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Abstract 

 

The research in the present dissertation is aimed at developing advanced 

numerical tools for the simulation of shell buckling and post-buckling behavior, 

in the inelastic range. In particular, this work describes the development and the 

implementation of a J2 - non-associative plasticity model, which takes into 

account the "corner-like" effects at the loading point on the yield surface, and is 

suitable for shell buckling calculations. 

It has been widely recognized that although J2 - flow theory can accurately 

describe the general material behavior of metal components in the inelastic 

range, bifurcation predictions based on the J2 - flow theory may not be reliable 

in cases where buckling occurs well into the inelastic range. On the other hand, 

J2 - deformation moduli may provide a much more reliable prediction of 
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buckling load on the primary equilibrium path. To account for this discrepancy, 

several previous works have used the flow theory to trace the load-displacement 

equilibrium path, while employing the J2 - deformation theory moduli (instead 

of the J2 - flow theory moduli) to detect bifurcation on the primary equilibrium 

path.  

The superiority of J2 – deformation theory is attributed to the "softer" 

moduli of the deformation theory, simulating the development of a "vertex" or 

"corner" (i.e. a high-curvature region on the yield surface at the point of loading 

on the yield surface), reported in experimental observations in aluminum alloy 

and steel materials.  

The vertex forms on the yield surface at the loading point and this can be 

very important in cases, where strong deviations from proportional loading 

occurs, e.g. in the case of shell structural instability in the inelastic range.  

The main task of the present work consists of the development and the 

numerical implementation of a special-purpose constitutive model, suitable for 

large-scale structural stability computations within a finite element framework. 

The model employs von Mises yield surface (J2 - plasticity) and the rate form of 

J2 - deformation theory, it accounts for large strains, and leads to a non-

associated flow rule. Special emphasis is paid on the continuity of plastic flow, 

to overcome numerical problems of convergence. The numerical implementation 

is conducted through both the backward-Euler and a forward-Euler substitution 

scheme, where stress and strain tensors are described in curvilinear coordinates, 
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accounting for the extra constraint of zero normal stress through the shell 

thickness.  

The model is incorporated in a special-purpose nonlinear cylindrical shell 

finite element methodology, where the shell is described through a Lagrangian 

approach with convected coordinates and discretization is considered through a 

three-node “tube element”. The above technique is suitable for identifying 

bifurcation, investigating imperfection sensitivity and determining post-

bifurcation behavior of the steel cylinder under compressive loads (uniform 

compression or bending).  

The numerical results are compared with available experimental data and 

analytical predictions and is demonstrated that the present methodology is 

capable of describing accurately and efficiently buckling and post-buckling 

behavior of rather thick-walled cylindrical shells in the inelastic range. 

Furthermore, wrinkling and post-wrinkling behavior of thick-walled high-

strength seamless tubular (circular hollow section) members are presented in 

terms of both the ultimate load and the deformation capacity of typical cross-

sections, in order to determine their ability to sustain load well above the first 

yield level. The results are aimed at evaluating the applicability of EN 1993-1-1 

provisions for cross-sectional classification in the case of high-strength steel CHS 

seamless tubular members an issue of major importance for the design of tubular 

structures. The numerical results are compared with available experimental 

data, performed elsewhere.  
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The contributions of the present work can be summarized as follows:  

 A J2 - non-associative plasticity model is developed, capable of 

describing the effects of yield surface vertex on the structural 

response and buckling of shells in an efficient manner.  

 Robust integration schemes are presented, accounting for zero stress 

normal to shell surface and the “consistent moduli” are reported.  

 A large-strain J2 - non-associative plasticity model is also developed 

for efficient large-strain nonlinear analysis of cylindrical shells, and is 

integrated using the polar decomposition of deformation gradient and 

appropriate rotation of stress and rate of deformation tensors.  

 The constitutive model is implemented in a user material subroutine 

and incorporated in an in-house finite element technique for shell 

buckling analysis.  

 The present numerical results are compared successfully with 

available experimental data and analytical predictions.  

 The comparison with test data demonstrates the superiority of this 

non-associative model with respect to the classical associative J2 - 

plasticity model in predicting shell buckling in the inelastic range.  
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 Buckling calculations on thick-walled seamless tubulars made of high-

strength subjected to axial compression and bending are performed, 

in terms of both the ultimate load and the deformation capacity, and 

their ability to sustain load well beyond the elastic range is 

determined. 

 Based on the numerical results, considering imperfections and 

residual stresses obtained from real measurements on high-strength 

steel seamless tubes, those tubes exhibit significantly higher ultimate 

load and deformation capacity with respect to the predictions of 

existing design rules, indicating the conservativeness of current design 

practice for the case of high-strength steel tubulars.  
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Περίληψη 

 

Αντικείμενο της διδακτορικής διατριβής είναι η προσομοίωση της 

συμπεριφοράς μεταλλικών κελυφών σε λυγισμό, με στόχο να χαράσσεται με 

ακρίβεια ο δρόμος ισορροπίας της μεταλυγισμικής συμπεριφοράς και να 

περιγράφεται η ευαισθησία σε αρχικές ατέλειες μέσω της ανάπτυξης ενός ειδικού 

μοντέλου μη-συνηρτημένης πλαστικότητας. Ο κύριος στόχος της εργασίας είναι η 

ανάπτυξη ενός μη-συνηρτημένου μοντέλου πλαστικότητας (J2 - non-associative 

plasticity model), το οποίο λαμβάνει υπόψη την δημιουργία μιας εικονικής γωνίας 

(“corner-like” effects) στην επιφάνεια διαρροής στο σημείο της φόρτισης και είναι 

κατάλληλο για την εξέταση του λυγισμού και τη μεταλυγισμική συμπεριφορά των 

κελυφών. 

Η αριθμητική επίλυση λυγισμού και μεταλυγισμικής συμπεριφοράς 

ανελαστικών κελυφών αποτελεί το βασικό πρόβλημα της Διατριβής. Στα πλαίσια, 

επομένως αυτής της μελέτης διεξήχθη μια εκτενής βιβλιογραφική ανασκόπηση 

των εξεταζόμενων προβλημάτων όπου γίνεται αξιολόγηση των διαθέσιμων 

πειραματικών δεδομένων και αναλυτικών λύσεων. Θα πρέπει να σημειωθεί ότι οι 

αναλύσεις πεπερασμένων στοιχείων που χρησιμοποιούν συνηρτημένο μοντέλο 
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πλαστικότητας (J2 - associative plasticity model) παρουσιάζουν μία σημαντική 

απόκλιση από τα πειράματα (δείχνουν γενικώς μεγαλύτερη αντοχή από την 

πειραματική), λόγω κυρίως της αδυναμίας των συνήθων καταστατικών εξισώσεων 

ελαστοπλαστικής συμπεριφοράς να περιγράψουν την εντατική κατάσταση στο 

μεταλλικό υλικό την στιγμή του λυγισμού. Αντιθέτως, τα αντίστοιχα μοντέλα που 

εμπίπτουν στην κατηγορία των μη-συνηρτημένων μοντέλων πλαστικότητας (non-

associative plasticity models), τα οποία περιγράφουν προσεγγιστικά την 

δημιουργία ενός κώνου στην επιφάνεια διαρροής, στο σημείο της φόρτισης, 

περιγράφουν με καλύτερη ακρίβεια την απότομη αλλαγή στο πεδίο των τάσεων 

την στιγμή του λυγισμού. Τα μοντέλα όμως που προκύπτουν είναι αρκετά 

περίπλοκα και δεν έχουν δοκιμαστεί σε μεγάλης κλίμακας υπολογισμούς 

πεπερασμένων στοιχείων. 

Στόχος της εργασίας είναι να αναπτυχθεί ένα νέο μοντέλο το οποίο να 

ενσωματώνει τα πλεονεκτήματα των μοντέλων που έχουν προταθεί ως τώρα και 

να είναι εύχρηστο για αριθμητικούς υπολογισμούς πεπερασμένων στοιχείων 

μεγάλης κλίμακας, καθώς και να επαληθεύει τα πειραματικά αποτελέσματα που 

αναφέρονται στην βιβλιογραφία. 

Για την δημιουργία του νέου μη-συνηρτημένου μοντέλου πλαστικότητας 

χρησιμοποιήθηκε η αυξητική μορφή του μοντέλου πλαστικότητας συνολικών 

τάσεων παραμορφώσεων (J2 – deformation plasticity model). Ο ρυθμός αύξησης 

της πλαστικής παραμόρφωσης αποτελείται από δύο συνιστώσες, μία κάθετη και 

μία εφαπτομενική στην επιφάνεια διαρροής, σε αντίθεση με τα συνηρτημένα 

μοντέλα που έχουν μία συνιστώσα κάθετη στην επιφάνεια διαρροής. Αυτό έχει σαν 

αποτέλεσμα, οι ελαστοπλαστικές σταθερές που προκύπτουν να είναι λιγότερο 

«δύσκαπτες», και να περιγράφουν με ακρίβεια την απότομη αλλαγή στο πεδίο των 

τάσεων την στιγμή του λυγισμού. Ιδιαίτερη έμφαση έχει δοθεί στην συνέχεια του 

ρυθμού αύξησης της πλαστικής παραμόρφωσης. Μια τροποποίηση του ρυθμού 

αύξησης της πλαστικής παραμόρφωσης έχει προταθεί, ώστε να ξεπεραστούν 

προβλήματα αριθμητικής σύγκλισης. Το νέο μοντέλο πλαστικότητας διατηρεί τα 
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βασικά χαρακτηριστικά της κλασσικής θεωρίας, αλλά επεκτείνει την βασική 

θεωρία ώστε να μπορεί να προσομοιώνει με ακρίβεια το λυγισμό των κελυφών, 

χωρίς επιπλέον παραμέτρους που απαιτούν τα μοντέλα corner/pseudo-corner 

theory of plasticity. Το μοντέλο θεωρεί μηδενική τάση κάθετη στην επιφάνεια του 

κελύφους, και ολοκληρώνεται με μία εύρωστη μέθοδο backward-Euler καθώς 

επίσης και με την μέθοδο forward-Euler. Το μοντέλο επεκτείνεται και για μεγάλες 

παραμορφώσεις, όπου ολοκληρώνεται μέσω μιας εύρωστης μεθοδολογίας που 

βασίζεται στην πολική ανάλυση του τανυστή κλίσης της παραμόρφωσης. 

