appendix), Hutchinson [50] examined the character of the 

postbuckling behavior in the initial stages after bifurcation for isotropic shell structures. 

Assuming a sinusoidal variation of the buckling mode in the axial direction of the cylinder, 

Hutchinson calculated the value of coefficient b  in equation (11) of the Appendix for 

characteristic values of /B A  ratios and different values of the geometric parameter q . It is 

noted that for axial compression loading the parameter ρ  in this expression, which indicates 

the non-linearity of the pre-buckling state, is equal to unity. 

  Numerical results for the maximum load parameter max / crP Pλ = , in terms of initial 

imperfection amplitude ξ , are compared with the asymptotic expression (11) (Appendix), 

using the values of coefficient b  directly from [50]. This comparison is shown in Fig. 29 and 

Fig. 30 for =10 and 25, respectively, and for q /B A =0.907. The comparison indicates a very 

good agreement of the present numerical technique and the asymptotic expression of [50], and 

offers a verification of the efficiency of the numerical formulation in describing accurately the 

nonlinear response of non-circular axially-loaded cylinders  
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Fig. 29  vs imperfection amplitude for =0.907 and q =10; direct comparison of the 

present numerical results and the asymptotic solution [50] 
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Fig. 30  vs imperfection amplitude for =0.907 and q =25; direct comparison of the 

present numerical results and the asymptotic solution [50] 

max / crP P /B A

 

  In the case of transverse isotropy, an analogous comparison is not available due to the lack of 

asymptotic solutions for the value of b . However, numerical results have been obtained and are 

depicted in Fig. 31 for /B A =0.907 and =25. These results clearly show the load reduction, 

as expressed by the ratio , with respect to imperfection amplitude for different levels of 

anisotropy; even small geometrical imperfections may cause a considerable reduction of the 

buckling load. This reduction is affected by the presence of anisotropy, and it is found less 

drastic, when anisotropy is more pronounced. Finally, it is noted that using a standard curve 

fitting procedure in the results of Fig. 31, an exponential expression of the following form  

q

max / crP P

 2 / 3max 1
cr

P C
P

ξ= −  (4.18) 

is obtained, which follows the ‘‘2/3’’ exponential rule and fits the numerical results. 
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Chapter 5 

THIN-WALLED ELASTIC ISOTROPIC CYLINDERS UNDER 

BENDING AND PRESSURE 
 

  In the previous Chapter, structural stability of thin-walled non-circular elastic cylinders under 

axial compression was examined, considering both isotropic and transversely isotropic 

cylinders. In the present Chapter the stability of thin-walled isotropic cylinders subjected to 

bending moments is investigated, mainly numerically. In addition, using a simplified 

formulation, closed-form expressions are developed for ovalization and bifurcation instabilities, 

which are compared with the numerical results. Furthermore, aspects of uniform wrinkling-

bifurcation are illustrated using a simple mechanical model, which considers the ovalized 

prebuckling state and the effects of pressure. Special emphasis is given on the effects of a slight 

initial curvature along the cylinder. Finally, using the nonlinear numerical tools, the stability of 

the secondary equilibrium path in the vicinity of the bifurcation point and the role of initial 

imperfections in the reduction of the critical load are examined.  

Equation Chapter 5 Section 5 

 

5.1  Ovalization Instability 

  The main characteristic of cylinder response under bending is the distortion (ovalization) of its 

cross-section due to the inward stress components  of the longitudinal bending stresses (Fig. 

32). The ovalization mechanism results in loss of stiffness in the form of limit point instability, 

referred to as ‘‘ovalization instability’’ or Brazier effect [62].  

Vσ

  Next, a brief presentation of previous publications is given, which adopts closed-form 

expressions for the moment-curvature and ovalization-curvature relationships. The validity of 

those expressions is examined through rigorous finite element results. 
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Fig. 32 Ovalization mechanism 

 

 

5.1.1  Introduction 

  According to classical beam theory solution of the cylinder flexure problem, neglecting 

nonlinear geometry effects, a linear relation between bending moment and curvature is 

obtained: 

 M EIk=  (5.1) 

which can be written in a non-dimensional form as follows: 

 m κπ=  (5.2) 

where the values of moment M  and curvature  are normalized by k eM  and  respectively, 

where:  

Nk

 
2

2 2
,

1- 1-
e N

Ert tM k
r 2ν ν

= =  (5.3) 

so that 

 ,
e N

M km
M k

κ= =  (5.4) 
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Fig. 33 Cross-sectional displacements 

 

  Brazier [62] enhanced solution (5.2) including nonlinear kinematic terms, responsible for the 

ovalization of the cross-section, which were assumed to be inextentional. In [62] a doubly 
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symmetric trigonometric solution for the cross-sectional ovalization displacements (Fig. 33) 

was obtained, which is described by: 

 

2 5 2 2

2

2 5 2
2

2

(1 )( ) sin 2 sin 2
2 2

(1 )( ) cos2 cos 2

k r rv
t

k rw r
t

ν κθ θ θ

νθ θ κ θ

−
= − = −

−
= =

 (5.5) 

resulting in the closed-form nonlinear expressions for the moment-curvature in terms of applied 

curvature. 

 23(1 )
2

m πκ κ= −  (5.6) 

Furthermore, expressing ovalization in terms of the non-dimensional parameter ζ , defined as 

follows: 

 1

2
D D

D
ζ 2−
=  (5.7) 

and from Fig. 32 one obtains: 

 
r
αζ =  (5.8) 

where 1D  and 2D  are the cylinder diameters normal and parallel to the plane of bending and  

is the ovalization amplitude, a closed-form expression for the ovalization-curvature relationship 

is obtained: 

a

 2ζ κ=  (5.9) 

Imposing stationary value of equation (5.6), one can calculate the value of limit moment, its 

corresponding curvature, and the cylinder flattening (ovalization). Ovalization at the limit point 

is found equal to about 22% of the radius (Fig. 34) and the corresponding values of moment 

and curvature are Brm =0.987 and Brκ =0.471, respectively.  

y

x

0.22r

0.22r

y

x
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Fig. 34 Flattening of the cross-section at ovalization limit point according to Brazier solution 
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  Wood [63] examined the flexure of a uniformly pressurized, long, circular and initially 

straight cylinder under bending, using an energy formulation. According to this study, the 

ovalization displacements were considered as additional (small perturbation) to the initial 

displacements due to pressure and the bending solution. The additional displacements were 

assumed to be inextentional, as in Brazier’s work. Employing a Rayleigh-Ritz technique and 

minimizing the total potential energy, the resulting displacements for the cross-section were 

obtained, as follows: 

 2 3

2 3

( ) sin(2 ) sin(3 )
( ) 2 cos(2 ) 3 cos(3 )

v A A
w A A
θ θ θ
θ θ θ
= − +
= +

 (5.10) 

where 

 

22
2

2

3
3

2

2 21
1 2 1

3
8 3 1

A f t
r f r

A t
r f r

κ ν
ν

κ ν
ν

⎛ ⎞− ⎛ ⎞= +⎜ ⎟⎜ ⎟⎜ ⎟− − ⎝ ⎠⎝
−

=
− −

⎠  (5.11) 

In the above equations, the pressure level is normalized by , which is the elastic buckling 

pressure: 

ep

 
3

24(1- )e
E tp

rν
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (5.12) 

so that the normalized pressure is: 

 
e

pf
p

=  (5.13) 

The cross-sectional displacements (5.10) include higher-order terms compared to (5.5). For 

small values of , it is possible to neglect those higher-order terms and the following 

equations are obtained: 

/t r

 23 11-
2 1-

m
f

κπ κ
⎛

= ⎜
⎝ ⎠

⎞
⎟  (5.14) 

 
2

1 f
κζ =
−

 (5.15) 

The ovalization limit moment and the corresponding curvature can be calculated from (5.14) as 

follows: 

 0dm
dκ

=  (5.16) 

so that  

 0.471 1-ov fκ =  (5.17) 

and from (5.14) 
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 0.987 1-ovm = f  (5.18) 

Setting f =0 in the above relations for ,ov ovmκ  the corresponding values of Brazier [15] are 

obtained ( Brm =0.987 and Brκ =0.471). 

  Reissner [64] investigated ovalization instability of initially straight and curved cylinders. 

Until that publication, motivated by the stress analysis of pipe elbows, initially curved cylinders 

have been examined for linear response only, in order to determine elastic flexibility and stress 

intensity factors, extending the classical von Karman linear solution [65]. In that work, Reissner 

[64] presented for the first time a unified treatment of the two problems (i.e. nonlinear bending 

of straight and curved cylinders), which, until then, have been considered separately. Based on 

a vectorial consideration of equilibrium in a cylinder cross-section, Reissner [64] examined the 

nonlinear problem of bending of initially straight and curved tubes, considering the effects of 

pressure. In the first part of this work, Reissner demonstrated that the results of Brazier [62] and 

Wood [63] for initially straight cylindrical shells may be considered as a first approximation of 

the cylinder bending problem. Higher order terms were included for the moment-curvature 

path, improving the third degree equations (5.6) and (5.14). Retaining terms up to the fifth 

power of curvature κ , Reissner resulted in the following relation for the moment-curvature 

path: 

 2 4
2

3 1 3 11
2 1 2 (1 )

m
f f

κπ κ κ
⎛

= − −⎜ − −⎝ ⎠

⎞
⎟  (5.19) 

Keeping only two terms on the right hand side of equation (5.19), one readily results in (5.14). 

  According to (5.19) limit moment  and the corresponding curvature  are calculated as 

follows: 

ovm ovκ

 0dm
dκ

=  (5.20) 

which results in, 

 0.415 1ov fκ = −  (5.21) 

and from (5.19), one obtains: 

 0.909 1ovm f= −  (5.22) 

which are somewhat different from the values of equations (5.17) and (5.18).  

  Moreover, Reissner [64] presented a simple expression for the analysis of cylinders with slight 

initial curvature. Assuming that the order of magnitude of initial curvature  ( ) is 

the same as the ovalization curvature 

inκ /in in Nk kκ =

ovκ  for the corresponding initially straight cylinders, the 

following simple expressions for the cross-section displacements ( ), ( )w vθ θ were obtained: 
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( )( ) cos 2
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( )( ) sin 2

2(1- )

in

in

rw
f

rv
f

κ κ κ
θ θ

κ κ κ
θ θ

+
=

+
= −

 (5.23) 

It can be readily verified that these displacements satisfy the first-order ‘‘inextentionality’’ 

condition ( ( ) '( )+w vθ θ =0). This inextentionality condition means that the circumference 

length of the cylinder does not change along the deformation path, within a first order 

approximation. Those equations resulted in closed-form moment-curvature and ovalization-

curvature expressions that account for pressurized cylinders of slight initial curvature: 

 3( )(2 )1
4(1- )

in inm
f

κ κ κ κ
κπ

⎛ ⎞+ +
= −⎜

⎝ ⎠
⎟  (5.24) 

 
2

1
in

f
κ κ κ

ζ
+

=
−

 (5.25) 

Negative and positive values of  corresponds to opening and closing moments, respectively 

(Fig. 35). The ovalization curvature 

inκ

ovκ  can be found by imposing: 

 0dm
dκ

=  (5.26) 

and it is equal to: 

 ( )21 8(1- ) 3 - 3
6ov in infκ κ= + κ  (5.27) 

In the case of initially straight cylinders ( inκ =0), the above equations (5.24) and (5.25) result in 

equations (5.14) and (5.15), correspondingly. 
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Fig. 35 Loading conditions in initially curved cylinders 

 

  Following those notable publications, several researchers have addressed the problem of 

nonlinear ovalization using more advanced analytical tools. Reissner [66] examined in detail 

the ovalization instability of initially straight tubes, considering two independent variables, 
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namely the rotation of the cross-section reference line ( )β θ , and a stress function ( )ψ θ , where 

θ  is the hoop coordinate. For circular cross-section, the formulation resulted in a system of two 

nonlinear differential equations in terms of β  and ψ . The moment-curvature path ( m κ− ), 

included terms up to the fifth power of the curvature κ , which constitutes an enhanced form of 

the third-degree m κ−  expression of Brazier [62]. In a subsequent paper, Reissner and 

Weinitschke [67] presented an integral formulation for the ovalization instability of circular 

initial straight cylinders and an iterative numerical solution method. Results for deformation 

and stress beyond the limit point were also reported.  

  Axelrad [68], [69] presented a nonlinear formulation for the ovalization instability of 

cylindrical members under bending based on a nonlinear flexible shell theory. Results were 

reported for initially straight and bent cylindrical shells, including the effects of pressure. For 

initially straight cylinders, the formulation was identical to the one developed by Reissner [66]. 

A description of this formulation and some characteristic results can be found in the works of 

Axelrad [70], [71] and in the work of Axelral and Emmerling [72].  

  Thurston [73] used a modified Newton’s method to solve the governing equations proposed by 

Reissner [66] and calculated the ultimate moment and the corresponding curvature for initially 

straight cylinders. Those values correlated very well with the analytical results presented by 

Axelrad [69], [70]. Boyle [74] re-examined the instability of initially bent cylinders, 

considering a similar nonlinear shell theory. The solution was compared with simplified closed-

form moment-curvature expressions, and was in very good agreement with the results of 

Axelrad [69]. In a more recent work, Karamanos [75] investigated ovalization instability of 

long thin-walled initially straight and bent cylinders. Using a nonlinear finite element 

formulation, results over a wide range of initial curvature values were presented. The efficiency 

and accuracy of analytical expressions introduced elsewhere with respect to the numerical 

results were discussed. 

 

 

5.1.2  Analytical Energy Solution 

  The case of pressurized initially straight or bent circular cylinders is briefly examined for the 

sake of completeness from a unified yet simple formulation, using a variational approach. The 

energy formulation includes the effects of pressure and initial curvature in ovalization 

instability. The total potential energy, in the case of pressurized bending, is the sum of the 

above quantities: 

  (5.28) L C P PU U V W M kΠ = + + − −
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where,  is the longitudinal bending strain energy,  is the cross-sectional (hoop) 

deformation strain energy, 

LU CU

PV is the pressure potential and  is the second-order of hoop 

pressure stress . 

pW

/pσ pr t=

  From beam theory, the longitudinal part  is expressed in terms of stress LU xσ  and the strain 

xε  in the direction of tube axis as follows. 

 
2

0

1
2 2 2

2 2
xL x x x

A A

E EtrU σ ε dA ε dA ε d
π

θ= = =∫ ∫ ∫  (5.29) 

The strain xε  in the direction of the cylinder axis is given by the following expression directly 

from ring theory: 

 1[( )sin cos ] [ cos sin ]n
x

uε ky k r w v v w
R R

θ θ θ= + = + + + + θ  (5.30) 

where 1/ inR k=  is the initial curvature of the cylindrical shell,  is the applied curvature, r  

and  are the radius and the thickness of the cylinder cross-section respectively,  is the 

distance from the neutral axis,  is the displacement in the direction of the plane of bending 

and  is the longitudinal applied curvature. In the above expressions 

k

t y

nu

k ( )w θ  and ( )v θ are the 

displacements of the reference line in the radial and tangential direction respectively (Fig. 36). 
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Fig. 36 Cross-sectional ovalization (in-plane) deformation parameters 

 

The total curvature 1/ 'R  of the cylinder at the deformed configuration is: 

 1
'

k 1
R R

= +  (5.31) 

Referring to the hoop strain energy , a ring-theory formulation is adopted, based on the 

Bernoulli assumption (i.e. plane sections remain plane and normal to the deformed cross-

CU
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sectional mid-thickness reference line) as described in Brush and Almroth [11]). Every point 

has an axial hoop strain equal to: 

 2

1 1( ' ) ( ' '')θ θ0ε ε k v w v w
r rθ ρ ρ⎡ ⎤ ⎡ ⎤= + = + + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (5.32) 

where ( )′ denotes differentiation with respect to θ , ρ  is the material coordinate in the radial 

direction (through the thickness). Assuming inextentionality of in-plane displacements,  is 

set equal to zero, which results in: 

θ0ε

 ( ) '( ) 0w vθ θ+ =  (5.33) 

Therefore the hoop strain energy  can be expressed as follows: CU
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2 2 (1 ) 24(1 )

2
C θ θ θ
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Er EtU σ ε r d d ε d d v v d
r

θ θ

π

θ ρ θ ρ
ν ν

= = =
− −∫ ∫ ∫ ∫ ∫ θ+  (5.34)   

  To express the work due to pressure a ring is considered in plane-strain conditions that 

corresponds to a cross-section of the cylinder. For pressure loading, the pressure at each point 

on the ring surface remains normal to the surface as the ring deforms. Therefore, a ring 

subjected to uniform internal or external pressure constitutes a conservative system. It is a 

closed system and the potential energy of the applied pressure is the product of the pressure p  

times the change of the area enclosed by the surface of the ring. It is readily shown that the 

potential energy due to pressure is:  

 
2

2

0

1 (2 ' ' )
2pressU p p rw v vw v w w d

π
2 θ= ∆Α = + − + +∫  (5.35) 

In the following, external pressure corresponds to positive values of p  and internal pressure is 

expressed by negative values of p . 

The work of stress , due to pressure is expressed as follows: pσ

 
2 2

2

0 0

1 ( ')
2θ

θ0 θ0 θ0A
V

p r p rσ ε dV ε r d d ε r t d p v w d
t t

π π

θ ρ θ= = = −∫ ∫∫ ∫ ∫ θ  (5.36) 

where p
prσ
t

=  (from elementary strength of materials and θ0ε is the second order hoop normal 

strain. 

 
21 ' ⎞
⎟2θ0

v wε
r
−⎛= ⎜

⎝ ⎠
 (5.37) 

  Subsequently, a simple Ritz discretization with trigonometric functions is considered to obtain 

analytical closed-form solution for the ovalization-curvature relationship and the moment-

curvature equilibrium path. For simplicity, only one trigonometric doubly symmetric term is 

assumed for ( )w θ  and ( )v θ : 
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 ( ) cos2 and ( ) sin 2
2
aw a vθ θ θ= = − θ  (5.38) 

where  is ovalization amplitude (Fig. 32). a

It is noted that assumption (5.38) satisfies the condition of inextentionality. Inserting all the 

above equations in the expression of potential energy (5.28) one results in the following 

equation: 

 5 3 3 3
8 2 8 2

2 3 2
2 2 2

2 2 3

Etr a kra πEt a(k r π+ π - π)+ - a pπ - Mk
2 R' R' (1- ν )r

Π =  (5.39) 

The above expression refers to both initially straight and curved cylinders.  

  Neglecting quadratic terms in the expression of , one results in a simpler expression for the 

potential energy. The total curvature 1/ '

LU

R  is expressed as: 

 1
' ink k

R
= +  (5.40) 

and equation (5.39) results in: 

 
3 2

2 2 2
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3 3 3( , ) ( - ( ) ) - -
2 2 8 (1- ) 2in

Etr Et aa k = k r k k k ra a p Mk
r

ππ π
ν

Π + + π

0

 (5.41) 

  Solutions for the ovalization parameter  in terms of the applied curvature  yield directly 

from the minimization of Π  in terms of a . Consideration of equilibrium ( ) leads to 

the ovalization-curvature relationship: 

a k

/ a∂Π ∂ =

 
(
1

inra
f

)κ κ κ+
=

−
 (5.42) 

so that: 

 
(
1

in

r f
)κ κ καζ

+
= =

−
 (5.43) 

  Inserting the value of ovalization amplitude α , as described in (5.42), in the expression of 

potential energy and enforcing equilibrium ( / 0∂Π ∂ =k ), an expression for the bending 

moment is obtained:  

 
3( )(2 )(1 )

4(1 )
in inm

f
κ κ κ κ

κπ
+ +

= −
−

 (5.44) 

From expression (5.44) the ovalization curvature is obtained and it is found equal to: 

 ( )21 8(1- ) 3 - 3
6ov in infκ κ= + κ  (5.45) 

In addition, the ovalization moment  is obtained from equation (5.44) for . ovm ovκ κ=

  The moment-curvature relation (5.44) is identical with the one presented by Reissner [64]. In 

that work, this expression was obtained through an analytical formulation based on nonlinear 

kinematics and assuming a small initial curvature of the cylinder, whereas in the present study 

 
 

80



it is obtained through an energy formulation. Furthermore, setting inκ =0 in expression (5.44), 

the closed-form expression (5.14) of Wood [63] is obtained. Specialization of (5.44) to the case 

of non-pressurized initially straight cylinders results in equation (5.6), which was first presented 

in Brazier [15] . 

  It is also possible to obtain closed-form expressions for the longitudinal stress xσ . Inserting 

the value of ovalization amplitude from (5.43) in the inextentional discretization of the 

displacements ( )w θ  and ( )v θ  one obtains: 

 
( ) ( )( ) cos 2 and ( ) sin 2
1 2

in inw r v r
f f

κ κ κ κ κ κ
(1 )

θ θ θ
+

= = −
− −

θ
+

 (5.46) 

and using the expression (5.30) for the longitudinal strain xε , a closed-form expression is 

obtained for the longitudinal stress x xσ = E ε , as follows. 

 
2 23( ) ( )(1- ) 3

4(1- ) 4(1- )
x in in

e

κ sinθ+ sin θ
f f

σ κ κ κ κ
σ

⎛ ⎞+ +⎜=
⎜ ⎟
⎝ ⎠

⎟  (5.47) 

where 
21

e
t
r

σ
ν

Ε ⎛ ⎞= ⎜ ⎟
⎝ ⎠−

 is a ‘‘reference’’ stress used for normalization purposes only. 

Expression (5.47) is identical with the one presented by Reissner [64]. 

  Furthermore, employing the above simplified formulation, it is possible to obtain analytical 

expressions for the radii of curvature at the deformed cross-section. Using the following 

expression for the hoop curvature:  

 1 1 k
r r θ
θ

= +  (5.48) 

where ,r rθ  are the radiis of curvature before and after the deformation, respectively, and kθ  is 

the change of curvature in the hoop direction, and applying ring-theory [11], the following 

expressions are obtained:  

 2

1 1 '( ) ''(
( )

v w
r r rθ

)θ θ
θ

−
= +  (5.49) 

and using (5.43), (5.46) and (5.49) one readily obtains:  

 
23 cos 2 3 cos21 1

( ) (1 )
in

r r r fθ

κ θ κ κ θ
θ

+
= +

−
 (5.50) 

  Summarizing, the above described energy formulation results in the following closed-form 

expressions in terms of the applied curvature κ , considering the effects of initial curvature 

and pressure inκ f . 

Radial displacement  

 
( )( ) cos2
1

inrw
f

κ κ κ
θ θ

+
=

−
 (5.51) 
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Tangential displacement     

 
( )

( ) sin 2
2(1 )

inr
v

f
κ κ κ

θ θ
+

= −
−

 (5.52) 

Ovalization-curvature  

 
(
1

in )
f

κ κ κ
ζ

+
=

−
 (5.53) 

Moment-curvature  
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4(1 )
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κ κ κ κ

κπ
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 (5.54) 

Longitudinal stresses 

 
2 23( ) ( )(1 )sin sin3

4(1 ) 4(1 )
in inx

e f f
σ κ κ κ κκ θ
σ

⎛ ⎞+ +
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Curvature in the hoop direction at the deformed configuration 

 
3 ( )1 1 cos2

( ) (1 )
in

r r r fθ

κ κ κ
θ

θ
+

= +
−

 (5.56) 

 

  The presented energy formulation considers the case of circular cylinders, and the majority of 

the cases examined in this study concern this case. However, it is possible to include a stress-

free initial ovality of the cylinder cross section in the above formulas. The initial ovality of the 

cross-section is assumed inextentional, in accordance with (5.38) and is expressed in the 

following form: 

 0
0 0 0( ) cos2 and ( ) sin 2

2
aw a vθ θ θ= = θ−  (5.57) 

where  is the initial ovalization amplitude additional to ovalization amplitude  and the 

initial ovalization parameter

0a a

0ζ  is defined by 0 0 / rζ α=  

  Reconsideration of (5.41) and similar minimization of Π results in the following formulas: 

Radial displacement  

 0 ( )( ) cos 2
1 1

inf rw
f f

ζ κ κ κ
θ θ

⎛ +
= +⎜ − −⎝ ⎠

⎞
⎟  (5.58) 

Tangential displacement  

 0 ( )( ) sin 2
2(1 ) 2(1 )

inf rv
f f

ζ κ κ κ
θ θ

⎛ +
= − +⎜ − −⎝ ⎠

⎞
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Ovalization-curvature 

 0 (
1 1

inf )
f f

ζ κ κ κ
ζ

+
= +

− −
 (5.60) 

Moment-curvature 

 
 

82



 0
3(2 ) 3( )(2 )1
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f f
κ κ κ κ κ κ

ζ π κπ
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Longitudinal stresses 

 
2 2

0
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 (5.62) 

Curvature in the hoop direction at the deformed configuration 

 03 (1 2 ) 3 ( )1 1 cos 2 cos 2
( ) (1 ) (1 )

inf
r r r f r fθ

ζ κ κ κ
θ θ

θ
− +

= + +
− −

 (5.63) 

which correspond to (5.51)-(5.56) for 0ζ =0. 

 

 

5.1.3  Numerical Results 

  In this section the analytical closed-form expressions obtained by the energy formulation 

(5.58)-(5.63) are compared with numerical results from the nonlinear finite element formulation 

of Chapter 2, as well as results from previous researchers. The numerical results corresponding 

to ovalization instability are obtained under the assumption that bifurcation (buckling) into a 

wrinkled state does not occur. In all cases, pressure-if present-is applied first and then keeping 

the pressure level constant, bending load is gradually increased. For the purposes of such an 

analysis a cross-sectional analysis that employs only one ‘‘tube-element’’ is required, 

considering only in-plane cross-sectional deformation (displacements ( )w θ  and ( )v θ ) and 

neglecting warping (displacement ( )c θ  and rotation ( )γ θ ). 

  The cylinder material is isotropic elastic and its behavior is described by the large-strain 

hypoelastic constitutive model, incorporated in the nonlinear finite element technique as 

described in Chapter 2. Results obtained from the hyperelastic model have been found to be 

very similar. For consistency purposes (with the bifurcstion analysis, as it is going to be 

discussed in a following paragraph) a 16th degree expansion is used for the number of cross-

sectional parameters although convergence can be easily obtained by using less terms, due to 

the absence of bifurcation. Furthermore, 19 equally spaced integration points around the half-

circumference are employed, and five and two Gauss points are used in the radial direction 

(through the thickness) and in the longitudinal direction, respectively. Values of moment, 

curvature and pressure are normalized by , ,e N eM k p , respectively, as described before (5.3), 

(5.12). Results are presented for tubes with  equal to 120. However, it was found that using 

the described normalization the numerical results are independent of the  ratio. 

/r t

/r t
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  First, the case of initially straight cylinders ( inκ =0) is examined. The accuracy of the above 

closed-form expressions [(5.58)-(5.63)] is examined through their comparison with numerical 

results, as it is depicted in Fig. 37 and Fig. 38. In Fig. 39 the influence of pressure on the −m κ  

path is demonstrated. It can be seen that the presence of external pressure ( f >0) reduces the 

moment capacity, whereas there is a beneficial effect of internal pressure ( f <0). The ζ κ−  

relationship for different values of pressure is shown in Fig. 40. The numerical results indicate 

that the presence of internal pressure reduces cross-sectional ovalization. 

  The closed-form expression (5.55) for the longitudinal stresses of initially straight cylinders in 

terms of curvature and pressure compares well with the numerical results, as shown in Fig. 41 

and Fig. 42. It has to be pointed out that stress distribution is no longer linear with respect to the 

distance with the neutral axis. Three cases are depicted referring to internal, external and no 

pressure, respectively. The comparison of stress distributions is conducted at the point on the 

primary path that corresponds to the maximum value of moment (the ovalization limit point 

stage), as calculated through the finite element analysis. 
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Fig. 37  paths for cross-sectional analysis with respect to pressure −m κ f  ( =120, =0) /r t inκ
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Fig. 38 Variation of  and  with respect to the pressure level ovκ ovm f  ( =120, =0)  /r t inκ
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Fig. 39 Analytical results of  equilibrium paths considering pressure effects ( =120, =0) −m κ /r t inκ
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Fig. 40 Analytical results of −ζ κ  paths considering pressure effects ( =120, =0)  /r t inκ
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  The case of initially bent cylinders is examined next. The analytical expressions are compared 

with numerical results. The moment-curvature path from equation (5.54) is quite close to the 

numerical results in the cases of closing moments. For comparison purposes, some results of 

the two-dimensional analysis of non-pressurized initially bent cylinders are also included in the 

following diagrams 

  The moment-curvature of unpressurized initially bent cylinders is shown in Fig. 43. The initial 

curvature is small compared to the critical curvature. It is reminded that negative and positive 

values of  correspond to opening and closing moments, respectively (Fig. 35). For these 

values of initial curvature analytical results compare fairly well with the numerical results, 

especially for closing moments, whereas, for higher values of initial curvature, numerical and 

analytical results compare qualitatively, as it is depicted in Fig. 44. 

inκ

  The analytical expression (5.19) for the moment-curvature path included higher order terms 

than expressions (5.6), (5.14). Nevertheless, equation (5.19) describes ovalization less 

accurately, as compared with numerical results. This observation confirms Calladine’s [76] 

remark that Brazier [62] was ‘‘lucky in being able to obtain good results for the maximum 

bending moment by using a power series, which was so crudely truncated’’. A comparison 

between the aforementioned moment-curvature relations (5.6), (5.14) and (5.19) for an initially 

straight unpressurized cylinder is given in Fig. 45. This comparison results in the observation 

that including higher order terms in the ovalization analysis (e.g. [64]) the ovalization mode is 

described less accurately than neglecting these terms [62].  
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Fig. 41 Longitudinal stress distributions at the ovalization limit point ( =120, =0,/r t inκ f =0) 
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Fig. 42 Longitudinal stress distributions at the ovalization limit point for pressurized bending 

( =120,/r t inκ =0)  
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Fig. 43  paths for slightly initially bent cylinders ( =120,−m κ /r t f =0) 
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Fig. 44 Moment-curvature paths for initially bent cylinders;(a) opening moments, (b) closing 

moments ( =120,/r t f =0) 
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Fig. 45 Moment-curvature paths of initially straight cylinder; comparison of numerical results with 

the expressions presented by [62], [64] ( =120,/r t inκ =0, f =0)  
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Fig. 46 Moment-curvature paths; comparison of numerical results with results given in [70]  
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  Apart from the simplified analytical closed-form expression (5.54) and the numerical results, 

the comparison to a semi-analytical solution, presented by Axelrad [69], [70], is also depicted. 

In Fig. 46 the solution of Axelrad [69], [70] is compared with the numerical results and a very 

good agreement is found. 

  Using the above analytical and numerical results, the ovalization phenomenon is illustrated in 

a clear and elegant manner, and some observations can be drawn as follows:   

Due to the nonlinear effects of ovalization, the cylinder becomes more flexible; the ‘‘lever-arm’ 

between total tension and total compression decreases so that bending resistance is reduced. 

At a certain point, the above mechanism becomes dominant, and causes moment reduction, 

despite the fact that stresses continue to increase due to increasing curvature; at this point, the 

moment-curvature diagram exhibits a limit point and the corresponding limit moment is called 

‘‘ovalization moment’’ or ‘‘limit moment’’; the corresponding curvature is called ovalization or 

limit curvature, respectively. 