Για την προσομοίωση της ελαστοπλαστικής συμπεριφοράς του κελύφους και 

των αρχικών ατελειών, έχει χρησιμοποιηθεί ένας πηγαίος κώδικας πεπερασμένων 

στοιχείων που αναπτύχθηκε από την ερευνητική ομάδα του Πανεπιστημίου 

Θεσσαλίας και έχει δώσει εξαιρετικά αποτελέσματα για κυλινδρικά κελύφη. Το 

καταστατικό μοντέλο ελαστοπλαστικής συμπεριφοράς έχει ενσωματωθεί στο 

πρόγραμμα πεπερασμένων στοιχείων, όπου χρησιμοποιείται μία μεθοδολογία μη 

γραμμικής ανάλυσης κατασκευών, η οποία βασίζεται σε μία Λαγκρανζιανή 

περιγραφή του παραμορφώσιμου στερεού με «ενσωματωμένες» συντεταγμένες. Ο 

κώδικας έχει την δυνατότητα ελαστοπλαστικής ανάλυσης με μεγάλες 

παραμορφώσεις/μετατοπίσεις και μεταλυγισμικής ανάλυσης του κελύφους και 

χρησιμοποιεί ένα εξειδικευμένο τρικομβικό “στοιχείο σωλήνα” (“tube element”)για 

την ανάλυση των κυλινδρικών κελυφών το οποίο συνδυάζει την διαμήκη 

παραμόρφωση τύπου δοκού με την παραμόρφωση της διατομής του σωλήνα. Ο 

πηγαίος κώδικας έχει την δυνατότητα να λαμβάνει υπόψη οιαδήποτε μορφή 

αρχικής ατέλειας και οιαδήποτε κατανομή παραμενουσών τάσεων, επιτρέποντας 

την συστηματική παραμετρική διερεύνηση της οριακής αντοχής των αγωγών. 

Στα πλαίσια της παρούσας έρευνας μελετήθηκε ο ελαστοπλαστικός λυγισμός 

κυλινδρικών κελυφών, με λόγο διαμέτρου-προς-πάχος 
sD t  μεταξύ 20 και 60, σε 

συνθήκες αξονικής και καμπτικής φόρτισης, συμπεριλαμβανομένης της 

μεταλυγισμικής συμπεριφοράς. Παράλληλα με την αριθμητική προσομοίωση 

έχουν διεξαχθεί συγκρίσεις με αναλυτικά και πειραματικά αποτελέσματα όπου 



ΠΕΡΙΛΗΨΗ 

xviii 

αυτό ήταν εφικτό, που αποσκοπούν στην επαλήθευση των αριθμητικών 

αποτελεσμάτων, την βαθμονόμηση του υπολογιστικού μοντέλου και την 

εξακρίβωση της ακρίβειάς και αποτελεσματικότητας του. Τα αποτελέσματα είναι 

σε συμφωνία με αναλυτικές λύσεις και πειραματικά δεδομένα, τόσο στο κρίσιμο 

φορτίο όσο και στην μεταλυγισμική συμπεριφορά και την ευαισθησία σε αρχικές 

ατέλειες. 

Στο τελευταίο μέρος της διατριβής παρουσιάζεται μια σημαντική πρακτική 

εφαρμογή της ανωτέρω μεθοδολογίας, που αφορά τον λυγισμό σωλήνων από 

χάλυβα υψηλής αντοχής. Η εφαρμογή αυτή είναι σημαντική για τον δομικό 

σχεδιασμό σωληνωτών κατασκευών, ιδιαίτερα για την αξιολόγηση των ισχυόντων 

σχεδιαστικών διατάξεων του αντίστοιχου Ευρωπαϊκού κανονισμού. 

Η πρωτοτυπία της διδακτορικής διατριβής συνοψίζεται στα ακόλουθα σημεία: 

 Στην ανάπτυξη του μη-συνηρτημμένου μοντέλου πλαστικότητας για 

μικρές και μεγάλες παραμορφώσεις, το οποίο προσομοιώνει εμμέσως 

την δημιουργία ακμής πάνω στην επιφάνεια διαρροής, και την επιρροή 

της ακμής στην δομική συμπεριφορά και ευστάθεια μεταλλικών 

κελυφών. 

 Στην εύρωστη ολοκλήρωση του ανωτέρω μοντέλου, συμβατής με την 

απαίτηση μηδενικής τάσης κάθετα προς την επιφάνεια του κελύφους 

για μικρές και μεγάλες παραμορφώσεις. 

 Στην αριθμητική εφαρμογή του μοντέλου με κατάλληλη υπορουτίνα 

και στην ενσωμάτωσή της σε ένα περιβάλλον πεπερασμένων στοιχείων 

για τη μη-γραμμική ανάλυση κυλινδρικών κελυφών. 

 Στην πιστοποίηση της υπεροχής του προτεινόμενου μη-συνηρτημμένου 

μοντέλου, σε σχέση με το κλασσικό μοντέλο, με βάση συγκρίσεις των 

αποτελεσμάτων με αναλυτικές λύσεις και πειραματικά αποτελέσματα. 

 Στην εφαρμογή της ανωτέρω μεθοδολογίας για τον υπολογισμό της 

αντοχής και κατηγοριοποίησης της διατομής μεταλλικών σωλήνων από 

χάλυβα υψηλής αντοχής. 
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CChhaapptteerr  11  

IInnttrroodduuccttiioonn  

Relatively thick cylindrical metal shells, with diameter-to-thickness ratio 
sD t

less than 50, are widely used in pipeline and piping applications for hydrocarbon 

transportation and distribution. Those elongated metal cylinders, often referred 

to as “tubes” or “pipes”, can be subjected to severe structural loading, which 

induces significant compressive strains in the cylinder wall. As an example, 

high-pressure/high-temperature (HP/HT) buried steel pipelines, restrained by 

the surrounding ground, may experience severe axial compression (Yun and 

Kyriakides, 1990). In offshore pipeline operations, significant bending may occur 

in a pipeline during the installation process at the stinger (Corona and 

Kyriakides, 1988; Karamanos and Tassoulas, 1991). Furthermore, the 

differential motion of the surrounding soil in a buried steel pipeline caused by 

fault movement, landslides, ground subsidence, permafrost melting, or soil 

liquefaction, can also result in severe compression of the line (Vazouras et al. 

2010, 2012, 2015). 

Excessive compressive action on the pipe wall may result in buckling failure 

in the form of wrinkles, sometimes referred to as “local buckling”. This is a 
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shell-type buckling, and is quite different from the one that thin-walled shells 

exhibit. More specifically, thin-walled cylindrical shells under axial compression 

buckle in the elastic range, and their behavior is characterized by sudden 

collapse and imperfection sensitivity. Figure 1 - 1(a) shows the buckled shape of 

thin-walled cylindrical vessel ( 609sD t  ) subjected to axial compression 

(Karcher et al. 2009), whereas Figure 1 - 1(b) and Figure 1 - 1(c) show the 

buckled shape of two relatively thin-walled cylinders ( 100sD t ) subjected to 

bending (Van Foeken and Gresnigt, 1994). In both cases, failure of the cylinders 

occurs suddenly and is catastrophic. On the contrary, thick-walled cylinders 

buckle in the plastic range and failure occurs more gradually, after a sequence of 

events.  

 

(a) 

(b) 

(c) 

Figure 1 - 1: Thin-walled cylindrical shell buckling; (a) axial compression of a thin-

walled tank (D/t=609); (b) and (c) buckling of thin-walled cylinders under bending. 
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1.1 Experimental and numerical work on buckling of thick-wall cylindrical 

shells 

Early experimental work has been reported on relatively-thick aluminum 

cylinders by Lee (1962) and Batterman (1965), supported by analytical 

bifurcation calculations based on nonlinear elastic-plastic shell analysis. Lee 

(1962) tested ten tubes made of Al-3003-0 with yield stress equal to 6 ksi (41.4 

MPa) and significant hardening. The tubes had diameter-to-thickness ratios 

 sD t  of 20, 40, 59.7 and 93 and length-to-diameter ratios  L D  between 

about 2 and 5. The cylinders were clamped at the ends and, as a result, edge 

bulges developed, dominating the response, and no ‘‘bifurcation’’ stress or 

wrinkle wavelength was reported although axial waves were observed in the test 

section. Batterman (1965) tested 16 shell specimens from Al-2024-T4, with yield 

stress equal to 56.5 ksi (390 MPa) and 
sD t values between about 20 and 180. 

The shells had length-to-diameter L D  ratios between 1.5 and 0.18. The 

specimens were compressed between lubricated rigid platens to alleviate end 

(boundary) effects and axisymmetric modes of failure have been reported for 

tubes with the lower 
sD t  values. In both series of experiments, the buckling 

resistance was reported in terms of the maximum (limit) stress and it was 

indicated that the buckling resistance of relatively-thick metal cylindrical shells 

is less sensitive to initial imperfections than of thin-walled elastic shells. 

Nevertheless, the relatively short length of most of the specimens does not allow 
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for a direct comparison with bifurcation analysis predictions. 

Bending tests of cylindrical shells were reported by Bouwkamp and Stephen 

(1974). Eight tests were carried out on seven specimens. Test specimens were 

longitudinal-seam tubes manufactured from X60 steel with a yield stress of 60 

ksi (414 MPa), with the exception of one specimen. The nominal diameter of the 

pipes was 48 in. (1,200 mm) and the nominal thickness was 0.462 in. (11.7 mm). 

Bending was accompanied by the application of axial loads and internal 

pressure. 

 

  

(a) (b) 

Figure 1 - 2: Thick-walled cylindrical shell buckling under axial compression 

(D/t=26.5); (a) first wrinkling; (b) localization of buckled shape. 
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Tests on small-scale aluminum-alloy and stainless steel cylinders with 
sD t  

ratios ranging from approximately 30 to 80 were reported by Reddy (1979), 

motivated by the need to provide design guidelines for submarine pipeline 

installation. Ten steel and nine aluminum specimens were tested. The nominal 

diameter of the specimens was 1 in. (25.4 mm). The tests were carried out 

under pure bending conditions in the absence of sheer through a four-point 

loading set-up, and the results were reported in terms of extreme fiber 

compressive strain. It was also reported that wrinkles steadily grew from 

initial imperfections into sine-wave patterns on the compressive side of the 

specimens before collapse took place.  

The imperfection sensitivity of axially compressed cylindrical shells has been 

investigated analytically by Gellin (1979), extending Koiter's methodology for 

cylindrical shells in the inelastic range considering a uniform axisymmetric 

initial imperfection (Koiter, 1963). Using nonlinear shell kinematics, deformation 

theory of plasticity, and axisymmetric imperfections, Gellin calculated the stage 

where a secondary bifurcation occurs, assuming that this is representative of 

buckling strength of the compressed cylinder.  

A thorough investigation of pure bending buckling of inelastic tubes and the 

various instabilities that can be encountered was reported by Kyriakides and Ju 

(1992) in a series of experiments on Al-6061-T6 tubes with diameter-to-

thickness values  sD t  in the range of approximately 20–60. It was shown that 
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sD t  governs which of the possible instabilities becomes dominant. For the 

particular aluminum alloy used, axial wrinkling was found to develop when the 

sD t  exceeded a value of about 25. In a companion paper, Ju and Kyriakides 

(1992) developed a sequence of modeling features for calculating the inelastic 

response of tubes under bending, in terms of the onset of tube wall wrinkling 

and its evolution until failure. The basic formulation is an extension of the 

ovalization model presented in Shaw and Kyriakides (1985) and Corona and 

Kyriakides (1988), and the possibility of buckling into a wrinkling mode was 

checked by a bifurcation analysis that is based on the instantaneous moduli of 

the deformation theory of plasticity. Secondary bifurcation, localization of 

buckled patterns and imperfection sensitivity were also examined. The 

numerical results in terms of wrinkling curvatures were in good agreement with 

the corresponding experimental values. 

Zimmerman, et al., (1995) performed five tests with and without internal 

pressure on Grade 483 steel pipeline specimens with 
sD t  ratios of 87 and 41, 

and a total length of 32.8 ft (10 m). The pipe material was steel. The primary 

aim of this work was to provide experimental data for calibration of finite 

element models. The specimens were loaded in uniform bending moment until 

failure and subsequently, the tests were simulated using finite element models; 

good comparison was reported between tests and simulations in terms of the 

moment-curvature response. 
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A more recent combined experimental and analytical investigation of 

buckling behavior of thick cylindrical shells under pure axial compression has 

been reported by Bardi and Kyriakides (2006) and Bardi et al. (2006), which 

followed a methodology similar to the works of Kyriakides and Ju (1992), and 

Ju and Kyriakides (1992) for bent cylinders, described above. 

In the paper of Tutuncu and O’Rourke (2006), the compression response of 

300 mm internal diameter steel cylinders with 
sD t  of 48 and yield stress equal 

to 334 MPa is assessed by both experimental and analytical procedures. The 

investigation referred to test specimens with small-scale global geometric 

imperfections, typical of irregularities that occur during fabrication and 

handling, and the large-scale local geometric imperfection generated by locally 

indenting a test specimen to a depth exceeding 180% of its thickness. Analytical 

procedures were also developed to represent these imperfections and their effects 

on the compressive response and ultimate load strength. 

Finally, eight very-high-strength (VHS) steel stub columns were tested under 

axial compression by Jiao and Zhao (2003) with 
sD t  ratios between 24 and 46, 

aiming to determine the yield slenderness limit, considering geometrical 

imperfections and residual stresses. Two non-heat-treated tubes were also tested 

to show the effect of manufacturing process on geometrical imperfections and 

residual stresses. 
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1.2 Material modeling in shell buckling simulations 

In simulating metal shell buckling in the inelastic range, the choice of 

appropriate material models constitutes a key issue. It has been recognized that 

J2 - flow theory can accurately describe the general material behavior of metals 

in the inelastic range and it is widely used for the nonlinear elastic-plastic finite 

element stress analysis of shell structures (Dvorkin et al., 1995, Argyris et al., 

2002, Paraskevopoulos and Talaslidis, 2006). Nevertheless, buckling predictions 

based on the J2 - flow theory may not be reliable in cases where bifurcation 

from the prebuckling state occurs well into the inelastic range. This is 

attributed to the vertex (corner) that develops on the yield surface at the point 

of loading. The formation of such vertex on the yield surface at the loading 

point has been detected experimentally in aluminum and steel materials 

(Kuroda and Tvergaard, 2001), as shown in (Figure 1 - 3) and can be very 

important in cases, where abrupt deviations from proportional loading occur, 

such as in the case of shear band formation and localization of plastic flow, as 

well as in the case of structural instability of shells in the inelastic range, where 

the shell wall exhibits a transition from a smooth pre-buckling configuration to 

a wavy-pattern associated with multi-axial state of stress. 
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Figure 1 - 3: A typical example of the use of an abrupt path change for determining the 

subsequent yield surface (Kuroda and Tvergaard, 2001). 

To obtain more reliable buckling predictions, in axially-compressed 

cylindrical metal shells, Tvergaard (1983) and Mikkelsen (1995) conducted 

stability calculations through a special enhancement of J2 (von Mises) plasticity 

theory, referred to as the J2 - corner theory, initially proposed by Christoffersen 

and Hutchinson (1979). This theory provides a phenomenological framework for 

the observations regarding the development of a corner (vertex) on the yield 

surface at the loading point. Using J2 - corner theory, the corresponding 

instantaneous moduli are less stiff than those predicted by the J2 - flow theory. 
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Therefore, the response is significantly different for the case of abrupt change of 

direction in the stress space (e.g. when buckling occurs), while for proportional 

loading the two theories coincide. Nevertheless, the corner theory, despite its 

good results for the prediction of shear band formation (Needleman and 

Tvergaard, 1984) and its rigorousness in describing the corner of the yield 

surface, may not be suitable for large-scale structural computations that involve 

complex stress paths and loading/unloading response; a finite element procedure 

that uses corner theory would require monitoring of all the previously formed 

corners and their current evolution, and this may not be computationally 

efficient. Furthermore, calibration of this theory from simple mechanical testing 

of material coupons is also an open issue. 

As an alternative to the above corner theory, several “pseudo-corner” 

theories have been proposed. Hughes and Shakib (1986) presented a modified J2 

- flow theory with a hardening modulus that depends on the angle between the 

deviatoric strain increment and the outward vector normal to the yield surface. 

In this simplistic manner, the model attempts to account for some essential 

characteristic of the corner theory, such as reduced material stiffness and 

increased plastic flow, while keeping the basic features of the classical J2 - flow 

theory. Nevertheless, this model is rather simplified and may not be a reliable 

alternative to corner theory for shell buckling calculations in the plastic range. 

In a subsequent paper, Simo (1987) proposed a J2 - non-associative flow 
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“pseudo-corner” model, which imitates some corner theory characteristics 

through the adoption of a non-associative flow rule without introducing the 

complexity associated with keeping track of the formation and evolution of yield 

surface corners. Simo also presented an efficient backward-Euler scheme for the 

numerical integration of the pseudo-corner model within a non-linear finite 

element framework. However, Simo’s pseudo-corner model requires the 

definition of several parameters related to the yield surface “vertex”. In addition 

it is not clear how the proposed integration scheme can be implemented in shell 

analysis problems. This model has not been used in large-scale inelastic shell 

buckling calculations. 

So far, most of the attempts to predict bifurcation buckling in the inelastic 

range use the flow theory for tracing the prebuckling solution and employ the 

deformation theory moduli to detect bifurcation on the prebuckling path (e.g. 

Ju and Kyriakides, 1992; Bardi et al. 2006). However, such an approach does 

not describe accurately the entire structural response, and most importantly, 

the correct postbuckling performance. In a more recent publication, Peek (2000) 

developed a J2 - plasticity model, which uses a non-associated flow rule similar 

to the rate form of the J2 - deformation theory referred to as “incrementally 

continuous” deformation theory with unloading and the proposed constitutive 

model can be implemented with minimal changes to an algorithm based on 

associative flow theory. This model constitutes an important contribution 
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towards elastic-plastic buckling analysis. However the main drawback of this 

model is that unloading is no longer elastic, but it contains an amount of 

inelastic deformation. Furthermore, its implementation to shell buckling 

problems, where zero normal stress should be zero through shell thickness has 

not been described. 

The above discussion and presentation of the shortcomings of the above 

models motivate the development of a new model for accurate and efficient 

buckling and post-buckling analysis of shell metal structures. In particular, the 

main objective of the present dissertation is the development and the numerical 

implementation of an efficient special-purpose constitutive model, suitable for 

accurate and efficient large-scale metal shell buckling computations within a 

finite element environment. The material model is based on the von Mises yield 

surface (J2 plasticity) with isotropic hardening and employs the rate form of J2 - 

deformation theory, leading to a non-associated flow rule. The numerical 

implementation follows a backward-Euler or a forward-Euler substitution 

scheme, developed for elastic-plastic shell analysis, accounting for zero normal 

stress through the shell thickness. The model maintains the basic features of the 

classical J2 - flow plasticity implementation, while introducing the key 

enhancements for accurate and efficient shell buckling predictions. Furthermore 

an enhanced version of the model is developed, which allows the simple and 

efficient extension of the model for large strains through an additive 
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decomposition of the rate-of-deformation tensor. 

1.3 Contents and scope of present dissertation 

The main purpose of the present research is the development, implementation 

and application of a special-purpose non-associative plasticity model that can be 

used for efficient inelastic shell buckling and post-buckling calculations. In 

addition, in the final part of the dissertation, the non-associative model is 

employed for investigating the local buckling resistance of thick-walled high-

strength steel cylinders, towards their evaluating classification according to 

existing design provisions. 