Using the normalization described by (5.3), (5.12), the normalized results are independent of 

the radius-to-thickness ratio  value. /r t

 

 

5.2  Bifurcation Instability 

  Thin-walled elastic cylinders subjected to bending, apart from ovalization, fail because of 

buckling, a bifurcation-type of instability in the form of wrinkles (Fig. 47). In the present study, 

bifurcation on the ovalized primary path into a uniformly wrinkled state is described. It is 

important to note that buckling problem is associated with a highly nonlinear pre-buckling 

state, where the compression zone of the cylindrical shell wall has a double and opposite 

curvature in the longitudinal and in the hoop direction. 

 

 

wrinkles at the 
compression side

 

Fig. 47 Development of buckles at the compression side 
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5.2.1  Introduction 

  In an early publication, Seide and Weigarten [77] investigated bifurcation of initially straight 

circular cylinders under bending, assuming a linear (non-deformed) pre-buckling state, and a 

Ritz-type bifurcation solution in terms of trigonometric functions. Their numerical results 

indicated that the critical (buckling) moment crM  of a cylinder corresponds to a nominal 

bending stress ( )2
cr crM r tσ π= , which is quite close to the buckling stress of the cylinder 

under uniform compression, thus the following equations may offer a good approximation for 

the buckling moment and the corresponding bending stress: 

 
( )

2

2
1.813

1-
=cr

Et rM
ν

 (5.64) 

 
( )23 1-

cr
E tσ

rν

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (5.65) 

Applying the normalization adopted in this study, equation (5.64) is written as: 

 1.831crm =  (5.66) 

  Kempner and Chen [52], considering the DMV shell equations and assuming a linear pre-

buckling state, examined bifurcation instability of circular and oval cylinders under bending, in 

the presence of axial force. Furthermore, Koiter-Budiansky initial post-buckling theory was 

employed to investigate post-buckling behavior, in terms of trigonometric functions in the 

longitudinal direction, and an asymptotic approximation of the secondary path was obtained. 

The initial post-buckling analysis of [52] indicated a symmetric bifurcation point, and an 

initially unstable secondary equilibrium path. 

  However, it was shown in the previous sections that the maximum moment may not exceed 

the ovalization limit moment. Therefore, critical moment given by (5.66) is unreasonably high 

compared to . This significant discrepancy is due to the fact that the bifurcation 

solutions in [52], [77] neglect cross-sectional ovalization on the pre-buckling state and, 

therefore, they predict an unrealistic value of buckling moment. The nonlinear effects of the 

ovalized pre-buckling configuration on bifurcation instability were considered by Axelrad [78]. 

Axelrad assumed that bifurcation occurs when the maximum compressive bending stress value 

reaches the critical stress value for a uniformly compressed circular tube of radius equal to the 

local radius of the ovalized shell at the “critical” point. By consequence, expression (5.65) may 

be applicable in a local sense, replacing the initial hoop curvature 1/  with the current 

circumferential curvature at the location where buckling initiates. Using the same concept, 

Emmerling [79] computed the bifurcation bending moment and curvature of initially oval 

cylinders under bending and pressure. 

0.987Brm =

r
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  Stephens et al [80], using a finite-difference discretization of shell stability equations, 

investigated bifurcation of finite-length, initially-straight cylinders under bending, considering 

pre-buckling ovalization, as well as end-effects, and calculated bifurcation moments for 

different levels of pressure. The buckling moment of long cylinders was calculated close to 

Brazier ovalization limit moment ( 0.987Brm = ). Fabian [41] examined buckling of thin elastic 

initially straight cylinders under bending and pressure (internal or external), through a 

perturbation of the nonlinear DMV shallow-shell equations. Results from the linearized (first-

order) stability problem indicated that bifurcation occurs on the primary path before the 

ovalization limit point, regardless the level of pressure. Subsequently, using Koiter-Budiansky 

initial post-buckling theory, as adopted in [40] for nonlinear pre-buckling state, and assuming a 

trigonometric variation of stresses and displacements in the longitudinal direction, an 

asymptotic approximation of the post-buckling path was obtained. 

  Ju and Kyriakides [81] reported few numerical results for bending buckling of initially straight 

non-pressurized elastic cylinders ( /D t =200) using the nonlinear Sander’s shell equations and 

discretization in terms of trigonometric functions. The results verified that bifurcation occurs 

before ovalization point and it is attained on the primary path. In addition, an unstable post-

buckling path was observed. In a recent paper Karamanos [75] examined instabilities of non-

pressurized elastic cylindrical shells with =120, with emphasis on the effects initial 

curvature. Furthermore, it was concluded that, depending on the initial curvature value and the 

direction of bending load, buckling may occur before or after the limit point of the primary 

ovalization path. It was also found that depending on the hoop curvature and longitudinal stress 

variation, buckling may occur at various locations around the cross-section. The investigation 

described in [75] is further enhanced herein, where imperfection sensitivity and initial post-

buckling behavior issues are examined. In addition, aspects of bifurcation are illustrated using a 

simple mechanical model, which considers the ovalized pre-buckling configuration and 

pressure effects. 

/r t

  It is worth mentioning that in the recent years, this problem of elastic stability has received 

significant attention due to its applications in nanomechanics, more specifically, several 

attempts have been reported to apply shell stability concepts in order to simulate the structural 

stiffness and explain the buckling and post-buckling response of carbon nanotubes subjected to 

bending loads [82], [83], [84]. 

 

 

5.2.2  Numerical Results 

  The majority of the numerical results refer to initially circular cylinders, but some results of 

initially ovalized cylinders are depicted, as well. The values of moment, curvature, ovalization 
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and pressure are normalized as described by equations (5.3) and (5.12). Furthermore, the value 

of half-wave length  is normalized by hwL ( ) 1/ 44 2
0 12 1L rt π ν⎡ ⎤= −⎣ ⎦ , so that 0/hws L L= , where 

 is the half-wavelength of an axisymmetrically-deformed elastic cylinder subjected to 

uniform axial compression [43]. 

0L

  The results are obtained mainly by the implementation of the hypoelastic model (section 

2.2.1). Some cases have also been re-examined using the hyperelastic model (section 2.2.2). 

The comparison resulted in the conclusion that for the case of bending there is negligible 

difference between the two constitutive models regarding buckling and post-buckling response. 

  A preliminary parametric study is conducted, to determine the number of cross-sectional 

parameters to be used. This investigation leads to the conclusion that a 16th degree expansion is 

adequate for the cases of interest, and determines the ‘‘earliest’’ bifurcation point upon primary 

ovalization path. Therefore, in Fig. 48 the effects of the degree of trigonometric expansion are 

illustrated. Regarding the number of integration points in the circumferential direction, 19 

equally spaced integration points around the half-circumference are employed. Five and two 

Gauss points are used in the radial direction (through the thickness) and in the longitudinal 

direction, respectively.  

  In Fig. 49 the bending response of two non-pressurized initial straight cylinders with =20 

and 720 is illustrated, where bifurcation occurs before limit point (

/r t

cr ovκ κ< ). The path denoted 

as ‘‘uniform ovalization’’ corresponds to a cross-sectional bending analysis (two-dimensional 

analysis), as described in paragraph 5.3.  
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Fig. 48 Numerical results for the degree of trigonometric expansion used in equation (2.150) 
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Fig. 49 Numerical results of initially straight cylinders in the absence of pressure; arrows (↓) 

denote bifurcation points, arrow (↑) denotes the limit point on the primary path 

 

  Fig. 50 shows the dependence of the buckling point on the  ratio. Thin-walled cylinders 

(i.e. cylinders with large values of  ratio) buckle at lower values of curvature and moment 

(  and ). In all cases, the initial post-buckling behavior is unstable, characterized by a 

‘‘snap-back’’ immediately after bifurcation, which is reminiscent of the initial post-buckling 

path of circular or oval cylinders under uniform axial compression. The ‘‘snap-back’’ of the 

post-bifurcation path is sharper for thinner cylindrical shells (Fig. 50). 

/r t

/r t

crκ crm

  The pre-buckling (just prior to bifurcation) and post-buckling configurations of deformed 

cylinders for zero pressure ( =120) are depicted in Fig. 51. Note that for visualization 

purposes, the post-buckling displacements are magnified. Upon bifurcation, the compressed 

part of the tube surface exhibits a periodic wavy pattern. Another important observation 

concerns the ‘‘local’’ character of buckling in the circumferential direction. More specifically, 

buckling occurs within a zone around the critical point, referred to as buckling zone. In the 

present case ( =0, 

/r t

inκ f =0, 0ζ =0), the buckling zone is located in the vicinity of / 2θ π=  and 

its size depends on the cylinder’s  ratio. Numerical calculations have shown that the size of 

the buckling zone decreases with increasing values of  ratio. In Fig. 51 the size of the 

buckling zone, defined as the distance between the two ‘‘nodal points’’ A and B is equal to 

0.69  for a cylinder with =120. Note that for cylinders with =20 and =720, the 

corresponding size is calculated equal to 1.22 r  and 0.52  respectively. 

/r t

/r t

r /r t /r t /r t

r

  The shape of Fig. 51 also indicates that post-buckling configuration is associated with an 

inward post-buckling displacement of the ‘‘buckling zone’’, which is uniform along the 
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cylinder, and this is in agreement with experimental observations from uniformly compressed 

circular and oval cylinders. 
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Fig. 50 Numerical results of  paths ( =0, m κ− f inκ =0); effect of  ratio on the bifurcation point  /r t
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Fig. 51 Pre-buckling and post-buckling shapes of a cylinder cross-section ( =0, =0, =120) f inκ /r t
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  The response of initially straight cylinders with =120, for different pressure levels is 

shown in Fig. 52 and Fig. 53, where the thick lines corresponds to paths with buckling and the 

thin lines represent uniform ovalization response. In all cases, bifurcation occurs before a limit 

point is reached on the primary path, whereas the initial post-buckling path is unstable, 

exhibiting a ‘‘snap-back’’ immediately after bifurcation.  
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Fig. 52 Numerical results of  paths with respect to the level of pressure ( =0, =120) m κ− inκ /r t
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Fig. 53 Numerical results of ζ κ−  paths with respect to the level of pressure; points (♦) define 

bifurcation points numerically calculated ( inκ =0, =120) /r t
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  The presence of external pressure results in a significant increase of cross-sectional 

ovalization (flattening) and causes a significant reduction of the buckling moment  and the 

corresponding critical curvature . On the other hand, internal pressure alleviates cross-

sectional ovalization and increases both the  and 

crm

crκ

crm crκ  values. For high levels of internal 

pressure (e.g. f =–10), ovalization is negligible, the pre-buckling m κ−  path is quasi-linear 

and the crm  value approaches the buckling moment computed from (5.64) under the assumption 

of undeformed cylinder cross-section ( 1.813crm = ), as shown in Fig. 52. Moreover, Fig. 54 

shows the variation of ovalization limit moment  and critical moment  with respect to 

the pressure level 

ovm crm

f .  
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Fig. 54 Numerical results for the variation of critical and ovalization moments with respect to the 

pressure level f  ( inκ =0, =120)  /r t
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Fig. 55 Numerical results for the variation of critical and ovalization curvatures with respect to the 

pressure level f  ( inκ =0, =120)  /r t

 

-10

-8

-6

-4

-2

0

2

1.0 1.2 1.4 1.6 1.8 2.0
normalized half wavelength (s)

no
rm

al
iz

ed
 p

re
ss

ur
e 

(f)

2.2

 

Fig. 56 Numerical results of the dependence of buckling half-wavelength on pressure level f  

( inκ =0, =120) /r t
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  Furthermore, the dependence of the corresponding normalized curvature values (  and ovκ crκ ) 

on the pressure level f  is depicted in Fig. 55, and indicates that, with increasing external 

pressure, the bifurcation point approaches the ovalization limit point.  

  The dependence of buckling half-wavelength on the level of pressure is plotted in Fig. 56. The 

value of s  for large values of internal pressure ( ) approaches unity ( ), which 

means that for high internal pressure the buckling wavelength becomes equal to the 

axisymmetric-buckling wavelength of a similar elastic cylinder subjected to uniform axial 

compression. On the other hand, for external pressure values close to  ( 1) the half 

wavelength value approaches infinity (

f →−∞ 1s →

crp f →

s →−∞ ). In this case, the ovalization mechanism, 

accentuated by the presence of high external pressure, governs cylinder’s response. 

  In Fig. 57, the elastic deformation energy of the cylinder per unit length is plotted in terms of 

curvature for an initially non-pressurized straight cylinder ( f =0, inκ =0). The energy is 

normalized by the product of eM  and . The diagram is initially monotonically increasing 

and exhibits a negative ‘jump’ at the bifurcation curvature. This discontinuity is more 

pronounced for a thin-walled cylinder ( =720), shown in the detail of Fig. 57. Beyond this 

point, it continues to increase monotonically. The reason for this discontinuity is the ‘‘snap-

back’’ of the initial post-bifurcation path immediately after buckling. It is noted that 

experimental measurements, as well as molecular dynamics simulations in elastic carbon 

nanotubes, have shown a similar ‘‘kink’’ on the elastic deformation energy diagram [84]. 

Nk

/r t

  The bending response of circular initially slightly bent cylinders ( inκ =±0.20) in terms of the 

pressure level ( f ) is shown in Fig. 58-Fig. 61. Negative and positive values of  correspond 

to opening and closing bending moments respectively (Fig. 35). For these values of initial 

curvature, buckling occurs before the ovalization limit moment, regardless the level of pressure, 

and the post-buckling path is also characterized by a ‘‘snap-back’’. The numerical calculations 

also show that the ‘‘buckling zone’’ is located around 

inκ

/ 2θ π=  for both closing and opening 

moments. In Fig. 58 and Fig. 60 it is indicated that the presence of external pressure accentuates 

cross-sectional ovalization and therefore, reduces the moment capacity  and the 

corresponding critical curvature . On the other hand, there is a beneficial effect of internal 

pressure on the  and  values, due to the significant reduction of cross-sectional 

ovalization, as shown in Fig. 59 and Fig. 61. 

crm

crκ

crm crκ
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Fig. 57 Numerical results of the normalized strain energy curve in terms of applied curvature; 

point on the curve (♦) denotes bifurcation ( =720, /r t inκ =0, =0) f
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Fig. 58 Response of an initially bent cylinder for closing moments for three different levels of 

pressure ( =120, =0.2); thick lines corresponds to paths with buckling and thin lines to 

uniform ovalization paths respectively (numerical results) 
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Fig. 59 Ovalization of an initially bent cylinder for closing moments for three different levels of 

pressure ( =120, =0.2); thick lines correspond to paths with buckling and thin lines to 

uniform ovalization paths respectively and points (♦) denote bifurcation (numerical results)  
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Fig. 60 Response of an initially bent cylinder under opening moments for three different levels of 

pressure ( =120, =-0.2); thick lines correspond to paths with buckling and thin lines to 

uniform ovalization paths, respectively (numerical results) 
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Fig. 61 Ovalization of an initially bent cylinder for opening moments for three different levels of 

pressure ( =120, =-0.2); thick lines correspond to paths with buckling and thin lines to 

uniform ovalization paths, respectively, whereas points (♦) denote bifurcation (numerical results) 

/r t inκ

 

 

  It is noted that, in the case of opening moments (Fig. 60), the cylinder initially exhibits reverse 

ovalization (negative values of ζ ), so that the diameter on the plane of bending lengthens and 

the other principal diameter shortens (‘bulging’ ovalization) until the total curvature of the 

cylinder becomes about half the initial curvature value ( / 2inTκ κ− ). Subsequently, 

‘‘bulging’’ ovalization decreases and, beyond the curvature where the cylinder becomes 

straight ( ), cross-sectional ‘‘flattening’’ occurs until buckling. The fact that all 0inκ κ κΤ = + =

κ ζ−  curves pass through the origin (κ ζΤ = = 0) can be verified from the simplified 

ovalization-curvature expression (5.43). 

  The response of circular cylinders with more pronounced initial curvature ( =1.030) under 

closing bending moments is shown in Fig. 62 and Fig. 63. The numerical results indicate that 

bifurcation occurs well beyond limit point instability, for three different pressure levels, so that 

ovalization instability governs cylinder’s response. In addition, the secondary path under 

external pressure (

inκ

f =0.65) follows closely the primary equilibrium path. A closer view of the 

secondary path for f =0.65 around bifurcation is shown in the detail of Fig. 62. The ovalization 

response of these pressurized cylinders ( inκ =1.030), plotted in Fig. 63, indicates that bucking 

occurs at large values of cross-sectional flattening ( ). The ‘‘flattened’’ cross-sectional 

shapes of the buckled cylinder configurations (Fig. 64), show that the periodic wavy pattern 

0.35crζ >
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also occurs within a small portion of the cylinder circumference, verifying the ‘‘local’’ 

character of buckling also observed in Fig. 51. Nevertheless, the / 2θ π=  location may not be 

critical in all cases. In the absence of pressure ( f =0) the critical point is located at about 

/ 3θ π≈  (Fig. 64a and Fig. 64b). In the presence of external pressure ( f =0.65) the numerical 

results indicated that the buckling zone is located at the ‘‘extrados’’ of the cross-section 

( / 2θ π= − ), as shown in Fig. 64c. This is explained by the compressive longitudinal stresses at 

/ 2θ π= − , depicted in the detail of Fig. 65, in conjunction with the flat shape of the ovalized 

cross-section at this location. 
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Fig. 62 Numerical results of the response of an initially bent cylinder under closing moments 

( =1.030) for three different levels of pressure inκ f  ( =120); thick lines correspond to paths 

with buckling and thin lines to uniform ovalization paths respectively whereas arrows (↓) denote 

bifurcation  
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Fig. 63 Ovalization analysis of initially bent cylinders ( inκ =1.030); thick lines correspond to 

buckling paths and thin lines to uniform ovalization paths, points (♦) denote bifurcation 
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Fig. 64 Pre-buckling and post-buckling shapes ( inκ =1.030,  =120); (a) and (b) =0, critical 

point at 

/r t f

/ 3θ π= ; (c) =0.65, critical point at f / 2θ π= − ; (d) =-0.65, critical point at f / 2θ π=  
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Fig. 65 Finite element results of the variation of longitudinal stresses at cross-section of an initially 

curved cylinder (  =120,/r t inκ =1.030, =0.65). f

 
 

  The response of an initially curved cylinder subjected to opening bending moments ( =-

1.374) is shown in Fig. 66 for different pressure levels. In all three cases buckling occurs before 

a limit point is reached. Furthermore, buckling occurs before the cylinder becomes straight 

( <0), as also shown in Fig. 67, and the corresponding post-buckling cylinder response 

exhibits a very sharp ‘‘snap-back’’. The buckled cylinder cross-sections within a half-

wavelength are depicted in Fig. 68, and show that for the three different pressure levels 

considered, the buckling zone is no longer in the vicinity of θ=π/2. Also note that the externally 

pressurized case corresponds to the most pronounced bulging ovalization. 

inκ

Tκ

  Finally, the effects of initial cross-sectional ovality on the buckling moment are examined, 

considering a relatively small stress-free doubly-symmetric out-of-roundness of the cylinder 

cross-section, which is assumed constant along the cylinder. Expressions (5.57) correspond to a 

‘‘first-order inextensional’’ ovalization deformation ( 0 0( ) ( ) 0w v 'θ θ+ = ) and the ovalization 

parameter has an initial value 0ζ  equal to . The effects of such an imperfection on the 

bending response of an initially straight cylinder (

0 /a r

inκ =0) are shown in Fig. 69 for zero pressure 

( f =0), and for relatively small initial ovality 0 0.1ζ ≤ . Positive values of initial ovalization 

correspond to ‘‘initial flattening’’ of the cylinder cross-section, whereas negative values refer to 

‘‘initial bulging’’. The results of Fig. 70a demonstrate that the orientation of the initial out-of-

roundness may be quite important, especially in the presence of external pressure ( f >0). In 

particular, reverse initial ovality, combined with external pressure, results in a post-buckling 
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path that follows closely the primary equilibrium path (Fig. 70b). In Fig. 70, all the m κ−  

curves, regardless the pressure level, pass through a common point A ( Am =0.945 and 

Aκ =0.306) located before the bifurcation point. Furthermore, at this value of curvature the 

corresponding cross-sectional ovalization is zero (point A in Fig. 71). The above values of Am  

and Aκ  can be also be verified by the simplified analytical ovalization solution presented 

above; requiring 0 0ζ ζ+ =  and 0inκ =  in (5.60) and (5.61), one readily obtains 1/ 2
0κ ζ= and 

1/ 2
0m π ζ= , and that for 0 0.1ζ = −  those values are very close to Am  and Aκ . 
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Fig. 66 Finite element results of the response of initially curved cylinders ( inκ =-1.374) for reverse 

bending and for three different pressure levels f  in which arrows (↓) denote bifurcation; 

(a) f =0.5, (b) f =0, (c) f =-0.5 ( =120) /r t
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Fig. 67 Finite element results of ovalization analysis for an initially bent cylinder ( =-1.374); 

thick lines correspond to paths with buckling and thin lines to uniform ovalization paths 

respectively ( =120). 
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Fig. 68 Pre-buckling and post-buckling shapes; (a) and (b) =0, critical point at f / 6θ π≈ , (c) 

=0.5, critical point at f / 6θ π≈ , (d) =-0.5, critical point at ; (f 040θ ≈ inκ =-1.374, =120). /r t
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Fig. 69 Numerical results in initially ovalized cylinders; thick lines correspond to paths with 

buckling and thin lines to uniform ovalization paths respectively ( =120, =0, =0) /r t inκ f
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Fig. 70 Numerical results of initially ‘‘bulged’’ cylinders ( 0ζ =-0.1); thick lines correspond to 

buckling paths and thin lines to uniform ovalization paths, arrows (↓) denote bifurcation( =120) /r t
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Fig. 71 Numerical results of initially ‘‘bulged’’ cylinders 
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5.2.3  Simplified Analytical Solution

ion pa /r t inκ

 

  Simplified bifurcation analysis for shells have been proposed in previous works (e.g. [78], 

[79]), based on the assumption that buckling is fully determined by the stress and deformation 

inside the zone of the initial buckle, and that stresses and curvatures inside that zone are 

constant. Under this assumption, an expression similar to (5.65) can be obtained, which governs 

shell instability at each point around the circum rence. The local character of buckling around 

the cross-section, shown in Fig. 51, Fig. 64 and Fig. 68, provides good evidence for the validity 

of d 

to obtain c

fe

the above assumption. In the present work, this concept is outlined, and it is further enhance

losed-form analytical expressions for the bifurcation curvature crκ  d moman ent 

s well as for the corresponding buckling wavelength (

crm , 

a 0/hws L L= ).  

 

 

Linearized Shell Equations

  Local coordinates X and Y are defined on the buckling zone area, denoting the distances from 

the center of the buckling zone, in the longitudinal and the hoop direction respectively (Fig. 

72). Starting from the nonlinear DMV equations  

 ( )
3 2

4
2

1 1 2 ,
12(1 ) x y xy

x y

Et WW N N N p X Y
R R X Yν

∂
∇ − − + =

− ∂ ∂
 (5.67) 
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where W  and F  are the displacement and stress functions respectively , ,, x y xyN N N  are the 

membrane stress resultants (equal to the second deriv he s  F ), 1/ xR , atives of t tress function

/ yR  are the local curvatures of the deformed cylinder, and following the linearization 

85], the linearized form of Equations (5.67) and (5.68) is obtained as 

1

procedure described in [

follows 

2 2 4 2 2 2 2 2
0

2 2

1( ) ( 2 )( )

(

[ x y x x y y xy x y x y

x y

N N N
Eth

k

∂ + ∂ + ∂ + ∂ − ∂ ∂ ∂ + ∂

2
02 ) 0]y x t x yk k r wθ+ ∂

 (5.69)  
+ ∂ − ∂ ∂ =

here is a small deviation of the radial displacement from the pre-bw uckling state,  ( , )w x y x  and 

y  are dimensionless local coordinates, so that 

24
0/ , / , 12(1 )x X c y Y c c r tθ ν= = = −  (5.70) 

x y,∂ ∂  denote partial derivatives with respect to x  and y ,  

 0 0 0
2

0

, ,x y
x y

r rth k kθ θ

θ

= = =  (5

t 0

12(1 ) R Rr ν−
.71) 

is the ‘‘torsion’’ of the deformed cylinder surface and k  rθ  is the deformed cross-sectional 

 the middle of the buckling zone (radius at 0x y= = ).  
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Fig. 72 Local coordinates X and efinY are d ed on the buckling zone area 

 

 

Assuming constant deformation and stress within the buckling zone, as well as symmetry of the 

pre-buckling state with respect to the plane of bending, , ,x y xN N k  are constant, =1, yk xyN =0 

 
 

114



and =0. In addition, a wave-type solution of (5.69) is considered, with no variation in the 

hoop direction: 

 ( )

tk

cosw w x A mx= =  (5.72) 

where  is an arbitrary constant and  is a dimensionless wavelength parameter. Substituting 

expression (5.72) into (5.69), the requirement of non-trivial solution dictates that the following 

expression should hold at the bifurcation stage within the buckling zone,  

 

A m

( )
2

2
22

0

1

12 1
x

EtN m
mrθ ν

⎡ ⎤= +⎢ ⎥⎣ ⎦−
 (5.73) 

It is noted that a more general form of (5.73), considering trigonometric variation in both 

directions x  and , is reported in [85]. Minimization of y xN  in (5.73) with respect to  gives 

1, or equ

 

m

m = ivalently,  

02 1/ 4[12(1 )]hw
cL r

m θ tπ π
ν

= =
−

  (5.74) 

 

and (5.73) becomes: 

( )0 2
03 1

x
E t

rθν

⎛
⎜ ⎟
⎝ ⎠−

where 0

σ
⎞

=  (5.75) 

xσ  is the longitudinal buckling stress within the buckling zone. Equation (5.75) 

semb .65), and implies that the cylinder bucklre es at the location where stress les (5 0xσ  

become  equal to the buckling stress of a uniformly compressed circular cylinder, with radius 

equal to the current hoop radius 0r

s

θ  at the critical location.  

 

losed-form Bifurcation SolutionC

  In the present study, (5.75) is further elaborated to obtain a closed-form expression for the 

 

bifurcation curvature. The analysis is limited to cylinders with relatively small initial curvature 

and initial ovality, so that buckling occurs at / 2θ π= . The key step in the development of the 

sed-form solution isclo  consideration of th fied ovalization solution presented in a 

ng state. In particular, the local hoop curvatu e 

e simpli

previous paragraph, to describe the prebuckli r

01/ rθ and the longitudinal stress 0xσ  at / 2θ π=  at the ovalized prebuckling configuration can 

 (5.55) and (5.56) as follows:  be approximated from

0

0

3 1 3 ( )in1 1
( 2) (1 )

f
r r r fθ θ

ζ κ
π

κ κ− + − −
= =

−
+

 (5.76)  

 0 02

2

1

( )( / 2) 1
1 1

in in
x x

E t
r

f
f fν

κ κ κ κσ σ π ζ κ
⎡ ⎤⎛ ⎞⎛ ⎞ +⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠ ⎢ ⎥− ⎝ ⎠⎣ ⎦

+ += = − −  (5.77) 
− −
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Substituting the above expressions for 01/ rθ and 0xσ  in (5.75), a third-order algebraic equation 

is obtained in terms of the critical curvature crκ : 

0
0

2
3

1 1
( ) 3 ( )11

1 3
cr in

cr f
κ ⎜ ⎟⎜ ⎟

⎝ ⎠
− −

−
1 0

1
cr incr cr in f

f ff
κ κ ζ

ζ
κ κ κ κ κ⎛ ⎞ ⎛ ⎞ +

− +⎜ ⎟⎜ ⎟ − −⎝ ⎠

+ +− =
−

 (5.78)  

which has the following closed-form solution  

 
0

2 3
0 0 0

2 3/ 2
0

22
[3(2 ) 3

3
1
3

3 3 2 6 3(1 6 ) 9 (3 2 (3 2 ))1 1arccos
3 3 2 [3(2 ) 3 3 ]

2
3

cos

cr in

in in in

in in

in
inabs f

f
abs f

κ κκ

κ κ ζ κ ζ ζπ
κ κ ζ

κ
×

×

= − −− −

⎞⎡ ⎤− + − + − + −⎛ + ⎟⎢ ⎥⎜ ⎟− − + −⎝ ⎢ ⎥⎣ ⎦

3 ]ζ

⎠

wher  Subseq

− +

(5.79) 

e abs[ ] is the absolute value of [ ]. uently, the bifurcation moment m  is obtained 

from (5.54) as follows: 

cr

0
2 3( )(2 )r inκ ⎞+  (5.80)  3 1

4 1 4(1 )
in cr in c

cr cr
fm
f f

κ κ κ κ κ
ζ π κ π

⎛ ⎞ ⎛+ +
= − + −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

xpressions (5.79) and (5.80) define the bifurcation point on the primary

Furthermore, (5.74) and (5.76) lead to the following expression for the normalized half 

 

E  path of (5.54).  m κ−

wavelength: 

0

(1 )
3 (1 ) 3 ( )cr cr in

fs
fζ κ κ κ

=
− + − − +

 (5.81) 

For the particular case of initially straight pressurized cylinders without initial ovality ( =0 

−

inκ

and 0ζ =0), (5.78) becomes: 

2 21 1 31 1
1 13cr cr crf f

κ κ κ
⎛ ⎞ ⎛
− − −⎜ ⎟ ⎜− −⎝ ⎠ ⎝

 0
⎞
=⎟

⎠
 (5.82) 

and its solution is written in closed form as follows: 

3 / 2

2 1 3 3
[3(2 ) cos cos

1 ]cr abs f arc
πκ = − +

3 3 3 [3(2 )]3 abs f−

⎞⎡ ⎤
⎟

⎛− ⎢ ⎥⎜ ⎟⎝ ⎣ ⎦ ⎠
 (5.83) 

Furthermore, the expression for the corresponding normalized half-wave length becomes: 

 0
2

0 1 3 crL r f
(1 )hwL r fs θ

κ
−

= = =  (5.84) 
− −

If no pressure is applied ( f =0) the above expressions are reformed as: 

 ( ) ( )2 211 1 3
3cr cr crκ κ κ 0− − − =  (5.85) 

 ( ) 32 2 1
cos 2

3 333
1 cos 0.381122cr arc

πκ
−

= +⎛ ⎞⎡ ⎤− =⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
 (5.86) 
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0
2

0

1 0.33128
1 3

hw

cr

L rs
L r

θ

κ
= = = =

−
  (5.87) 

 the above analytical equations, are shown 

in Fig. 73-Fig y straight cylinders, considering pressure effects, together 

ith numerical results, indicating a remarkable accuracy. The agreement is better 

r size 

of buckling zone, as discussed in the previous section. The comparison between the numerical 

sults with the analytical solution sh s that the above clo

accurate for relatively small values of 

  The accuracy of crκ  and crm  values, obtained from

. 75 for circular initiall

w in the case of 

thin-walled cylinders (large values of /r t  ratio), because those cylinders exhibit a smalle

re sed-form expressions are quite ow

 and inκ 0ζ , as shown in Fig. 76 and Fig. 77. In those 

figures, (5.54) is used to express the prebuckli alytical solution, and the bifurcation point, 

enoted by the arrows ↓↑) as it is obtained from (5.79) and

zero initial ovality (

ng an

(d  (5.80). For the particular case of 

0ζ =0) the obtained numerical results result in the observation that these 

nalytical expressions provide very good accuracy when 

 

a 0.4 0.2inκ− ≤ ≤ . 
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Fig. 75 Variation of s  with respect to pressure level f ; comparison of numerical and analytical 

results (5.84) 
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Fig. 76 Comparison of numerical results and analytical solutions for non-pressurized cylinders 

=120) and for three different values of initial curvature ( /r t ( inκ =0, inκ =±0.2); arrows (↓↑) denote 

the cri the 

 

tical points obtained from analytical solution. 
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Fig. 77 Comparison of numerical results and analytical solutions for non-pressurized cylinders 

=120) and for two different values of initial curvature ( /r t ( inκ =±0.343); arrows (↓↑) denote the 

critical points obtained from the analytical solution 
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5.2.4  Mechanical Model 

  A imple model, depicted in Fig. 78a, provides a physical expla tion of the numerical and 

ported in the previous paragraphs. The model was pr

 s na

analytical results, re oposed in an early 

ublication [1] for cylindrical shells under uniform, axial compression. According to this 

model, the cylinder is considered as a ‘‘bundle’’ of compressed longitudinal strips in the 

longitudinal direction, each one supported by a series of springs, so that the problem under 

consideration is similar to the buckling problem of a beam on elastic foundation. The 

‘‘foundation springs’’ are elastic arches, representing the stiffness provided by the hoop 

deformation of the shell. 