The proposed constitutive model and its numerical integration are presented 

in the framework of small-strain plasticity in Chapter 2, whereas Chapter 3 

describes the direct enhancement of the constitutive model for large strain 

analysis. The non-associative constitutive model is incorporated in a special-

purpose finite element methodology, outlined in Chapter 4; this finite element 

methodology has been introduced elsewhere for the analysis of nonlinear 

cylindrical shells, and has been shown very efficient for analyzing the structural 

behavior of steel cylinders (Karamanos and Tassoulas 1996). In Chapter 5, the 

issue of plastic flow continuity is addressed in terms of the plastic production 

ratio. 

Using the above mentioned numerical technique shell buckling problems, 



CHAPTER 1 – INTRODUCTION 

 

47 

involving nonlinear equilibrium paths; bifurcation and limit points are analyzed, 

whereas the issues of post-buckling response and imperfection sensitivity are 

considered as well. In particular, the problem of inelastic elongated cylinders 

under uniform axial compression and the bending response of inelastic cylinders 

are examined in Chapter 6. The problems examined in the course of this study 

may considered as benchmarks for the capabilities of the proposed special-

purpose model and its numerical implementation, in terms of its accuracy and 

computational efficiency. The numerical results are compared with existing 

analytical results, as well as with available experimental data.  

In Chapter 7, wrinkling and post-wrinkling behavior of thick-walled CHS 

seamless tubular members, made of high-strength steel (with yield stress above 

590 MPa, up to 735 MPa), subjected to both axial and bending loading are 

investigated, in order to determine their ability to sustain axial load or bending 

moment above the first yield level. Furthermore, the deformation capacity of 

those structural members in the inelastic range until the occurrence of local 

buckling is also examined. The results are compared with available test data, 

and are employed for evaluating the EN 1993 classification provisions. Those 

provisions have been proposed for tubes made of steel grade equal or less than 

460 MPa and the present investigation examines their applicability in the design 

of high-strength steel tubes.  
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Finally, in Chapter 8, some important conclusions from this dissertation are 

summarized. 
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CChhaapptteerr  22  

CCoonnssttiittuuttiivvee  MMooddeell  

Materials models are presented for the description of elastic-plastic material 

behavior assuming small and large deformations. In small strain plasticity the 

most commonly employed constitutive laws are the “J2 - flow theory” and “J2 - 

deformation theory” relations. Deformation theory was proposed by Hencky 

(1924), [see also Lubliner (1990), pp. 123, 330], is clearly inadequate for 

characterizing the most general path-dependent features of plastic behavior; 

however, if the loading history is “proportional”, as in classical bifurcation 

analyses, is simply the integrated result of the corresponding J2 - flow theory. 

The classical associative J2 - flow theory is presented in Appendix I, followed by 

its numerical integration and the development of the consistent elastic rigidity 

matrix. In this chapter, a description of the non-associative J2 - incremental 

model for small-strain analysis that employs the rate form of J2 - deformation 

theory for plastic loading is presented, followed by its numerical integration and 

the development of the consistent elastic rigidity matrix. 

The purpose of the work described in this chapter, is the development of an 

enhanced J2 - incremental theory of plasticity, capable of describing buckling 

and post-buckling response in the plastic range. 
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2.1 Model description 

The equations describing the behavior of an elastic-plastic isotropic material 

are well known and have been presented in many sources. In the framework of 

incremental plasticity, the rate of stress σ  is related to the elastic strain rate e
ε  

as follows: 

 e p  σ Dε D ε ε  (2.1)

where D  is the fourth order elastic stiffness tensor, ε  is the rate of total strain 

and p
ε  is the plastic strain rate. The elastic rigidity D  can be expressed as 

follows: 

2
2 3

3
G K G

 
   

 
D I J  (2.2)

where K  is the bulk modulus, G  is the shear modulus, I  is the symmetric 

fourth-order identity tensor and J  is the volumetric fourth-order identity 

tensor. Tensor D  can also be written in the following form: 

2 3G K D P J  (2.3)

where the fourth-order tensor P  is defined as 

 P I J  (2.4) 

In the present model, the flow rule adopts the rate form of the J2 - 

deformation theory: 

3 1 1 3 1 1

2 2

p

s T s

q

E E q E E

   
      

   
ε s s  (2.5)

where s  is the deviatoric stress tensor, q  is the von Mises equivalent stress, 
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defined as follows 

3
3

2
2q J  s s  (2.6) 

so that 

3

2
q

q
 s s  (2.7)

and E , sE , TE  are the Young’s modulus, the secant modulus and the tangent 

modulus respectively. Yielding is defined by the von Mises yield function with 

isotropic hardening 

   21 1
0

2 3
q qF , k    σ s s  (2.8)

where  qk k   is the material yield stress in uniaxial tension, which defines 

the size of the yield surface, 
q  is the equivalent plastic strain, defined as 

follows 

2
 

3
 ε n

p

q  (2.9) 

and 
s

n
s

 is the unit outward normal tensor to the yield surface and s  is the 

magnitude of s    s s s . Function  qk   can be nonlinear, and is calibrated 

from a uniaxial tension test. 

The plastic strain rate equation (2.5) can be rewritten in the following, more 

illustrative vector form 

3 3 1 1

2 2

qp t

sq E E

  
   

 
ε s s  (2.10)
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where  

 t   s s n s n  (2.11) 

The deviatoric stress tensor t
s  is the component of s  tangent to the yield 

surface shown in Figure 2 - 1. The flow rule in equation (2.10) implies that the 

plastic strain increment is composed by two components, one normal to the 

yield surface and one tangent to the yield surface. This makes the elastic-plastic 

instantaneous moduli of the J2 - deformation less stiff than the corresponding 

moduli of the J2 - flow theory. More specifically, the instantaneous rigidity 

tensor (tangent moduli) for this model can be written as follows 

  2

2 3
2 3

3
ep s s s TG K G G G

q

 
      

 
D I J s s  (2.12) 

where 

1

1 3sG

G h





 (2.13) 

1

1 3TG

G H





 (2.14) 

1

1 1

s

h

E E





 (2.15) 

and H  is the hardening modulus, equal to 
qd k d  , and also is defined as 

1

1 1

T

H

E E





 (2.16) 
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Figure 2 - 1: Schematic representation of stress and strain tensor increments in the 

deviatoric plane, with respect to von Mises surface. 

A curvilinear system 1 2 3 , ,    is considered to describe stress and 

deformation within the shell, where coordinate lines 1  and 2  are directed in 

the hoop and in the axial direction of the cylinder, respectively, and for a 

constant value of 3 , they define a shell surface (lamina), whereas the 

coordinate line 3  is initially directed through the shell thickness. The covariant 

and contravariant base vectors of this coordinate system are denoted as 
ig  and 

j
g  respectively, as shown in Figure 2 - 2. Therefore, the stress tensor can be 

written in terms of the covariant tensor base as 

 ij

i j σ g g  (2.17) 

and the components of fourth-order rigidity tensors D  and epD  with respect to 

the covariant basis can be written  
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2

3

ijkl jl ik il jk ij klD G g g g g K G g g
 

    
 

 (2.18) 

and 

   2

2 3

3

ijkl jl ik il jk ij kl ij kl

ep s s s TD G g g g g K G g g G G s s
q

 
      

 
 (2.19) 

Finally, in the present formulation, following shell theory, it is required that 

the traction component normal to any shell lamina is imposed to be zero at any 

stage of deformation. Considering that the traction on the lamina is 3

3

1
σ g

g
, 

where 3
g  is the magnitude of 3

g , i.e. the contravariant base vector normal to 

the 1 2 ,  -surface (as shown in Figure 2 - 2), and that traction component 

normal to the lamina is 
3 3

2
3

1
( )σ g g

g
, which is equal to 33

2
3

1


g
, one obtains 

the following condition for zero traction component nornal to any shell lamina. 

33 0   (2.20) 

 

Figure 2 - 2: Curvilinear coordinate system and base vectors for shell description. 
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2.2 Numerical Integration of the Constitutive Model 

The above material model is integrated numerically towards implementation 

within a nonlinear finite element analysis procedure. The problem can be 

started as follows. Consider that at a material point, the stress 
nσ , strain 

nε and 

the equivalent plastic strain 
q n
  are given at time 

nt , as well as the strain 

1n n  ε ε ε  at time 
1nt 
. The calculation of 

1nσ  and 
1q n

  requires integration 

of the above constitutive equations from 
nt  to 

1nt 
. An elastic predictor – plastic 

corrector scheme (Simo &Taylor, 1986) is adopted where a purely elastic trial 

state is followed by a plastic corrector phase. The purely elastic (trial) stress is 

defined by the formula 

Δe

n σ σ D ε  (2.21) 

In accordance with condition (2.20), the strain increment is decomposed as 

follows 

 3 3

33Δ Δ Δ  ε ε g g  (2.22) 

where ε  is the known part of the total strain increment Δε , and 
33Δ  is an 

extra unknown (Aravas, 1987).  