  In the present study, the model is used to illustrate some bifurcation aspects of pressurized 

cylinders under bending. More specifically, the compressed strip is considered in the middle of 

the buckling zone, and the arch may be ovalized, representing the shape of the cylindrical cross-

section just prior to buckling. Arch stiffness plays a key role on the buckling stress and the 

corresponding wavelength, and depends on the amount of ovalization. In Fig. 78b, the response 

of such elastic arches under concentrated load on its crest is plotted. Three cases are considered, 

corresponding to initially non-ovalized (circular), initially ‘‘flattened’’ and initially ‘‘bulged’’ 

cylinders denoted as cases A, B and C, respectively. The results are obtained numerically sing 

a ’ 

d cti r 

‘‘softening/hardening’’ e compressed strip, as 

discussed in [1]. Fig. 78b also shows that the s pport-arch stiffness is significantly reduced in 

the initially ‘‘flattened’’ arch (case B), but it is ite higher in the initially ‘‘bulged’’ arch (case 

C).  

  The above model can illustrate some aspects o cylinder bifurcation under the combined action 

n the case of closing bending moments, the cross-section flattens 

p

, u

non-linear degenerated shell finite element analysis [86]. In those results, the ‘‘flattening’

ire on of the load is considered positive. In all three cases, the response is nonlinea

, resulting in an unstable post-buckling path for th

u

qu

f 

of bending and pressure. I

around the critical location, reduces the stiffness of the supporting arches, and results in a 

decrease of the critical moment, as shown in Fig. 58 and Fig. 62. The reduction of support 

stiffness is accentuated in the presence of external pressure, whereas internal pressure reduces 

flattening, increasing the stiffness of the supports and the corresponding critical longitudinal 

stress. Similarly, the presence of initial curvature opposite to the direction of bending (opening 

moments), increases the local hoop curvature, resulting in larger support stiffness, and 

therefore, it corresponds to a shorter wavelength and a higher critical moment, also depicted in 

Fig. 60 and Fig. 66. 
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Fig. 78 (a) Simple mechanical model, simulating buckling of cylindrical shells under axial 

compression [1] (b) Response of circular and initially oval arches under a concentrated load on the 

crest; results from shell finite element analysis [86]. Negative values of inδ  indicate initial ovality 

opposite to the one shown in the sketches. 

 

 

5.3  Imperfection Sensitivity 

  Buckling of shells is generally characterized by significant sensitivity with respect to initial 

imperfections. This was originally investigated in the early works by von Karman et al [1] and 

Koiter [3] for axially loaded cylinders. Both works were aimed at “bridging the gap” between 

the high values of analytical predictions and the low values from experimental data. Koiter’s 

general theory of elastic stability is shortly presented in Appendix. The main issue clarified by 

Koiter was that imperfection sensitivity of a structure is directly related to its initial post-

buckling behavior. 

  Herein, imperfection sensitivity of elastic circular cylinders under bending loads is examined 

numerically, and the results are compared with asymptotic solutions reported elsewhere. 

Towards this purpose, an initial periodic imperfection is assumed in the shape of the first 

instability mode corresponding to the buckling (bifurcation) moment. This buckling mode is 

obtained through an eigenvalue analysis of the deformed (ovalized) cylinder’s configuration. 

More specifically, at the end of each increment of the step-by-step Newton-Raphson procedure, 

the tangent stiffness is calculated and its eigenvalues are computed. Bifurcation occurs at the 

stage where the tangent stiffness becomes singular. This eigenvalue analysis provides the 

buckling mode (Fig. 79), which is the one corresponding to the zero eigenvalue. It is 

emphasized that bifurcation of a cylinder under bending loads is characterized by a single 
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buck is a 

c im  

configuration as an imperf rameter 

ling mode similar to the case of non-circular cylinders under axial compression. This 

significant differentiation with the infinite number of buckling modes that characterize circular 

ylinders axially compressed. This single instability mode is posed in the initial

ection. Furthermore, the imperfection pa ξ  is introduced, 

efined as the total wave height  normalized by the cylinder thickness  (0W t 0 /W tξ =d ), and it 

 similar to the imperfection parameter introduced in the cases of axial compression examined 

 also considered. The numerical results reveal a similar response regarding 

is

in the previous two Chapters.  

  Results for the imperfection sensitivity of initially straight isotropic elastic cylinders with 

/r t =100 under bending are obtained considering the ‘‘imperfect’’ geometry of the cylinder. 

The numerical results in Fig. 80 show that the ultimate bending load of the elastic cylinder is 

reduced with increasing imperfection amplitude and this drop is shown in detail in Fig. 80b. It 

is interesting to note that as the imperfection amplitude increases, the response becomes 

smoother, as indicated in Fig. 80.  

  Pressure effects are

initial post-buckling equilibrium. As external pressure is increased a significant reduction of the 

moment capacity of the cylinder is observed (Fig. 81 and Fig. 82). This effect can be readily 

interpreted as external pressure increases cross-sectional ovalization. 

  Imperfection sensitivity of elastic cylinders with the /r t =100 has also been investigated by 

Fabian [41]. In that study, Fabian applied Koiter’s initial post-buckling theory, enhanced by 

Fitch’s [40] considerations to account for a non-linear pre-buckling state. The resulting first-

order and second-order boundary-values problems were solved through a finite difference 

technique, choosing η  as the perturbation parameter, as described in Appendix, the following 

asymptotic expression for the post-buckling path was obtained 

 21 ...
cr

m b
m

η= + +  (5.88) 

 where b  is a negative constant, that depends on the r t  ratio and the level of pressure. The 

negative value of b  indicates an unstable post-buckling behaviour, which is verified by the 

buckling mode, Fabian [41] obtained a relation of the following form for the m moment 

maxm  in terms of the imperfection amplitude 

present nume Furthermore, assuming an initial imperfection in the form of the first 

aximum 

rical results. 

ξ : 

 2 / 3max 1
cr

m C
m

ξ= −  (5.89) 

where C  is a constant that depends on r t  ratio and the level of pressure f . The present 

numerical results are found to agree very well with the exponential relation (5.89), as shown in 

Fig. 83.  
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  Both numerical and asymptotic results confirm that even small geometrical imperfections may 

reduce the maximum moment that the cylinder can sustain. Moreover, the presence of external 

pressure results in an increase of max / crm m  ratio for the same imperfection amplitude (Fig. 83), 

whereas internal pressure has the opposite effects, which is in accordance with Fabian’s 

asymptotic results [41]. This means that imperfection sensitivity is more severe as the level of 

internal pressure increases. 

  Numerical results for the imperfection sensitivity of very thin cylinders ( /r t =720) are also 

obtained. It is found that the variation of maximum moment maxm  with respect to the 

imperfection amplitude ξ  follows an exponential expression similar to (5.89), where the value 

‘‘2/3’’ for the exponent is verified (Appendix). Finally, Fig. 84 indicates that the max / crm m  

( /r t =100), which leads to the conclusion that thinner cylinders are m

curve for the thinner cylinders ( =720) lies below the one obtained for the thicker ones 

re sensitive to initial

perfections. 

 

 

/r t

o  

im

 

 

Fig. 79 Buckling mode of elastic cylinder under bending moments 

 

 
 

123



 

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
normalized curvature (κ)

no
rm

al
iz

ed
 m

om
en

t (
m

) 

perfect tube

ξ=8.32x10-5

ξ=8.32x10-3

ξ=1.66x10-2

ξ=3.32x10-2

r/t=100

(a) 

 

 

0.88

0.89

0.90

0.91

0.92

0.93

0.360 0.365 0.370 0.375 0.380 0.385 0.390 0.395 0.400
normalized curvature (κ)

no
rm

al
iz

ed
 m

om
en

t (
m

) 

perfect tube

ξ=8.32x10-6

ξ=8.32x10-4

ξ=3.31x10-3

ξ=6.65x10-3

ξ=8.32x10-3

ξ=1.25x10-2

ξ=1.66x10-2

r/t=100

(b) 

Fig. 80 Imperfection sensitivity of an unpressurized elastic cylinder; (a) entire  path and (b) 

detail at bifurcation (numerical results) 
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Fig. 82 Imperfection sensitivity for a pressurized cylinder under bending (numerical results) 
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Fig. 83  vs imperfection amplitude for three different pressure levels; direct comparison 

 present numerical results and the asymptotic solution [41] ( =100)  
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Chapter 6 

THIN-WALLED TRANSVERSELY-ISOTROPIC ELASTIC 

CYLINDERS UNDER BENDING AND PRESSURE 
 

  The present Chapter investigates the stability of long thin-walled transversely-isotropic elastic 

cylinders subjected to bending and uniform pressure, extending the work presented in the 

previous Chapter for isotropic cylinders. This subject of anisotropic materials has received 

significant attention in the last three decades due to its applications in analysis and design of 

composite-material structures Issues of bifurcation, postbuckling response and imperfection 

sensitivity of circular cylinders with respect to the level of anisotropy are discussed. 

Furthermore, an extension of the simplified analytical formulation for isotropic cylinders in the 

nisotrop

cross-section and predict the uniform w  on the primary path.  

Equation Chapter 6 Section 6 

 

6.1  Introduction 

case of a ic cylinders is presented, to describe the gradual progress of ovalization of the 

rinkling bifurcation

 

  Similar to the case of isotropy, the bending response of anisotropic cylinders is initially 

characterized by cross-sectional ovalization followed by bifurcation into a wrinkled state. 

Kedward [87] reported a first attempt to enhance Brazier’s solution [62] considering a different 

modulus for the longitudinal and the hoop direction, and resulted in a closed-form expression 

for the ovalization and the primary moment-curvature path. Spence and Toh [88] extended 

Reissner’s formulation [64] to account for orthotropic material behavior, using nonlinear finite 

deflection thin shell theory. The numerical results were compared with experimental test data 

from steel and ‘‘melenex’’ cylinders. Stockwell and Cooper [89] presented a direct extension of 

Reissner’s [64] isotropic cylinder formulation to obtain a closed-form expression for the 

moment-curvature relationship, and the analytical results were compared with numerical results 

from a commercial finite element program. Libai and Bert [90] used thin-shell theory and a 

mixed variational principle to investigate the nonlinear ovalization behavior of anisotropic 

cylinders, and reported solutions for long, medium-length and short cylinders, including the 

effects of end boundary conditions. Furthermore, a closed-form expression for the moment-

curvature ovalization path was derived for infinitely long cylinders. Corona and Rodrigues [91] 

presented numerical results for orthotropic cylinders with cross-ply layers. Using nonlinear ring 
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theory, the prebuckling ovalization solution as determined. Uniform wrinkling was also 

examined in [91] through a perturbation technique, based on non-shallow cylindrical shell 

kinematics. Tatting et al [92] analyzed long anisotropic cylinders with symmetric lay-ups 

through a finite-difference solution of semi-m brane shell equations. The final moment-

curvature expression was identical to the y Reissner [64] for isotropic cylinders, 

and it  this 

study [92], e-buckling 

equilibrium path, and considering t by 

xelrad [78]. Furthermore, the effects of pressure and the influence of laminate stacking 

g wavelength. 

at several attempts (e.g. [82], [83]) have been reported to apply 

hell stability concepts to simulate the bending response of carbon nanotubes. 

w

em

 one reported b

s solution was found to compare well with the simplified Kedward solution [87]. In

local buckling was examined, using the Kedward solution for the pr

he simplified engineering hypothesis, as proposed 

A

sequence were examined. It was found that bifurcation occurs before a limit point is reached on 

the ovalization path. Harursmapath and Hodges [93] developed an enhanced beam model 

accounting for cross-sectional deformation, in terms of trigonometric series expansion, to 

analyze long, thin-walled cylinders of anisotropic materials. Employing one term of series 

expansion, they provided closed form expressions for the ovalization path and the 

corresponding stresses. Using this simplified solution, limit-moment instability, local buckling 

and material ply failure were examined. Recently, Wadee et al [94], using an analytical 

formulation and a second-degree trigonometric series solution in the hoop direction obtained 

results for anisotropic cylinders, in terms of the ultimate moment and bucklin

Furthermore, it is mentioned th

s

 

 

6.2  Ovalization Instability 

  A simplified ovalization solution for transversely-isotropic cylinders under bending and 

pressure can be obtained, employing an energy formulation similar to the one presented in 

section 5.2.3. This time, the values of pressure p , bending moment M  and longitudinal stress 

σ  are normalized by crp , eM  and eσ , respectively: 

 
3

11
3

12 214 (1 )cr
E tp

r ν ν
=

−
 (6.1) 

 
2

22

12 211e
E rtM

q ν ν
=

−
 (6.2) 

 22

12 211e
E t

rq
σ

ν ν
=

−
 (6.3) 

where 11E  and 22E are the elastic uniaxial modulus for the hoop and longitudinal direction, 12ν  

and 21ν  are Poisson’s ratio and 22 11/q E E=  (Note in section 2.2.2). Curvature k , which is 
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expressed as the ratio of the relative rotation between the two end sections of the cylinder 

segment over their initial distance, is normalized by: 

 
2

12 211N
tk

r q ν ν
=

−
 (6.4) 

It is noted that, when 22 11/q E E= =1 (isotropic material) the values of crp , eM , Nk  and eσ  

are equal to the normalization values crp , eM , Nk  and eσ  used in Chapter 5 for isotropic 

cylinders, respectively.  

  Following the energy formulation, presented in section 5.1.2, and including the effects of 

pressure in ovalization instability, the potential energy, in the case of pressurized bending, can 

be described as: 

 L C P PU U V W M kΠ = + + − −  (6.5) 

where, LU  is the longitudinal bending strain energy, CU  is the cross-sectional (hoop) 

deformation strain energy, PV is the pressure potential and pW  is the second-order of hoop 

pressure stress /pσ pr t= . 

  Enforcing minimization of Π  in terms of a  ( / 0a∂Π ∂ = ) and employing the normalization 

values crp , eM , Nk  and eσ , the following ovalization-curvature relationship is obtained: 

 
2

1
ra
f

κ
=

−
 (6.6) 

2

1
a
r f

κζ = =
−

  (6.7) 

ation amplitude Inserting the value of ovaliz α , as described in (5.42), in the expression of 

potential energy and enforcing equilibrium ( / 0k∂Π ∂ = ), an expression for the bending 

moment is obtained:  

 
231

2(1
m

)f
κκπ

⎛ ⎞
= −

⎠

Furthermore, closed-form expressions for the longitudinal stress 

⎜ ⎟−⎝
 (6.8) 

xσ  as well as the radii of 

urvature at the deformed configuration 1/ ( )rθ θ  are obtained:  c

2 2

( ) sin3
- )
κ θ ⎟  (6.9) 31- sin

4(1- ) 4(1
x

e f f
σ κκ θ
σ

⎛ ⎞
⎜
⎝ ⎠

= + 

21 1 31 cos2
( ) 1r r fθ

κ θ
θ

⎛
= +⎜ −⎝ ⎠

e for

⎞
⎟  (6.10)  

The dim nsionless expressions (6.6)-(6.10) are identical to the ones obtained in Chapter 5  

isotropic cylinders. 
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  In the sequence, the analytical expressions for the ovalization path presented in earlier studies 

can now be written, using the present normalization, which allows their direct comparison with 

.8). These expressions are: 

■  Kedward [87]: 

(6

 
231m

2
κκπ

⎛ ⎞
= −

⎝ ⎠
) 

89]: 

⎜ ⎟  (6.11

■  Stockwell and Cooper [

 2 43 31
2 2

m κπ κ κ⎛ ⎞= −

[90]: 

−⎜ ⎟
⎝ ⎠

 (6.12) 

■  Libai and Bert 

2 43 51
2 8

m κπ κ κ⎛= − +⎜
⎝ ⎠

 ⎞
⎟  (6.13) 

 

■  Harursampath and Hodges [93]: 

2 43 15⎛ ⎞1
2 8

m κπ κ κ= − +⎜ ⎟
⎝ ⎠

 (6.14) 

sent fi

that despite its simplicity, Kedward’s expression (6.11), which is basically the Brazier solution 

2], provides a better prediction than the more elab

The fact that this simple expression (6.11) provides very good predictions has also been noted 

 previous studies [76].  

 

  In Fig. 85 the ovalization path obtained from the pre nite element technique is compared 

with expressions (6.11)-(6.14) for the case of unpressurized bending. The comparison shows 

[6 orate formulae proposed in [89], [90], [93]. 
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6.3  Bifurcation Instability 

  In this section uniform wrinkling instability of transversely-isotropic cylinders is examined 

numerically. Regarding numerical implementation issues, a 16th degree expansion in equations 

equate for the cases of interest as it is illustrated in Fig. 86, and a spherical 

ocedure that monitors selected degrees of freedom

ployed (section 2.7). Furthermore, an initial series of num

modeling was conducted and no difference in terms of the 

calculated buckling and post-buckling response was found. It is mentioned that, for the majority 

f the results the

(2.150) is found ad

arc-length pr  of the ‘‘tube-element’’ was 

em erical results with both hypoelastic 

and hyperelastic constitutive 

o  /λ µ  ratio is considered equal to 3/2, u

r  value ranges between 1 and 10. 

nless mentioned otherwise, whereas 

 Sthe anisotropy paramete
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Fig. 86 Effect of the degree of trigonometric expansion used in equation (2.150) =100, =3) 

 

  A comparison between results from the present numerical formulation and numerical results 

reported in [91], is offered in Fig. 87 for a cylinder with AS3501 material, 00 layers and 

diameter-to-thickness ratio  equal to 100, in terms of buckling moment and curvature. The 

comparison of these two n  procedures, as shown in Fig. 87, is very good and validates 

the efficiency of the presen ulation. It is noted that according to the analysis conducted in 

[91], ovalization instabilit occurs at curvature 

( /r t S

/D t

umerical

t form

y ovκ =0.486 and moment =0.976, whereas 

buckling occurs at lower values of curvature and moment (

ovm

crκ =0.369 and =0.915), as 

indicated by the symbol ‘↑’ in Fig. 87. The present numerical resu

with ovalization limit point at =0.480, =0.954, and bifurcation at 

crm

lts indicate similar behavior 

ovκ ovm crκ =0.354, =0.882, 

d

crm

enoted by the symbol ‘↓’.  
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Fig. 87 Comparison of numerical results, arrows (↑) denote the critical and ovalization points 

obtained from [91] and arrows (↓) denote the corresponding points calculated herein 

 

  Subsequently, the bifurcation and post-buckling response of transversely-isotropic cylinders 

with radius-to-thickness ratio between r t

cylin

 10 and 720 is examined for different levels of 

anisotropy. The response of thin-walled ders with r t

g. 89

 equal to 100 and 720 with emphasis 

on the bifurcation point is depicted in Fig. 88 and Fi , respectively, for different values of 

the anisotropy parameter . In all cases, bifurcation occurs before a limit point is reached and 

the initial post-buckling behavior is unstable, characterized by a ‘‘snap-back’’ of the 

S

m κ−  

path. Furthermore, the results show that the location of bifurcation on the  primary path, 

a , 

creasing the level of anisotropy, bifurcation occurs earlier on the normalized prebuckling 

m κ−

s well as the post-buckling behavior depend on the level of anisotropy S . More specifically

in

path. For the case of thin-walled cylinder ( r t =720) the buckling curvature crκ  ranges from 

0.390 for the isotropic case ( S =1, 22 11/E E =1), to 0.343 for S =10 ( 22 11/E E =12.03). 

  Subsequently, the bifurcation and post-buckling response of transversely-isotropic cylinders 

with radius-to-thickness ratio between r t  10 and 720 is examined for different levels of 

anisotropy. The response of thin-walled cylinders with r t  equal to 100 and 720 with emphasis 

the anisotropy parameter S . In all cases, bifurcation occurs before a limit point is reached and 

the initial post-buckling behavior is unstable, characterized by a ‘‘snap-back’’ of the m

on the bifurcation point is depicted in Fig. 88 and Fig. 89, respectively, for different values of 

κ−  

path. Furthermore, the results show that th ocation of bifurcation on the κ−  primary path, 

as well as the post-buckling

e l

 behavior depend on the level of anisotropy . More specificall

increasing the level of anisotropy, bifurcation occurs earlier on the normalized prebuckling 

 m

 S y, 
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path. For the case of thin-walled cylinder ( r t =720) the buckling curvature  ranges from 

0.390 for the isotropic case ( =1, 

crκ

S 22 11/E E =1), to 0.343 fo =10 (r S 22 11/E E =12.03). 

  Numerical results from a thick cylinder ( =10) are shown in Fig. 90 and Fig. 91. A 

significant shift of the location of the bifu point is observed, as the anisotropy parameter 

 increases. It is noted that the material properties of the cylinder in Fig. 91 are obtained from 

the paper of Wang et al [95], and are the properties of single-walled carbon nanotubes, 

calculated from molecular dynamics.  
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Fig. 88 Numerical results for different values of anisotropy parameter S  ( /r t =100) 
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Fig. 89 Numerical results for different values of anisotropy parameter t =720)  
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Fig. 90 Finite element results of the response of a non-pressurized cylinder for different values of 

anisotropy parameter =10), arrows ‘↓’ stand for bifurcation points 
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Fig. 91 Buckling analysis of cylinders with mechanical properties as described in [95]; arrows ‘↓’ 

indicate buckling points ( /r t =10); (a) entire m κ−  path and (b) detail at bifurcation  
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Fig. 92 Buckling analysis for three different /λ µ  values keeping the 2
22 11/q E E=  parameter 

constant 

 

  Fig. 85 shows the dependence of the buckling (bifurcation) point on the value of the /λ µ  

ratio, keeping the 22 11/E E  ratio constant (constant parameter 2q ). These results indicate that 

the /λ µ

udinal 

values of 

 ratio has no effect on the bending response of isotropic cylinders. However, when the 

longit direction is reinforced with respect to the hoop direction, buckling occurs at lower 

 as the value of the crκ /λ µ  ratio increases. It is worth mentioning that the /λ µ  ratio 
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is controlled by the Poisson’s ratio 21ν , as shown by equation (2.90), and can be expressed as 

follows: 

 21

21

2
1 2
νλ

µ ν
=

−
 (6.15) 

  Next, a simple analytical formulation, as in Chapter 5, is employed, adopting the ‘‘equivalent 

cylinder’’ concept, initially proposed in [96]. This analytical methodology is extended herein to 

analyze uniform wrinkling bifurcation of transversely isotropic cylinders. The prebuckling state 

of stress and deformation are expressed by (6.9)-(6.10). Furthermore, the buckling zone 

location is assumed in the vicinity of / 2θ π= . Following the same procedure adopted for 

isotropic cylinders, one readily  third-order algebraic equation for the critical 

curvature : 

 

obtains the same

crκ

2 21 1 31 1 0cr cr crκ κ κ
⎛ ⎞ ⎛ ⎞
− − − =⎜ ⎟ ⎜ ⎟1 13f f− −⎝ ⎠

 (6.16) 

which

 

⎝ ⎠

 has the following closed-form solution: 

3/ 2

2
3

1 1[3(2 )] cos arccos
3 3 [3(2 )]3cr abs f

abs f
πκ =

⎞3 3⎡ ⎤⎛− − + ⎟⎢ ⎥⎜ ⎟−⎝ ⎣ ⎦ ⎠
 (6.17) 

  It is noted that the critical value of the normalized curvature crκ predicted by (6.17) is 

independent of the level of anisotropy . Fig. 88 and Fig. 89 show that this critical curvature is 

a good prediction of the corresponding critical value calculated from the nonlinear finite 

element technique for isotropic or nearl  isotropic cylinders. The prediction is particularly good 

for thin-walled cylinders. These cate that, in the absence of pressure , the 

value =0.3811 obtained from analytical formula (6.17) is a reasonable estimate for relatively 

low levels of anisotropy ( <3) and thin-walled cylinders. On the other hand, for higher levels 

of anisotropy and for thick linders (Fig. 90) 

 S

y

figures indi  0f =

crκ

S

 cy crκ =0.3811 provides a rather poor prediction of 

the critical curvature.  

  These observations lead to the conclusion that for high values of anisotropy the concept of 

‘‘l s and strain p 

direction within the buckling zone, loses bility. Fig. 93 and Fig. 94 provide good 

vidence for this argument, showing the buckling modes of an isotropic cylinder ( =1) and 

harac o

ocal buckling’’ hypothesis, which assumes no variation of stresse s in the hoo

its applica

Se

two cases of anisotropy ( S =3 and 10) for two /r t  ratios ( /r t =10 and 720). The mode for the 

isotropic case is c rized by a smooth buckle in the h op direction located around te

/ 2θ π=  location, that ‘‘dies out’’ rather quickly (especially for thin-walled cylinders). On the 

other hand, the buckling modes for the anisotropic cases have the form of multiple waves 

within the compression zone. Those waves become more pronounced when the value of the 
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anisotropy parameter S  increases a  therefore the variation in the hoop direction is more 

significan

nd

t.  

  

( s =1, r t =10) 

 

( s =3, r t =10) 

 

r t( s =10, =10) 

Fig. 93 Buckling modes for a thick cylinder ( r t =10); higher values of anisotropy parameter 

S result in greater variation in the hoop direction 
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( s =1, r t =720) 

 

( s =3, r t =720) 

 

( s =10, r t =720) 

Fig. 94 Buckling modes for a thin cylinder r t =10 igher val, h ues of anisotropy parameter result 

 in

S

in greater variation  the hoop direction 
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  Furthermore, the variation of the buckling wav lengths, with respect to the level of anisotropy, 

is shown in Fig. 95. A significant dependence of the value of  in terms of anisotropy level is 

observed. This variation is more significant for thicker cylinders and especially when 

anisotropy effects are more pronounce. In these ca ’’ hypothesis is longer 

applicable, as it can be confirmed by Fig. 93 a buckling half-

wavelength  is normalized by the cylinder diameter

e

hwL

ses the ‘‘local-buckling

nd Fig. 94. It is noted that the 

hwL D . 
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Fig. 95 Numerical results of the buckling half-wavelengths with respect to anisotropy level

 

 

6.4  Imperfection Sensitivity

 S  

 

  The influence of initial imperfections is examined on the bending response of initially straight 

transversely-isotropic cylinders. The initial imperfections are assumed periodic, in the form of 

the buckling mode, obtained from an eigenvalue analysis on the pre-buckling path at the stage 

where bifurcation occurs. These instability modes were presented in Fig. 93 and Fig. 94. The 

imperfection amplitude ξ  is defined as previously by the ratio of the total wave height  over 

the cylinder thickness 

0W

t  ( 0 /W tξ = ). 

 

cylinders is analogous to the behavior of isotropic cylinders, which exhibit a snap-back 

behavior and this indicates a sensitivity  imperfections. 

Therefore, a sensitivity of the behavior is expected in the presence of initial imperfections. 

Numerical results on transversely isotropic cylinders subjected to bending show that the value 

 As shown in an earlier section, the post-buckling behavior of perfect transversely-isotropic 

of the behavior in the presence of initial
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of the ultimate bending moment maxm  is reduced as the imperfection amplitude increases and 

the buckling response becomes smoother. 

  The bending behavior of cylinders with r t  equal to 100 and 720 is shown in Fig. 96 and Fig. 

97, respectively, in the presence of initial imperfections. It is numerically confirmed that very 

small geometric imperfections (i.e. imperfections with amplitude equal to a small fraction of the 

cylinder wall thickness) may influence the maximum bending capacity. 

The maximum moment reduction in these cases is depicted in Fig. 98 and Fig. 99, in terms of 

initial imperfection amplitude. Assuming that the variation of the ratio in terms of 

  

max / crm m  ξ  

follows an exponential expression of the form: 

 max / 1 n
crm m Cξ= −  (6.18) 

it can be easily shown that the value of the exponent  that fits the numerical results is equal to 

2/3, whereas the value of  depends on the  ratio and the value of anisotropy level . The 

value of the exponent =2/3 is in complete accordance with the corresponding value from the 

asymptotic theory [41]. 
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Fig. 96 Imperfection sensitivity of a transversely-isotropic cylinder; (a) entire m κ−  path and (b) 

b
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Fig. 97 Detail of the imperfection sensitivity of a transversely-isotropic cylinder 720 3) ( /r t = , S =
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Fig. 99 Imperfection sensitivity versus imperfection amplitude ( /r t =720) 
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Chapter 7 

BENDING OF THIN-WALLED CYLINDERS IN THE INELASTIC 

RANGE 
 

  Bending instabilities in long metal thin-walled cylinders, bent beyond the elastic regime, are 

examined in the present Chapter, extending the results of Chapters 5 and 6 for elastic cylinders. 

This constitutes a problem with significant applications for the structural integrity of chimneys, 

tubular towers and low-pressure water pipelines. The bending response is analyzed numerically, 

using the ‘‘tube-element’’ technique and appropriate constitutive models to account for 

inelastic ma  of plastic 

ifurcation loads into a uniform wrinkling state, and the corresponding post-buckling response. 

Subsequently, the phenomenon of buckling localization in metal cylinders is examined.  

Equation Section 7 

 

7.1  Introduction

terial behavior. The numerical results, initially, refer to the prediction

b

  

  The problem of inelastic bending involves both material and geometric nonlinearities. 

Material nonlinearities are due to the elastic-plastic behavior of the material, whereas geometric 

nonlinearity arises since the early loading steps from the distortion of the cross-section along 

the cylinder (ovalization-Brazier effect [62]). As bending proceeds, the geometric nonlinearity 

becomes stronger with the appearance and growth of ripples on the compression zone. 

Eventually, the combination of material inelastic behavior and wrinkle formulation leads to the 

catastrophic collapse of the cylinder in the form of localized buckling deformation. The present 

work focuses on the simulation of the mechanical behavior of thin-walled cylinders, accounting 

for the above phenomena.  