If the trial stress violates the yield condition, an elastic-plastic behavior 

should be taken into account, integrating equation (2.1) between stages 
nt  and 

1nt 
, 

 1

p

n n    σ σ D ε ε  (2.23) 
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Using an backward-Euler integration scheme for equation (2.5), the 

increment of plastic strain is written 

  1

1 1

1 1 1 1

Δ3 3
Δ

2 2

q np

n n n

n n n

H

h q h



 

  

  ε s s s


 (2.24) 

where the von Mises equivalent final stress is  

1 1 1

3

2
n n nq    s s  (2.25) 

and 

1

1 1

T s

h
E E

   (2.26) 

Using equations (2.22) and (2.24), the final stress becomes 

  1

1 33 1 1

1 1 1 1

3 Δ3
2 Δ

q ne

n n n n

n n n

G HG
G

h q h






  

  

    σ σ a s s s  (2.27) 

where 

Δe

n σ σ D ε  (2.28) 

3 3 a g g  (2.29) 

and a  is the deviatoric part of a . From equation (2.27), the hydrostatic and 

the deviatoric parts of the final stress are written as 

33

33Δe

n+1p p K g   (2.30) 

1 33
1 1

1 1 1

1 3
2 Δ

3 Δ3
1

e

n n
q n n

n n

G
G

G HG h

h qh




 

 

 
   

  

s s a s  (2.31) 

where ep 1 , e
s  are the hydrostatic and deviatoric parts of e

σ  ( e e ep  σ 1 s ). 
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Equation (2.31) shows that 
n+1s  and e

s  may not be co-linear and the “plastic 

correction” may not be on the deviatoric plane. Squaring equation (2.31), the 

effective stress at the final state is calculated as follows 
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 (2.32) 

where 

3

2

e e eq  s s  (2.33) 

and 

3

2

e

nQ  s s  (2.34) 

The yield criterion (2.8) at stage  1n  is written as 

   33Δ Δ Δn+1 q q qn
q , k      (2.35) 

Enforcing the conditions of zero stress normal to any shell lamina ( 33 0n+1  ), 

and using (2.27) the following equation is obtained 

 
33

1 33 33 33 33

1 33

1 1 11 1

3 Δ3 4 3
1 Δ 0

3

q n e

n

n n nn

G HG G G
p g s g g s

h q h h








  

   
           

 (2.36) 

Summarizing, equations (2.30), (2.32), (2.36) and the yield criterion (2.35), 

constitute a system of four equations with four unknowns, namely, 
n+1q , 

n+1p , 
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Δ q  and 
33Δ . Considering Δ q  and 

33Δ  as the primary unknowns, equations 

(2.36) and (2.35), can be solved in terms of Δ q , 
33Δ  using Newton’s method 

as described in more detail in Appendix II. 

Alternatively, a forward-Euler method can be employed to integrate the 

above constitutive equations, within an elastic predictor–plastic corrector 

scheme. The forward-Euler integration of plastic strain rate gives 

 1

1

3 3
Δ

2 2

q np

n n n

n n n

H

h q h


  ε s s s  (2.37) 

The final stress and its deviatoric part are written as 

 1 33 1

1

3 Δ3
2 Δ

q ne

n n n n

n n n

G HG
G

h q h


     σ σ a s s s  (2.38) 
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s s a s  (2.39) 

Squaring equation (2.39), the effective stress at the final state is calculated as 

follows 
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 (2.40) 

In addition, enforcing 33 0n+1  in equation (2.38), the following equation is 
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obtained  
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  (2.41) 

Equations (2.30), (2.40), (2.41) and the yield criterion (2.35) constitute a 

system of four equations with four unknowns, namely, 
1nq 
, 

1np 
, Δ q  and 

33Δ . 

Considering Δ q  and 
33Δ  as the primary unknowns, equations (2.41) and 

(2.35) can be solved in terms of Δ q , 
33Δ  using Newton’s method as described 

in more detail in Appendix II. 

2.3 Linearization moduli 

The consistent (algorithmic) rigidity moduli (Simo & Taylor, 1985) are 

computed from the following basic equation: 

1

1

c n
ep

n









σ
D

ε
 (2.42) 

The final stress is written in terms of its deviatoric part 

 1 1 1n n nK    σ s ε 1 1 (2.43) 

where 1  is the second-order unit tensor, and the final strain 

 1 1 1

1

3
n n n    ε e ε 1 1  (2.44) 

where e  is the deviatoric strain tensor. Differentiation of equation (2.44) gives 

1

1

n

n










e
P

ε
 (2.45) 

Equation (2.42), with the consideration of equations (2.43) and (2.45), leads to 
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1 1

1 1

3c n n
ep

n n
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σ s
D P I

ε e
 (2.46) 

In the following, four-order tensor 
1 1n n  σ ε  is computed for the backward-

Euler integration scheme and presented in the previous section. In particular 

using equations (2.21), (2.22) and (2.24), the final stress 
1nσ  can be written as 

 1 1 1

1 1 1

Δ3
2

2

qe

n n n n

n n

H
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h h


  

 

  
    

  

σ σ s s N  (2.47) 

where the dimensionless tensor N  is defined at a certain stress state σ  by the 

following expression: 

3

2q
N s  (2.48) 

Using the definition of the equivalent stress in equation (2.6), it can be readily 

verified that  

q



N

σ
 (2.49) 

The corresponding deviatoric stress is 

 1 1 1

1 1 1
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s s s s N  (2.50) 

or equivalently, 
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Differentiation of equation (2.50) gives 
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 (2.52) 

From the definition of the trial stress in equation (2.21), it is readily obtained 

that 

1 12 2e

n nd G d G d  s e P ε  (2.53) 

Furthermore, it is necessary to express differential quantities 
qd  , 

1nd s  and 

1ndq 
 in terms of 

1nd ε . Squaring equation (2.51) the von Mises equivalent 

stress at the final state is calculated as follows 
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  (2.54) 

where  

3

2

e e eq  s s  (2.55) 

3

2
n n nq  s s  (2.56) 

3

2

e

nQ  s s  (2.57) 

From the definition of the hardening modulus, 

1 1n n qd q H d    (2.58) 

The final stress has to satisfy the yield criterion and using equations (2.35) and 

(2.58) this can be expressed as follows 
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Differentiation of equation (2.59) gives 
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Furthermore, 
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1 1 11 1 1

2

1 1 1 1 1 1 1 1

3 3 3
3

n q nn q q n n
q

n n n n

G H hH G H G H
G d d

h h h h

   

   

   
      
      

 
  (2.64) 

  1
1 2

1 1 1 1

33 1 3
1 3 1 n

q n qq n

n n n n

G k hG G
d k G k d H d

h h h h




   

      
           

       
    (2.65) 

Finally, equation (2.60) becomes 

1

1 1 1 1

2 9
3

2

e

q n n

n

G G
d d

A B -C h
 



 
  

 
s s ε  (2.66) 

where 
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1
2 2

2
2

1

1 1

3 6e

n

n n

G G
A q q Q

h h 

  
    
   

 (2.67) 

1 1 1 11 1
1 1 2 2

1 1 1 1 1 1 1 1

3 33 33
1

n q n q nn n
n

n n n n n

G H h G HG k h G HG
B H

h h h h h

   


    

  
      
 

 
 (2.68) 

 
2 21 1

1 3 2

1 1

2
3 6n n

n

n n

h h
C G q GQ

h h

 

 

    
      

   
  (2.69) 

Subsequently, equations (2.53), (2.58) and (2.66) are substituted into (2.52) 

1 1

11
1 2

1
1

1 1 1 1

2

3

4 9
              3

3 2

n n

n n
n n

en
n n

n

G
d d

B

Gq hB
H

B hG G
d

A B - C h

 











  
          

   
 
 

s P ε

N N

s s ε

 (2.70) 

where 

1 1 1 1

3 Δ3
1

q

n n n

G HG
B

h q h



  

    (2.71) 

Substituting,  

11
1 2

1
1 1

1 1 1 1

1

3

4 9
3

3 2

3 1
                                                                                       1

2

n n
n n

en
n n n

n

n

Gq hB
H

B hG G
d d

A B - C h

d
B





 





 
         

  



 
   

  

N N

σ D ε s s

P ε

 (2.72) 

so that 

11
1 2

1

1 1 1 1

3

4 9 3 1
3 1

3 2 2

n n
n n

c en
ep n

n

Gq hB
H

B hG G

A B - C h B








  
                

   
 
 

N N

D D s s P  (2.73) 
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Finally, the condition of zero stress normal to shell laminae is imposed 

considering 33 0d   in the rigitidy moduli of equation (2.73). The linearization 

procedure leads to a non-symmetric consistent rigidity moduli.  

2.4 A Note on Linearization Moduli 

In the following the linearization procedure is described with simplified 

assumption that tensor e
s  and 

ns  are co-axial. This results in a concise and 

symmetric form of rigidity moduli. 

Consequently, squaring equation (2.51) and assuming for simplicity that 

tensor e
s  is parallel to 

ns , the von Mises equivalent stress at the final state is 

calculated as follows 

1
1

1 1 1

1

31 3
Δ

3
1

e n
n n q

n n

n

G HG
q q q

G h h

h




 



 
   
 

  

 (2.74) 

The final stress has to satisfy the yield criterion and using equations (2.35) and 

(2.74) this can be expressed as follows 

 1

1 11 1

33 3
Δ 1  Δe n

n q qq n

n nn

G HG G
q q k

h h h
  

 

 
     

 
 (2.75) 

Differentiation of equation (2.75) gives 

 
1 11

1 12 2

1 1 1

1 1 1
12

1 11 1 1 1

3
3 3 Δ

2

3 Δ 3 3
 3 1

ne n
n n q n q qe

n n

q n n n
q q q n

n nn n

hh
d G q d G H d

q h h

G H G H h G
d d G k d H d

h h h h


 

 

  


  

  
     
    

    
        

   

s D ε   


   

 (2.76) 
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or equivalently, 

1

2
    e

q n

G
d d

A
  N ε  (2.77) 

where 

1 1 11 1
1 2 2

1 1 1 1

1 1 1

2

11 1 1 1

3 Δ33
1

3 Δ 3 3
                       

n q nn n
n

n n n

q n n n n

nn n

G H hG q hG
A H

h h h

G H G H G h q

h h h





  


  

  

 

  
    
 

 
  

 (2.78) 

Subsequently, equations (2.53), (2.58) and (2.77) are substituted into (2.52) 

1 1 1

2 4 1

3
n n n

G G H
d d d

B B A
  

 
    

 
s P ε N N ε  (2.79) 

where 

1 1 1 1

3 Δ3
1

q

n n n

G HG
B

h q h



  

    (2.80) 

Substituting,  

1 1 1 1 1

4 1 3 1
1

3 2
n n n n n

G H
d d d

B A B
    

    
         

    
σ D ε N N P ε  (2.81) 

so that 

1 1

4 1 3 1
1

3 2

c

ep n n

G H

B A B
 

    
         

    
D D N N P  (2.82) 

Finally, the condition of zero stress normal to shell laminae is imposed 

considering 33 0d   in the rigidity moduli of equation (2.82). 
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CChhaapptteerr  33  

LLaarrggee  SSttrraaiinn  FFoorrmmuullaattiioonn  

In this chapter, the extension of the previous model for large strains is 

presented, towards efficient inelastic analysis of geometrically nonlinear shells 

based on an additive decomposition of the rate-of-deformation tensor. Following 

a short presentation of the constitutive equations, their numerical intergation is 

described in detail. 