  Previous e rs develop 

short wavelength periodic wrinkles on the com d side of the shell, which very soon result 

in local buckling and sudden collapse of the shell [97], [98], [99]. In thin-walled cylinders, this 

buckling collapse mechanism usually takes place before a limit moment is reached on the 

ovalization path and, therefore, bifurcation instability is considered to be the critical failure 

mode, as opposed to relatively thick cylinders, such as those employed in marine pipelines, 

where an ovalization limit point is reached before cylinder wall wrinkles and ovalization 

constitutes the governing instability type [97], [100].  

xperimental works have confirmed that upon buckling, thinner cylinde

presse
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  A numerical methodology for analyzing the ovalization process in the plastic range was first 

introduced by Ades [101]. In this study the limi (ovalization) moment of an elastic-plastic long 

cylinder was obtained, assuming that the cross-section ovalizes into an elliptical shape, and 

considering the J2 deformation theory of plasticity to describe inelastic material behavior. This 

study can be considered as a simple and tension of Brazier’s [62] solution in the 

i  

to the corresponding values of limit mo vature in the elastic case. Gellin [102] 

considered J2 deformation theory of plasticity ine the limit moment and the 

orresponding curvature. The basic model was related to a uniform ovalization along the 

5] and 

ams presented in [105] supported by experimental data ( =12.3 and 

gous interaction curves and conclusions were drawn in the finite-element 

os and Tassoulas [106]. The numerical results of this study were 

pression zone, and expresses another governing instability mode, 

been shown consistent 

t 

approximate ex

nelastic range. The limit point obtained in [101] was found to occur at lower levels compared

ment and cur

 to determ

c

cylinder axis, where nonlinear kinematic relations from ring deformation theory were 

employed, enforcing the condition of inextentionality. Analogous formulations for ovalization 

instability were considered by Fabian [103], with the J2 flow theory to be incorporated in the 

solution methodology. Motivated by the mechanical behavior of offshore pipelines, ovalization 

instability in relatively thick cylinders (7.5< /r t <40) was extensively examined by Shaw and 

Kyriakides [104], considering extentional ring kinematics and incremental (flow) plasticity 

models. The results obtained in [104] were presented in the form of interaction diagrams of 

pressure versus curvature. This work was further extended by Corona and Kyriakides [10

 were /r tthe interaction diagr

17.4). Analo

investigation of Karaman

found to be in very good agreement with the experimental data reported in [105]. Theoretical 

models for the ovalization mechanism in circular cylinders under bending were also depicted by 

Elchalakani et al. [99], where the validity of these models was confirmed with experiments 

(10< /r t <20). These studies have shown that the instability of ovalization in the inelastic 

region has a nonlinear behavior, which can not be described by closed-form analytical 

expressions.  

  This bifurcation from the ovalization primary path occurs either before or beyond reaching a 

maximum (ovalization) load, depending on cylinder thickness. This results in the development 

of axial ripples in the com

referred to as buckling. Due to the presence of material and geometric nonlinearities this 

instability requires a numerical investigation. A tool for detecting bifurcation and uniqueness of 

solution in the plastic range is offered by the theory of Hill [32], [107], which employs the 

concept of the so-called ‘‘comparison solid’’ as described in section 2.8. However, it has been 

shown that, in general, buckling predictions based on this theory are sensitive to the choice of 

plasticity constitutive equation. Generally, bifurcation loads in thin-walled structures calculated 

using flow theories of plasticity consistently overestimated buckling loads obtained in tests. On 

the other hand, buckling predictions based on deformation theories have 
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with test results for a range of loading paths in the vicinity of proportional loading. In the early 

studies of Batdorf [35] and Sanders [108] it was suggested that this difficulty could overcome if 

the smooth yield surface was discarded, and a sharp corner was developed in the yield surface 

at the loading point. A more sophisticated flow theory that permits corner formation, namely 

the slip theory, was suggested by Batdorf and Budiansky [109]. Furthermore, Christoffersen 

and Hutchinson [110] proposed a new ‘‘corner yield surface’’ theory, which has been applied 

for shell bifurcation calculations, post-buckling response and imperfection sensitivity (e.g. 

[111], [112]).  

  Numerical studies on the uniform wrinkling of bent cylinders were reported by Gellin [102], 

where bifurcation in the inelastic range was detected at loads lower than the limit point 

(30< /r t <100). Bifurcation was investigated in a way similar to the elastic study of Fabian [41] 

but no further details on the numerical technique were given in [102]. The numerical model was 

based on the implementation of J2 flow theory for the moment-curvature path, while J2 

deformation theory was adopted for bifurca  calculations. A more detailed study for the 

inelastic cylinder stability under the combined action of bending and pressure was presented in 

a subsequent study of Fabian [103], based on an asymptotic analysis for smooth yield surfaces 

and following a J

tion

t

by Kyriakides and Ju [97]. Carefully controlled and monitored bending 

2 flow theory 

  Experiments on plastic buckling of thick steel and aluminium cylinders (30< D <80) were 

presented by Reddy [113] to elucidate the buckling process for the case of monotonic pure 

bending. It was found that for this range buckling takes place well into the inelastic range. In 

those tests, a considerable scatter was observed in terms of critical strains. An attempt was 

made to compare the corresponding wavelengths with Batterman’s [34] analytical expressions 

for axially loaded inelastic tubes under uniform compression, using both J

/

2 deformation and J2 

flow theories of plasticity. 

  An extensive experimental investigation on uniform wrinkling of thick-walled metal cylinders 

was reported 

experiments were conducted with aluminium cylinders of /r t  ratios ranging between 9.8 and 

30, bent up to failure. Bifurcation instability was found to occur in the plastic regime before or 

after the ovalization limit point, dependent on the /D t  ratio, and confirming Reddy’s [113] 

observations regarding the values of buckling wavelengths. In a subsequent work of Ju and 

Kyriakides [81], a semi-numerical technique was presented and the results were compared 

directly with the experimental results reported in [97]. It is interesting to note that, in that study, 

the inelastic material behavior was modelled through the J2 flow plasticity theory with isotropic 

hardening, whereas the detection of bifurcation was examined using the J2 deformation 

plasticity moduli. The overprediction of the calculated wrinkle wavelengths reported in [81] 

was recently re-examined in the work of Corona et al. [114], and was attributed to the effects of 
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anisotropy. The book of Kyriakides and Corona [115] constitutes a notable publication that 

addresses the problem of buckling and collapse of inelastic cylinders, and summarises the 

above experimental and semi-numerical studies. 

  Karamanos and Tassoulas [116], [117] also investigated the inelastic buckling response of 

cylindrical shells ( /r t =9 and 17.4) introducing a nonlinear finite element, referred to as ‘‘tube-

element’’, in its original form. The ‘‘tube-element’’ is also employed and further enhanced for 

the purposes of the present study. To verify the validity of this numerical formulation, 

computational results were compared with experimental data from both long and stub tubular 

terns. This collapse mechanism can be considered as an abrupt 

r d

ifurcation behavior of structures undergoing inelastic deformations 

of 

beam-column tests [118], [119], [120]. The study was motivated by the structural integrity of 

relatively thick deep offshore tubular members. It was shown that, beyond the limit point, the 

tube response was characterized by a localization of ovalization, which upon formation grows 

rapidly, reducing the moment capacity of the member and resulting in its failure.  

  In addition to limit load and uniform wrinkling instabilities, experiments have demonstrated 

that shell bending failure is ultimately characterized by another mode; distinct localization of 

deformations has been observed in a number of experiments [97], [98], [99] especially for thin-

walled cylinders, where the final collapse configuration involves one main buckle, rather than 

periodic wavy-type buckle pat

deviation from the periodic buckling patterns. Upon localization, cylinde eformation 

concentrates in one small region, resulting in the structural failure of the shell. Several 

approaches to analyze the development of localization can be found in [112] for the case of 

inelastic cylinders under uniform axial compression and in [111], [121] for cylindrical panels. 

Moreover, in [121] simple models have been presented in an attempt to associate load 

maximum and the localization of buckling patterns.  

  To determine initial post-b

an extension of Koiter’s theory [3] is a rather complicated task because of elastic-plastic 

material behavior. An attempt to develop such an asymptotic theory in the plastic range has 

been proposed by Hutchinson [33] for the particular case smooth yield surfaces and for a 

single-mode buckling. In particular, Hutchinson presented an asymptotic expression for the 

load parameter λ  in terms of the amplitude η  is a perturbation parameter of the eigenmode, 

associated with the lowest bifurcation load crλ , as follows: 

 1
1 2 ....cr

βλ λ λη λ η += + + +  (7.1) 

In this relation, written in the framework of Koiter’s theory (Appendix), 1λ has been shown to 

be a positive constant in general, showing that bifurcation takes place under increasing load, 

whereas 2λ is found to be a negative constant. The term containing coefficient 2λ  and exponent 
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β makes a contribution only within the elastically unloaded zone. Coefficients 1 2,λ λ  and 

exponent β  are to be determined for each specific problem. 

  In the framework of the present study, the problem of inelastic tube bending is examined using 

the numerical technique presented in Chapter 2. Various aspects of bent cylinder response are 

discussed includin uckling moment, post-buckling behavior, imperfection sensitivity and 

buckling localization. The ‘‘tube-element’’ is employed so that this problem and the 

mechanisms that govern it become more accessible. In particular, the numerical approach is 

based on a large-strain hypoelastic J

g b

2 flow plasticity model; whereas bifurcation on the primary 

m κ−  path to a uniform wrinkling deformation pattern is detected using the comparison solid 

concept and employing the J2 deformation theory moduli (section 2.8). Furthermore, uniform 

wrinkle growth and localization of buckling patterns are investigated numerically. 

 

 

7.2  Ovalization Instability 

  The first problem examined in this study concnerns a long thin-walled cylinder ( /r t =120) 

bent in the inelastic range with no variation of deformation along the length, so that end effects 

are neglected.. Under this assumption the cylinder exhibits ovalization and limit-moment 

instability, whereas wrinkling bifurcation is not possible. Therefore, a two-dimensional analysis 

is conducted, restraining the out-of-plane (warping) cross-sectional deformation parameters 

,n nc γ  (defined in section 2.6). The ovalized pre-buckling equilibrium path is calculated using 

the J  flow theory to account for inelastic effects.   

  Normalization values similar to the ones used in the 
2

analysis of elastic cylinders are employed 

for moment, curvature and stress. The values of moment M , curvature k  and stress σ  are 

normalized by 2 2
e = / 1-M Ert ν , 2 2/( 1- )Nk t r ν=  and 2

e = /( 1- )Et r νσ respectively. 

  Using the closed-form expressions obtained in Chapter 5 for elastic cylinders, it is possible to 

estimate the curvature yκ  at which first yield occurs, considering ovalization and pressure 

effects. In particular, longitudinal and hoop stresses in the absence of pressure are described by 

(7.2) and (7.3) (given in section 5.1.2): 

(
 

) 2 23 1xσ θ
1 sin sin3

4 4e
κ κ κ

σ
θ θ⎡ ⎤

⎜ ⎟
⎛ ⎞
⎢ ⎥⎝ ⎠⎣ ⎦

= − +  (7.2) 

 ( ) 2

2

, 3 cos 2
1e t

θσ θ ρ ρ κ θ
σ ν

⎛ ⎞
⎜ ⎟
⎝ ⎠−

=  (7.3) 

Taking in  account that the maximum stresses ( )xto σ θ  and ( , )θσ θ ρ  are loca d at / 2te θ π=  

2tρ = ± , the above expressions can be written as: and 
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( )21x eσ σ κκ= −  .4)  (7

 
21 3κ

2 21
eθσ σ

ν−
= ±  (7.5) 

Assuming a von Mises yield criterion, as described below: 

 2 2 2
x x yθ θσ σ σ σ σ+ − =  (7.6) 

and inserting (7.4)-(7.5) into (7.6) one results in an algebraic equation in terms of the first-yield 

curvature yκ  can be calculated in terms of the value of yield stress yσ . In Fig. 100 the first-

curvature yκ is shown graphically for an unpressurized cylinder, in terms of the 

geometric/material parameter 

yield 

2( / ) 1yS r Etσ ν= − . The dotted line corresponds to the yield 

curvature m (7.6), account

present e yield curvature when ovalization is neglected. In the latter case, employing 

ormulae (

 yκ  calculated fro ing for ovalization, whereas the continuous red line 

re s th

/ ,Mr I M EIkσ = = ) one readily obtains . For a y Sκ =simple strength of materials f

yield stress yσ  equal to 300 MPa the values of S  considered in the horizontal axis of Fig. 100 

correspond to /r t  ratios ranging between 50 and 300. Therefore, in the absence of a closed 

formula describing first yield curvature considering ovalization effects, expressions (7.4)-(7.6) 

can be conservatively used to give an estimate of yκ .  
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Fig. 100 Variation of yield curvature  with respect to the geometric/material parameter yκ

2( / ) 1yS r Etσ ν= − , considering or not ovalization effects, represented by dotted and continuous 

lines respectively 
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  ed long inelastic cylinders is shown in In Fig. 101, the ovalization  path for thin-wall

terms of the applied curvature, for three different values of the  parameter. These results 

how that beyond yielding the moment ovalization cap

moment of the corresponding elastic 

cylinder.  

m κ−

S

s acity of the cylinders is decreased, 

resulting in a limit moment, which is lower than the limit 
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Fig. 101 Ovalization primary path of inelastic cylinders for different values of parameter  under 

bending loads and comparison with elastic cylinder solution; arrows (↓) denote the first yielding 

points and arrows (↑) denote limit points, both obtained by the finite elements technique ( =120) 

 

 

7.3  Uniform Wrinkling

S

/r t

 

  In this section the possibility of bifurcation on the ovalization prebuckling  path is 

investigated for thin-walled cylinders. In this analysis, only one half-wavelen  of the 

cylinder is considered, discretized with four ‘‘tube-elements’’, and appr

boundary conditions are imposed. The half-wavelength  value is not known a priori and, 

therefore, a sequence of analyses is conducted for each case so that the actual wavelength 

corresponds to the ‘earliest’ bifurcation point on the primary path.    

  As re-

buckling state to a uniform wrinkling state is based on the consideration of the positive 

definiteness of the 

m κ−

gth hwL

opriate periodic 

hwL

 discussed in section 2.8 the detection of bifurcation from the uniform-ovalized p

quadratic functional F  given by (2.177), and discretized as described in

nstrated the predic

 

section 2.5. Previous studies have demo ament of flow theory compared to the 

eformation theory in predicting reasonable bifurcation loads for various buckling problems. d
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Therefore, material moduli based in J2 deformation theory are employed for the purposes of the 

present study. 

  The eigenmode associated with the zero eigenvalue of the discretized functional referred to as 

‘‘buckling mode’’ (Fig. 102a) can be imposed as an initial geometric imperfection. The 

imperfection amplitude ξ  is defined, similar to the previous Chapters, by the total wave height 

 normalized by the cylinder thickness , so that 0W t 0 /W tξ =  (Fig. 102b). In the sequence, the 

initially imperfect cylinder can be analyzed, usi near step-by-step analysis that 

employs an arc-length algorithm. Regarding the nu plementation of this procedure, a 

spherical arc-length algorithm is employed that monitors the increments of translational degrees 

of freedom  at each node. Moreover, a 16th degree expansion for the discretized in-

plane and ou ents of the reference line 

ng a nonli

merical im

 (k) (k)
2 3,u u∆ ∆

t-of-plane displacem ( ), ( ), ( ) and ( )w v uθ θ θ γ θ , with 23 

equally spaced integration points around the half-circumference, is adopted.  
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(a)         (b) 

Fig. 102 Buckling mode of an elastic-perfectly plastic cylinder; (a) buckling mode that corresponds 

to uniform wrinkling, (b) amplitude of the initial imperfection ( /r t =120, /y Eσ =0.0023)  

 

  In Fig. 103 the primary ovalization path is plotted with dashed lines, and the bifurcation point 

on this path is denoted. Uniform wrinkling bifurcation precedes ovalization limit point and 

governs the structural behavior and this is in accordance with previous results (e.g. [81]) in 

thin-walled cylinders. The effect of initial geometric imperfections on the bending response is 

also given in Fig. 103. A first important observation is that the presence of very small initial 

wrinkling imperfections (i.e. imperfections of magnitude that corresponds to a small fraction of 

the wall thickness t ) cause a significant decrease of bending stiffness of the cylinder. 
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  Imperfection sensitivity in the inelastic range for a specific case is also examined, and the 

numerical results are shown in Fig. 104 ( =120 and /r t /y Eσ =0.0023). The results indicate a 

reduction of the maximum moment for the case considered. 
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Fig. 103 Bending response of an elastic-perfectly plastic cylinder; (a) complete m κ−  path (b) 

detail at bifurcation point ( /r t =120, /y Eσ =0.0023)  
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Fig. 104 Variation of  vs imperfection amplitude  max / crm m ξ  ( /r t =120, /y Eσ =0.0023)  

 

 

7.4  Localization of Buckling Patterns 

  In the previous results, bifurcation from a uniform ovalized configuration into a state of 

uniform axial wrinkling has been investigated. It was shown that thin-walled cylinders of high 

 ratios initially ovalize and, subsequently, short wavelength wrinkles are developed in the 

compression zone. However, these thin-walled cylinders soon after uniform wrinkles appear, 

exhibit localization of the buckling patterns and buckle locally in the form of a kink at a 

suddenly dropping moment.  