3.1 Large-strain constitutive model 

The starting point is a basic constitutive equation that relates the Jaumann 

rate of Kirchhoff stress τ   to the elastic part of rate-of-deformation tensor d   by 

a linear hypoelastic equation of the form  

 e p


     τ τ τ W W τ Dd D d d  (3.1) 

where d
e  and d

p  are the elastic and the plastic parts of rate-of-deformation 

tensor d , and W  is the spin tensor and the Kirchhoff stress tensor τ , which is 

parallel to the Cauchy streess σ  is defined as 
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0

dV

dV
τ σ  (3.2) 

where 
0V  and V  are the volume in the reference and in the current 

configuration, respectively. 

Assuming von Mises plasticity with isotropic hardening, the yield criterion is 

defined by equation (2.8), where s  is the deviatoric part of τ , and the flow rule 

is 

3 1 1 3 1 1

2 2

p

s T s

q

E E q E E

   
      

   
d s s  (3.3) 

which is an extension of the rate form of deformation theory for large strains 

(Neale, 1981). In this equation, 
sE  and 

TE  are functions of the equivalent 

plastic strain 
q , defined as the time integral of 

q  

2
 

3

p

q  d n  (3.4) 

an equation analogous to (2.9). Using a standard inversion procedure  in 

equation (3.1), one obtains the elastic-plastic rigidity tensor epD  so that 

ep



τ D d  (3.5) 

For the purposes of inserting the present model within a finite element 

formulation, to be discussed in the next section, the constitutive equation (3.5) 

is written in terms of the convected rate of Kirchhoff stress tensor 
o

τ  defined as 

follows 
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 ij

i j 
o

τ g g  (3.6) 

From continuum mechanics [Malvern, (1969), pp.402-405], one may show that 

the convected rate is related to the Jaumann rate as follows 



 
ο

τ τ dL  (3.7) 

where L  is the geometric rigidity fourth-order tensor, with components: 

1

2

ijkl ik jl jk il il jk jl ikg g g g        L  (3.8) 

so that 

 
ο

τ D d dep  L R  (3.9) 

and R  is a fourth order tensor, equal to: 

ijkl ijkl ijkl

epD R L  (3.10) 

It can be verified that the components of tensor R  exhibit the symmetries 

ijkl jikl ijlk R R R  (due to symmetry of 
ο

τ  and d ) and the nontrivial symmetry 

ijkl klijR R . 

3.2 Numerical integration of the large-strain model 

To integrate the above constitutive equations, an equivalent expression of the 

equations in a “rotated” coordinate system is developed, using the rotation 

tensor R  from the decomposition of the deformation gradient F  that 

corresponds to the time step under consideration (from state n  to state 1n ). 

This methodology has been first suggested by Nagtegaal (1982) and it is 



CHAPTER 3 - LARGE STRAIN FORMULATION 

71 

adjusted herein for the purpose of analyzing nonlinear shells. More specifically, 

the deformation gradient tensors at the beginning of the step Fn  and at the end 

of the step 1Fn  are related as follows 

1

1

i

n n i



   F F F g G  (3.11) 

where 
ig  are the covariant base vectors at the current configuration (end of the 

step), and i
G  are the contravariant base vectors at the beginning of the step. 

Tensor F  is decomposed into a stretch tensor U  and a rotation tensor R  so 

that 

=F R U  (3.12) 

Tensors R  and U  refer to the step under consideration and should be regarded 

as incremental quantities from state n  to state 1n . The stretch tensor U  is 

the square root of the right Cauchy-Green tensor C  (defined as Δ ΔTC F F ), 

and can be written in the following expression [Ting (1985); Simo & Hughes 

(1998), pp. 240-244]. 

2

1 2 3A A A  U C C 1  (3.13) 

where 1  is the unit tensor, which can be written in the following form 

 i j

ijG 1 G G  (3.14)
 

tensor 2
C  is the square of the right Cauchy-Green tensor C  defined as 

 2 = kj i l

ik jlg g G C CC G G  (3.15) 

And  ( =1,2,3)iA i  depend on the principal invariants of U , defined in Appendix 

III. An expression similar to equation (3.13) can be derived for the inverse 
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tensor 1
U  [Ting (1985); Simo & Hughes (1998), pp. 240-244]. 

1

1 2 3B B B   U C U 1  (3.16) 

where  ( =1,2,3)iB i  depend on the principal invariants of 1
U , also defined in 

Appendix III. From equations (3.13) and (3.16) the components of U  and 1
U  

with respect to the  i jG G  basis denoted as iju , iju  respectively, are given 

by the following expressions 

1 2 3ij ij ij iju Aa A g A G    (3.17) 

1 2 3ij ij ij iju B g B u B G    (3.18) 

where 

= kl

ij ik jla g g G  (3.19) 

Since U  is symmetric and positive definite, the rotation tensor is written 

1Δ R F U  (3.20) 

Therefore, the components of R  with respect to the  j

k g G  basis are 

k ik

j ijr u G  (3.21) 

so that 

 k j

j kr R g G  (3.22) 

Subsequently, the so-called rotated stress tensor τ̂  and the logarithmic strain 

ΔE  are defined as follows 

Tˆ τ R τ R  (3.23) 

Δ lnE U  (3.24) 

For computational purposes, a truncated Taylor series expression for the ln U  is 
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considered 

       
2 3 41 1

ln
2 3

       U U 1 U 1 U 1 U 1  (3.25) 

where the higher-order terms are omitted. Combining equations (3.17), (3.24) 

and (3.25), the components of ΔE  with respect to i iG G  reference basis are 

(11) (11) (11) (12) (11)1 1

2 3

km km

ij ij ik jm ik jmE u u u G u u G     (3.26) 

where 

 11

ij ij iju u G   (3.27) 

     12 11 11 km

ij ik jmu u u G  (3.28) 

If the directions of the principal stretches (i.e., the eigenvectors of U ) remain 

fixed within the time period between 
nt  and 

1nt 
, it can be shown (Nagtegaal, 

1982) that over that time period the following expressions can be written  

ˆ


τ R τ R  (3.29) 

and 

E R d R  (3.30) 

Consequently,  

 e p e p e p      E R d d R R d R + R d R E E  (3.31) 

where the elastic and plastic part of E  are defined as follows: 

e eE R d R
  (3.32) 

p pE R d R
  (3.33) 

The proof of equations (3.29) and (3.30) is stated below in Box 3 - 1. 
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Box 3 - 1: Proof of equations (3.29) and (3.30). 

Lemma: 

If the directions of the principal stretches (i.e., the eigenvectors of U ) remain 

fixed within the time period between 
nt  and 

1nt 
, it can be shown that over that 

time period the rate-of-deformation tensor d  and the spin tensor W  can be 

written 

          t t t td R E R   (3.34) 

       t t tW R R  (3.35) 

where    lnt tE U  is the logarithmic strain tensor. 

Furthermore, 

 ˆ 


τ R τ R  (3.36) 

Proof: 

The stretch tensor U and the inverse tensor 1
U , since U  is symmetric and 

positive definite, can be written in the following expressions: 

    
3

1

i i i

i

t t


 U N N  (3.37) 

  
 

3

1

1

1
i i

ii

t
t





 U N N  (3.38) 
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In case that 0i N , the tensor U  is given by: 

    
3

1

i i i

i

t t


 U N N  (3.39) 

Using the above equations, 

 
 

 
  

3 3

1 1

1 1

d
ln

d

i

i i i i i

ii i

t
t

t t






 

 

     UU U U N N N N  (3.40) 

From equation (3.12), the rate form of the deformation tensor is 

 Δ  F RU RU  (3.41) 

and  

 1 1 1 1Δ T    F U R U R  (3.42) 

Using the above equations and defined the velocity gradient as  

   1 1 1Δ Δ T T T      L F F RU RU U R RR RUU R  (3.43) 

The symmetric and skew-symmetric parts of the velocity gradient are the rate-

of-strain tensor d  and the spin tensor W , respectively and are defined as 

follows: 
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1 1
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1
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1
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1
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1
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1
   ln
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i i

ii

T
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d L L

RR RUU R RR RU UR

R UU U U R

R N N R

R N N R

R U R

R E R

 (3.44) 

where  lnE U  and 

 

 

 

  

1 1

1 1

1

2

1
   

2

1
   2

2

   

T

T T T T

T T

T

 

 

 

   

  



W L L

RR RUU R RR RU UR

RR R UU U U R

R R

 (3.45) 

Tensor T
R R  is skew-symmetric on account of the orthogonality of R . 

 

 

+

T

T T

T
T T

 

 

 

R R I

RR RR 0

RR RR

 (3.46) 

Using equations (3.45) and (3.46), the Jaumann rate of Kirchhoff stress can be 

written for that time period in terms of the rate form of the “rotated stress” 
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ˆ  

T T

T T T T T T

T T T T

T



  

  

  



τ τ τ R R R R τ

R R τ R R R R τ R R RR τ R R

R R τ R R τ R R τ R R

R τ R

 (3.47) 

where ˆ  Tτ R τ R  is the “rotated stress” tensor. 

 

Using the equations (3.47) and (3.44), and the properties of the rotation tensor 

R , the constitutive relation (3.1) and the flow rule (3.3) can be written for that 

time period in terms of the rotated stress and strain rates, as follows  

 e pˆ  τ DE D E E=  (3.48) 

and 

3 1 1 3 1 1
+

2 2

p

s T s

q̂
ˆ ˆ

ˆE E q E E

   
     

   
E s s  (3.49) 

where q̂  is the von Mises equivalent stress of the rotated stress 

3

2
ˆ ˆq̂  s s  (3.50) 

One can readily show that 

3

2
q̂ q  s s  (3.51) 

and 

2
 

3

p

q
ˆ ˆ E n  (3.52) 
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is equal to 
q , so that during plastic loading q

ˆq̂ H  . Using the rotated 

quantities of stress and strain, the hypoelastic equation (3.48) can be integrated 

exactly as follows 

 1 Δ Δ p

n n
ˆ -  τ τ D E E  (3.53) 

where it was taken into account that 
n n

ˆ τ τ . The above equations (3.48)-(3.53) 

are similar to the “small-strain” plasticity equations (2.1), (2.5)-(2.6), (2.9) and 

(2.23). Therefore, the integration of the elasto-plastic equations can be carried 

out by using a procedure similar to that described in the previous section for 

small-strain plasticity.  