  In previous studies, localization of buckling deformation has been investigated for thick-

walled tubular members under bending [114] and curved panels under axial compression [121]. 

In those studies a longer cylinder segment has been considered, which is  times multiple of 

the half wavelengths, and appropriate periodic end conditions are applied. In this initial 

configuration, an additional imperfection is imposed in the shape of the uniform wrinkling 

buckling mode, as described in the previous section, multiplied by the following factor that 

ex

 

/r t

m

presses localization: 

1 cos zf πξ= +  L
hwmL

⎛ ⎞
⎜ ⎟
⎝ ⎠

(7.7) 

where  is the coordinate along the cylinder axis of the three-wavelength cylinder,  is the 

number of half wavelengths considered within the segment and 

z m

Lξ  is the imperfection 

parameter associated with localization mechanism, affecting the amplitude of the waves. 
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Clearly, if Lξ =0, uniform wrinkling conditions are imposed. It is noted, that the above approach 

present work. 

  In Fig. 105 the non-uniform initial shape of the buckling mode, as expressed by (7.7), is 

illustrated. In this Figure, the cross-sectional displacements are magnified for visualization 

 equilibrium curve for a steel cylinder with =120 and 

is also adopted in the 

purposes. In Fig. 106 the m κ− /r t

/y Eσ =0.0023 are shown. A uniform initial imperfection with amplitude ξ =0.072 in the form 

of the uniform wrinkling buckling mode is considered with two values of the localized 

imperfection parameter Lξ  ( Lξ =10-1 and 10-2). The numerical results indicate that buckling 

patterns do localize. The presence of small amplitudes of the localization factor Lξ  affect 

significantly the bending response of the cylinder, and verify the experimental observations that 

localization of deformation is responsible for the sudden and catastrophic failure of the 

cylinder. The deformed configuration of the cylinder, at the development of localization, is 

given − . T h ially 

lightly larger than the other wrinkles, grows significantly more than the others, resulting in 

calization of the buckling pattern and sudden reduction of moment capacity.  

 in Fig. 107 for ξ = he cylinder shape shows t at a wrinkle, which is init210L

s

lo

 

Fig. 105 The localized buckling mode for =1, where a magnification of the buckling patterns is Lξ

applied for visualization purposes ( /r t =120, /y Eσ =0.0023)  
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Fig. 106 Localization of deformation in a bent steel cylinder considering  uniform 

L

( 0.07ξ = , Lξ =0) 

and localized ( 0.07ξ = , Lξ =10-1 and Lξ =10-2) initial imperfections; (a) entire  paths and (b) 

detail at bifurcation point. =120, 
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Fig. 107 Development of inelastic localization;(a) and (b) longitudinal strips at various deformation 

steps (c) deformed configuration at state (4) ( =120, /r t /y Eσ =0.0023, Lξ =10-2) 
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Chapter 8 

CONCLUSIONS 
 

  The present study concerns the stability analysis of long thin-walled cylinders, under structural 

loads and pressure. Bending loading was mainly investigated, whereas uniform axial 

compression was also analyzed. The work was motivated by the need for a better understanding 

and more accurate prediction of bifurcation and postbuckling response of thin-walled 

structures.  

  A numerical investigation of the problem was adopted, using a nonlinear finite element 

formulation, and adopting a modified Newton-Raphson solution scheme, in the framework of 

an “arc-length” continuation algorithm, as presented in Chapter 2. The main feature of the 

numerical technique is the use of a special-purpose finite element, called “tube-element”, which 

combines longitudinal (beam-type) deformation with cross-sectional (shell-type) deformation in 

an efficient manner. This element has been employed elsewhere for the analysis of relatively 

thick tubes; in the present work it was properly enhanced for the buckling and postbuckling 

response of thin-walled cylinders. 

  Elastic cylinders have been modelled through both hypoelastic and hyperelastic large-strain 

material models, which include the effects of transversely anisotropic material behavior. The 

hypoelastic model, developed for the purposes of the present study, relates a stress rate, co-

rotational with the local anisotropy axis, with the rate-of-deformation tensor. The hyperelastic 

constitutive equation, based on a quadratic free energy function, allows a straightforward 

representation of anisotropy. Both models were numerically implemented and incorporated in 

the finite element technique. Inelastic material behavior was considered through a large-strain 

J2 flow plasticity model, whereas bifurcation on the primary equilibrium path is detected 

through Hill’s comparison solid concept and using the J2  deformation plasticity instantaneous 

moduli. 

  Favorable conclusions, as to the accuracy and efficiency of the numerical technique, to 

simulate the nonlinear response and buckling of thin-walled cylinders were drawn in Chapter 3, 

where excellent agreement with available results from a semi-analytical solution was found for 

imperfect om rs nalyzed. 

l results compare very well with existing semi-analytical asymptotic results on the 

the case of an uniformly compressed circular cylinder in the presence of initial axisymmetric 

ions. Furthermore, in Chapter 4, uniformly c pressed oval cylinde  were a

The numerica

 
 

156



initial postbuckling response and the initial im erfection sensitivity. Furthermore, the present 

numerical results indicated a “snap-back” path, and verified rigorously 

experimental observations on the load carrying capacity reserves of an oval cylinder, beyond 

the bifurcation point. It was also shown that hy elastic and hyperelastic models provided very 

similar results. 

  The bending response of elastic is cessively examined in Chapter 5. 

his constitutes a challenging problem that combines ovalization and bifurcation instability, 

nkles along the cylinder. On the other hand, buckling was found to occur within a 

 effects of initial longitudinal curvature and initial ovality. 

ies. Using the “local buckling hypothesis”, analogous analytical bifurcation 

p

postbuckling 

po

otropic cylinders was ex

T

and is characterized by a highly nonlinear prebuckling state. The effects of pressure, initial 

curvature and initial ovality, as well as the influence of the radius-to-thickness ratio were 

investigated. The results showed that the response is governed by the strong interaction of 

cross-sectional prebuckling ovalization, and bifurcation instability, in the form of uniform 

periodic wri

limited region around the cross-section, called “buckling zone”. It was demonstrated that the 

presence of relatively small initial longitudinal curvature may have significant influence on the 

buckling behavior and the location of the buckling zone.  

  Assuming a constant state of stress and deformation within the buckling zone (referred to as 

“local buckling hypothesis”), a simplified analytical bifurcation solution was also developed, 

which resulted in closed-form expressions for the critical curvature, the critical moment and the 

corresponding buckling wavelength of thin-walled elastic isotropic cylinders subjected to 

pressurized bending, including the

The closed-form analytical expressions provide results of remarkable accuracy with respect to 

the finite elements results, for relatively small values of initial curvature. Furthermore, the 

analytical predictions were found closer to the numerical results for thin-walled cylinders. 

Finally, the post-buckling behavior of elastic cylinders was illustrated in an elegant manner, 

using a simple mechanical model, pinpointing the effects of ovalization and pressure (internal 

or external). 

  The bending results of Chapter 5 were extended in Chapter 6, to investigate the nonlinear 

response of transversely isotropic cylinders, with special emphasis on the influence of 

anisotropy level. The response is governed by the interaction of ovalization and bifurcation 

instabilit

expressions are derived. However, as the anisotropy level increases, buckling did no longer 

occur in a limited region, and the above hypothesis is no longer valid. By consequence, in such 

cases, the analytical expressions do not always compare well with numerical results. Finally, 

issues of imperfection sensitivity were examined numerically and the initial post buckling path 

was found unstable, verifying the sensitivity of maximum moment on the presence of initial 

imperfections.  
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  Finally, in Chapter 7 numerical results were obtained for long metal cylinders, which buckle 

in the inelastic range. The present study refers to thin-walled cylinders, which may be used as 

chimneys or water transmission pipelines, and is aimed at determining bifurcation in the plastic 

range as well as simulating the formation of periodic buckling patterns along the cylinder axis, 

and the development of localized buckling deformations (local buckling mechanism). Using the 

 

numerical technique, which implements the comparison solid concept, discretized through the 

‘‘tube-element’’, the buckling moment and the corresponding uniform buckling mode were 

obtained. Moreover, using this numerical formulation the transition of uniform to localized 

wrinkling was demonstrated resulting in the sudden collapse of thin-walled cylinders.  
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APPENDIX  
Initial Post-Buckling Theory of Elastic Structures 

 Chapter 9 Section 9 Equation

  T

In this in

is a quite usual case in structural mechanics, such as the cylinder under axial compression or the 

sp

linear p ent of the general theory to account for nonlinear 

pr

is briefl  

se

buckling

  I

and st

 

he initial post-buckling theory was initially introduced by Koiter [3], [4] and Budiansky [38]. 

itial form, the theory was limited to structures with linear pre-buckling behavior. This 

here under uniform pressure. On the other hand, cylinder bending is characterized by a non-

re-buckling state. An enhancem

ebuckling behavior has been presented in the works of Cohen [39] and Fitch [40]. This theory 

y presented in this Appendix. The concepts of initial post-buckling and imperfection

nsitivity are summarized. It is noted that discussion is restricted to the case of a single 

 mode. 

t is supposed that under the loading q  the elastic structure acquires displacements u , strains 

resses σ . These field variables are required to satisfy the strain-displacement relation: ε  

1 2( ) ( )
2

L L= +ε u u  (1) 

1  and 2L  are linear and quadratic functionals respectively.  

ss-strain relation is given by: 

1

where 

The stre

 

L

( )H=σ ε  (2) 

 is a linear functional. where 

The variational equation of equilibrium is: 

 

H

V B

dV dBδ δ⋅ =

Ex

variation on

⋅∫ ∫σ ε q u  (3) 

pression (3) is a statement of the principle of virtual work and should hold for any admissible 

 displacement functi  δu . Furthermore, the strain variation δε  follows from (1). The 

principle of virtual work guarantees equilibrium of the stress  and loads .  

The occurrence of buckling can be detected considering a perturbation in the pre-buckling 

solution  and : 

 

σ q

0u , 0ε 0σ

0 1

0 1

0 1

cr

cr

cr

λ η
λ η
λ η

= +

= +
= +

u u
ε ε ε
σ σ

u

σ
 (4) 
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where η  is a perturbation parameter. Substitution into the field equations, and keeping terms 

linear with respect to η  results in an eigenvalue problem. Solution of the eigenvalue problem 

provides the buckling l ado  crλ  (lowest eigenvalue) and the corresponding buckling mode. It is 

assumed that there is a single mode asso kling load.  

In order to investigate the behavior of t bifurcation, the following relations 

....λ η η η= + + + +u u u u u

ciated with the buc

he structure beyond 

for the displacement, strain and stress are written: 

 
0 1 2 3

2 3
0 1 2 3

2 3
0 1 2 3

....

....

λ η η η

λ η η η

= + + + +

= + + + +

ε ε ε ε ε

σ σ σ σ σ

 (5) 

Furthermore, the following asymptotic expression relating the load in the post-buckling regime 

with the value of 

2 3

η  with λ  is assumed: 

 21 ....
cr

a bλ η η
λ

= + + +  (6) 

Substituting equations (5) into the principle of virtual work (3), and considering expression (6), 

the values of a  and  can be determined. The variation of b / crλ λ  with respect to η  

immediately after bifurcation is shown by the solid curves in Fig. 108 for three case , 0a s ≠ , 

0, 0b= >  and 0, 0a b= < .  a  

λ

1

ηη
0

Initial post-buckling path

η
m

Path of imperfect
system (η0<0)

Path of imperfect
system (η0>0)

ηmax

Asymmetric
bifurcation

λ

ηη
0

1
Initial post-buckling path

η
m

Path of imperfect
system (η0<0)

Path of imperfect
system (η0>0)

ηmax

Asymmetric

(a) 

bifurcation

λλ

1

η0

Initial
post-buckling
path

Path of imperfect
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to imperfections)
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1
Initial
post-buckling
path

Path of imperfect
system (insensitive
to imperfections)

η
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1

ηη0

Initial
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λ
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bifurcation
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bifurcation

 (c) 

Fig. 108 Load-deflection curves for the post-buckling path (a) 0a ≠ , (b  and (c) ) 0, 0a b= >

0, 0a b= < . 
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Quite often, the case where 0a =  occurs. In such a case, “symmetric” buckling is examined, so 

that equation (6) is rewritten as follows: 

 

 21 b
cr

λ η
λ

= +  (7) 

t-buckling coefficient (sometimes referred to 

as b-coefficien  then the initial post-buckling path is stable (Fig. 108b) whereas the 

ase where  corresponds to unstable initial post-buckling 

  To study the influence of initial imperfections, an initial displacement 

In equation (7), b  is the known Koiter’s initial pos

t). If 0b >

c path (Fig. 108c).  0b <

u  is supposed to 

 

characterize the unloaded, stress-free structure. It is assumed that the initial imperfection is in 

the form of the first buckling mode  

1η=u u   (8) 

sing this imperfection, it is possible to obtain the folloU wing asymptotic expression between 

the load λ , the imperfection amplitudeξ , and the value of η :  

 2 31 ....
cr cr

a bλ λη η η ξ
⎛ ⎞

λ λ
− +

In the case , there exists a maximum on the load–displacement path. Differentiation of 

the above expression provides the maximum load 

+ + =⎜ ⎟
⎝ ⎠

 (9) 

of a ≠ 0

maxλ  as a function of the imperfection 

amplitude ξ : 

 
2

max max1 4
cr cr

aλ λ
ξρ

λ λ
⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
0=  (10) 

where ρ  is a parameter that depends on the nonlinearity of the prebuckling state. For linear 

 state pre-buckling ρ  is equal to unity. When 0α =  the existence of local maximum on the 

load–displacement path depends on the value of b . If 0b <  a maximu ad exists, and it is 

given by the following asymptotic expression 

 

m lo

3/ 2
1/ 2max max3 31 ( )

2cr cr

bλ λ
ρ ξ

λ λ
⎛ ⎞ ⎛ ⎞
− − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
0=  (11) 

  On the other hand, no maximum exists when 0a =  and 0b < . In that case, the response of the 

imperfect structure is monotonically increasing.  

  It is convenient, to refer to ‘‘quadratic structures’’ and ‘‘cubic structures’’ as those governed 

by the cases   and 0a ≠ 0a = , 0b < , respectively. It is also noted that for ‘‘quadratic 

structures’’ 

 1/ 2(1 / ) 0{ }λ λ ξ− =  (12s cr ) 

whereas in imperfection ‘‘cubic structures’’  
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 2 / 3(1 / ) 0{ }s crλ λ ξ− =  (13) 
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