In addition, one should account for the condition of zero stress normal to the 

shell surface, requiring that throughout the analysis 

   3 3 3 3 0    τg g τ g g  (3.54) 

where 3
g  is the contravariant base vector normal to the shell laminae. Defining 

the “rotated” base vectors m
ĝ  and 

jĝ  as 

T

j j
ˆ g R g  (3.55) 

m T mˆ g R g  (3.56) 

the zero normal stress condition (3.54) implies that 

   3 3 3 3 0ˆ ˆ ˆ ˆˆ ˆ    τg g τ g g  (3.57) 

or equivalently 

33 33 33 0ˆ ˆ ˆ ˆs p g     (3.58) 
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where km̂  are the contravariant components of τ̂  with respect to the 
iĝ  basis, 

and from equations (3.21) and (3.56) one can readily show that  

m im j

ij
ˆ u Gg G  (3.59) 

Using an backward-Euler scheme for the integration of the flow rule (3.49), 

equation (3.48) becomes 

 1 1 1

1 1 1 1
Δ 3 3n n n n n

s T s

q̂
ˆ ˆ ˆˆ G G

ˆE E q E E
  

   
         

   
τ τ D E s s s  (3.60) 

Expressing tensors 
nτ̂ , 

1n
ˆ

τ , ΔE , in terms of tensor bases defined by the rotated 

vectors m
ĝ , k

ĝ  

 Δ Δ k m

km
ˆ ˆ E g gE  (3.61) 

 1 1

ij

n n i j
ˆ ˆˆ ˆ

  τ g g  (3.62) 

 ij

n n i j
ˆ ˆˆ ˆ τ g g  (3.63) 

where 

  Δ Δ i j

km ij m k
ˆ ˆE  G g G gE  (3.64) 

  1 1

km ij k m

n n j i
ˆ ˆˆ ˆ

   g G g G   (3.65) 

so that equation (3.60) becomes 

 1 1 1

1 1 1 1
Δ 3 3ij ij ijkm ij ij ij

n n km n n n

s T s

q̂ˆˆ ˆ ˆ ˆ ˆD G s s G s
ˆE E q E E

  

   
         

   
  E  (3.66) 

where ijkmD̂  are the components of the 4th order elastic rigidity tensor D  with 

respect to the rotated basis i j k l
ˆ ˆ ˆ ˆ  g g g g . For the purposes of accounting for 

the zero stress condition normal to shell laminae, the strain increment is 
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decomposed in a "known" and "unknown" part 

33Δ Δ Δ ˆE E E a  (3.67) 

where ΔE  is the known part of the total strain increment ΔE  and 

 3 3k m

k m
ˆ ˆ ˆ ˆ ˆˆ ˆg g   3 3
a g g g g  (3.68) 

so that 

   1 33 1 1

1 1 1 1
3 3e

n n n n

s T s

q̂ˆ ˆ ˆ ˆ ˆˆ E G G
ˆE E q E E

  

   
          

   
τ τ Da s s s  (3.69) 

where 

Δe

n
ˆ  τ τ D E  (3.70) 

The solution algorithm proceeds exactly as described in the previous chapter for 

small strains, considering the “rotated” base vectors ˆ
ig , ˆ

jg  and that 
33

1 0n
ˆ

 τ . 

Upon calculations of 1

ij

n̂  , i.e., the components of tensor τ̂  with respect to the 

«rotated» base  i j
ˆ ˆg g , the components 

1

pm

n  of tensor 
1n

ˆ
τ  with respect to 

the current base  p mg g  should be computed, using the definition of τ̂ . More 

specifically, the final stress is 

1 1

T

n n
ˆ

 τ Rτ R  (3.71) 

After some tensor algebra and using equation (3.21), one obtains 

   1 1

q m ij q p

n p k n i j p m
ˆ ˆˆr r    τ g G g G g g  (3.72) 

and therefore the components of the final stress with respect to the current 

covariant basis can be computed as follows: 

  1 1

pm q m q p ij

n p k i j n
ˆ ˆ ˆr r   g G g G   (3.73)
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CChhaapptteerr  44  

FFiinniittee  EElleemmeenntt  FFoorrmmuullaattiioonn  

In the present chapter, a finite element technique is briefly presented, which 

simulates the nonlinear structural behavior of elastic and inelastic cylinders. It 

is a continuum-based formulation with finite-element discretization, through a 

special-purpose element, the so-called ‘‘tube-element’’. The technique is based 

on the large-strain formulation of Needleman (1982) and was employed for the 

nonlinear analysis of relatively thick elastic-plastic offshore tubular members 

(Karamanos and Tassoulas 1996) and, more recently, for the elastic stability of 

thin-walled cylinders under bending and pressure (Karamanos, 2002; Houliara 

and Karamanos, 2006, 2010). Herein, this element formulation is further 

elaborated and enhanced for the stability analysis (buckling and postbuckling) 

of thick-walled cylinders in the inelastic range. 

4.1 Governing Equations 

The cylindrical shell is considered as an elastic-plastic continuum with 

embedded (convected) coordinates are denoted by  1 2 3i i , ,  , as described in 

previous chapters. The position vector of the material point  1 2 3, ,    in the 
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current (deformed) configuration at time t  is denoted as  

 1 2 3, , ,t  x x  (4.1) 

whereas the position of the material point  1 2 3, ,    at 0t   in the reference 

(undeformed) configuration is denoted by  

 1 2 3, ,  X X  (4.2) 

At any material point, the covariant base vectors in the reference configuration 

are 

i i





X
G  (4.3)

and in the current configuration are 

i i





x
g  (4.4) 

Furthermore, k
G  and k

g  denote the contravariant (reciprocal) base vectors in 

the reference and current configuration, respectively and are defined by 

G G
k k

i i    (4.5) 

g g
k k

i i    (4.6) 

The constitutive equations, extensively discussed in the previous section, 

relate the convected rate of Kirchhoff stress tensor 
ο

τ  to the rate of deformation 

tensor d  through the relationship 

 
ο

 ep  τ D d dL R  (4.7) 

where 
epD  is the elastoplastic rigidy fourth-order tensor and L  is the geometric 

rigidity fourth-order tensor. Expressions for the components of epD , L  and R  
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are offered in equations (2.19), (3.8) and (3.10) respectively. 

Deformation is described by the rate-of-deformation (stretch) tensor d , which 

is the symmetric part of the velocity gradient. It can be shown that the 

covariant components of the rate-of-deformation tensor are: 

   
1

2

m m

kl m/ l k m/ k ld V V    
 

G g G g  (4.8) 

where 
m/ lV  is the covariant derivative of the velocity vector component 

mV  with 

respect to the reference basis. 

Equilibrium is expressed through the principle of virtual work, considering an 

admissible displacement field u . For a continuum occupying the region 0V  and 

V  in the reference and in the current configuration, respectively, and with 

boundary B  in the deformed configuration, the principle of virtual work is 

expressed as: 

 
0

i

k 0

kj

i / j q

V B

U dV dB   G g u t    (4.9) 

where t  is the surface traction and ij  are the contravariant components of the 

Kirchhoff stress tensor τ , which is parallel to the Cauchy stress σ  (equation 

(3.2)) and 

 
ii / j j

U
 

 


u
G


 (4.10) 

For the purpose of linearizing the equilibrium equations, the principle of virtual 

work is considered at a "nearby" configuration  1 2 3, ,  x  

 
0

0

q

k ij

k / j i q

V B'

U dV dB        G g u t    (4.11) 
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corresponding to stress tensor τ  and boundary traction t . Considering the 

increment of displacement u , defined as the difference between, vectors x  

and x  and the linearized form of the principle of virtual work is obtained as 

follows 

0 0

0 0Δ u t

q

ijpq ji

i/ j p/ q q i/ j

V B V

ˆU S U dV dB U dV         (4.12) 

where 

 Δ
Δ p/ q pq

u
U


 


G


 (4.13) 

components ijpqS  refer to the fourth-order tensor S  and are equal to 

   ijpq i kjmq p jq ip

k mS g R g G   G G   (4.14) 

and iĵ  are the contravariant components of the non-symmetric nominal stress 

tensor σ̂ , defined as follows: 

0

d V
ˆ

d V
 -1

σ F σ  (4.15) 

or, in component form 

 gij ij j

k
ˆ  G   (4.16) 

4.2 Finite element discretization 

The numerical solution is based on the finite element discretization of 

linearized equilibrium equations described in the previous section. Using a finite 

element discretization and adopting matrix notation, the incremental 

displacement field can be expressed as 
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  ˆ  u N U  (4.17) 

in which  N  is the interpolation matrix that contains the appropriate shape 

functions and ˆU  is a vector that contains the increments of nodal degrees of 

freedom. Using the same functions for the virtual displacements, one can write 

  ˆ u N U  (4.18) 

where Û  are arbitrary virtual nodal displacements. 

The covariant differentiation of equations (4.17) and (4.18) results in: 

     u B Uk / l
ˆgrad U      (4.19) 

     u B Uk / l
ˆgrad U     (4.20) 

where  B  contains the derivatives of the elements of the interpolation matrix. 

Furthermore, in matrix form, equation (4.14) becomes,  

        
T

 S W W CR  (4.21) 

where  W  is a 5x9 matrix containing the mixed components of the deformation 

gradient with respect to the reference base vectors and is introduced 

1 2 3

.1 .1 .1

1 2 3

.2 .2 .2

1 2 3 1 2 3

.2 .2 .2 .1 .1 .1

1 2 3 1 2 3

.3 .3 .3 .2 .2 .2

1 2 3 1 2 3

.3 .3 .3 .1 .1 .1

0 0   0  0 0 0

0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

F F F

F F F

F F F F F F

F F F F F F

F F F F F F

 
 
 
 
 
 
 
 

W  (4.22) 

The mixed components of the deformation gradient with respect to the reference 

base vectors are written as follows, 

   F Fi i i i

j j j jF       G G G G G g  (4.23) 

and  R  contains the components of rigidity tensor R  defined in (3.10). 
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Another auxiliary matrix  C  (9x9) is defined so that:  

( ) ( ) ( ) ( )j I q J i I p J

IJC G  (4.24) 

with the relations between the indices given by: 

,   or  or 

1 1 1

 2          2           1

3 3 1

4 1 2

 5          2          2

6 3 2

7 1 3

8 2 3

9 3 3

I J i p j q

 (4.25) 

This arrangement is consistent with that of gradient components in (4.19) 

 

1 1

2 1

3 1

1 2

2 2

3 2

1 3
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U U

U

U

U

U

/

/
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/

p/ q /

/
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/

/

 
 

 
 
 
 
   
 
 
 
 
 
  

 (4.26) 

For arbitrary virtual displacements ˆU  the following set of linearized equations 

of the discretized continuum is obtained: 

  ext int
ˆ  Κ U F F  (4.27) 

where  K  is the incremental stiffness matrix  

      
0

0

T

V

dV K B S B  (4.28) 
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and ,  ext intF F  are the external and internal load vectors respectively: 

 
q

T

ext q

B

dB F N t  (4.29) 

   
0

0

T T

int

V

dV F B W τ  (4.30) 

Equilibrium is achieved when intF  equals extF . An incremental Newton-

Raphson iterative numerical procedure is employed, enhanced to enable the 

tracing of postbuckling “snap-back” equilibrium paths through an arc-length 

algorithm, which monitors the value of the so-called “arc-length parameter” 

(Crisfield, 1983).  

4.3 ‘‘Tube-Element’’ Description 

The cylinder is discretized through a three-node “tube element” (see Figure 4 

- 1), introduced in Karamanos and Tassoulas (1996) for the analysis of thick 

walled tubes also employed for analysis of thin-walled elastic cylinders. This 

element combines longitudinal (beam-type) with cross-sectional deformation. 

The convected coordinates  1 2 3, ,    are assumed in the hoop, axial and radial 

direction in the reference configuration respectively and are denoted as  , ,   .  

Nodes are located along the cylinder axis, which lies on the plane of bending, 

and each node possesses three degrees of freedom (two translational and one 

rotational). A reference line is chosen within the cross-section at node  k  and 

a local Cartesian coordinate system is defined, so that the  x , y  axes define the 

cross-sectional plane. The orientation of node  k  is defined by the position of 
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three orthonormal vectors  k

xe ,  k

ye  and  k

ze . For in-plane (ovalization) 

deformation, fibers initially normal to the reference line remain normal to the 

reference line. Furthermore, those fibers may rotate in the out-of-plane direction 

by angle    . Using quadratic interpolation in the longitudinal direction, the 

position vector  , ,  x  of an arbitrary point at the deformed configuration is: 

                    
3

1

k k k k k

z

k

, , N        


    
 x x r n e  (4.31) 

where  k
x is the position vector of node  k ,    k

r  is the position of the 

reference line at a certain cross-section relative to the corresponding node  k , 

   k
n  is the “in-plane” outward normal of the reference line at the deformed 

configuration and    k
N   is the corresponding Lagrangian quadratic 

polynomial. Using nonlinear ring theory (Brush and Almroth, 1975), vector 

functions    k
r  and    k

n , can be expressed in terms of the radial, 

tangential and out-of-plane displacements of the reference line, denoted as 

       w , v , u   , respectively. The position of the reference line at the cross-

section with the respect to node  k  is  

               k k k k

r x r y r zx y z     r e e e  (4.32) 

where  rx  ,  ry   and  rz   are reference line coordinates with respect to 

the local cross-section axes and are discretized as  

 

 

( ) ( ) cos ( )sin  

( ) ( ) sin ( )cos

( ) ( )

r

r

r

x r w v

y r w v

z u

    

    

 

  

  



 (4.33) 
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The deformation functions        w , v , u    and     are discretized as 

follows: 

  0 1

2 4 6 3 5 7

n n

n , , ,... n , , ,....

w a a sin a cos n a sinn   
 

      (4.34) 

  1

2 4 6 3 5 7

n n

n , , ,... n , , ,....

v a sin b sinn b cos n   
 

      (4.35) 

 
2 4 6 3 5 7

n n

n , , ,... n , , ,....

u c cos n c sinn  
 

    (4.36) 

 
0 2 4 6 1 3 5 7

n n

n , , , ,... n , , , ,....

cos n sinn     
 

    (4.37) 

Coefficients   n na , b refer to in-plane cross-sectional deformation, and express the 

ovalization of the cross-section, whereas   n nc ,   refer to out-of-plane cross-

sectional deformation, expressing cross-sectional warping. 

The outward unit vector    k
n , normal to the reference line can be written 

as: 

           k k k

x x y yn n   n e e
 (4.38) 

where 

n r
x

r

dy d

ds d






 (4.39) 

n r
y

r

dx d

ds d






 (4.40) 

and 

       rdy
r w v sin w v cos

d
     


            

 (4.41) 

       rdx
r w v cos w v sin

d
     


            

 (4.42) 
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2 22 2rds

r r w v w v w v
d

     


                  
 (4.43) 

The position vector expressed through (4.31) can be written alternatively as 

follows 

           

      

3

1

( )

, ,
k k k

r x x r y y

k

k k

r z

x n y n

z N



    


 


x x e e

                                                e

    

 

 (4.44) 

and differentiating this expression with respect to the time variable and 

omitting higher-order terms the following for the velocity vector is obtained: 

           

              

3

1

, ,

( )

k k k

r x x r y y

k

k k k k

r y y r z r z

x n y n

y n z z N



     


     


x v x e e

                  e e e

    

   

 (4.45) 

Equation (4.45) can be rewritten in terms of incremental displacements  

   

   

    

3
( ) ( )

1

( ) ( )

( ) ( ) ( )

, ,

( )

k k

r x x

k

k k

r y y r y y

k k k

r z r z

x n

y n y n

z z N



      

      

       

u u e

                         e e

                         e e

   

 

   

 (4.46) 

Considering vector ˆU , which contains the increments of nodal degrees of 

freedom of the ‘‘tube-element’’ as follows: 
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U  (4.47) 

The covariant base vectors that are tangential to the coordinate lines 

 , ,    can by calculated by differentiation with respect to the local 

coordinates of the position vector as follows: 

               
3

1

1

k k

k k

z

k

d d d
N

d d d

  
      

     


r nx
g g e

   
  

   
 (4.48) 

              
   3

2

1

k

k k k k

z

k

dN

d

 
      

   


x
g g x r n e


    

 
 (4.49) 

            
3

3

1

k k k

z

k

N


     
 


x

g g n e    


 (4.50) 

Considering the covariant base vectors in the reference configuration 

1 2 3  , ,G G G , appropriate differentiation of (4.46) and the definition of vector 

ˆU , matrix  B  is formed to be used in equation (4.19). 

For the purposes of the present study, a 16th degree expansion is used for 

  w( ), v( ), u( )    and ( )   [considering 16n   in equations (4.34)-(4.37)], and 
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four “tube-elements” per half wavelength are employed. Regarding the number 

of integration points, 23 equally spaced integration points around the half-

circumference, five Gauss points in the radial (through the thickness) direction 

and two Gauss points in the longitudinal direction of the “tube element” are 

considered (reduced integration scheme) following relevant convergence studies 

reported in previous works (Karamanos, 2002; Houliara & Karamanos, 2010). 
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(a) 

 

(b) 

Figure 4 - 1: (a) Three-node “tube element” and deformation parameters; 1 2 x , x  is the 

plane of bending, (b) Cross-sectional ovalization (in-plane) deformation parameters 
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4.4 Bifurcation in the inelastic range 

Detection of bifurcation from prebuckling to post-buckling is performed upon 

convergence of solution at the end of each loading increment, adopting Hill’s 

“comparison solid” concept, as described in detail by Hutchinson (1974). The 

use of “comparison solid” yields lower bound, yet quite accurate, estimates of 

the bifurcation load, introducing the quadratic functional F : 

 ijkl ij k

ij kl / j k / j

V

F R E E U U dV        (4.51) 

The positive definiteness of functional (4.51) ensures uniqueness of solution 

and stability. At the stage where F  becomes non-positive definite, bifurcation 

occurs. Using the following expressions, 

ij k ij mk

/ j k / j m/ j k / jU U U G U       (4.52) 

   
1

2

k k

ij p k / q q k / pE U U       
 

G g G g  (4.53) 

and the finite element discretization procedure described in the previous 

paragraphs, functional F  can be written in the following quadratic form in 

terms of “stiffness matrix”  K  

 Tˆ ˆF   U K U  (4.54) 

where 

      
0

T

0

V

dV  K B S B  (4.55) 

and 

        
T

 S W W CR  (4.56) 
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and  R  is the constitutive matrix containing the tangent elastic-plastic moduli 

ijklR  of J2 - non associative flow theory moduli. Therefore, the positive 

definiteness of F  is equivalent to the positive definiteness of  K , examined 

through the evaluation of its eigenvalues at the end of each loading increment. 

Bifurcation occurs when the smallest eigenvalue of  K becomes equal to zero. 

 



 

97 

 



 

98 

 

 

CChhaapptteerr  55  

CCoonnttiinnuuiittyy  ooff  PPllaassttiicc  FFllooww  

In previous chapters the non-associative plasticity model has been presented 

in detail. The main feature of this work has been the adoption of the 

deformation theory, such that the production of plastic strain is increased for 

non-proportional loading paths. Using this approach, the elastic-plastic moduli 

become less stiff, and therefore, this enables improved predictions of the 

bifurcation load.  

As described in Chapter 2, the rate form of the J2 - deformation theory 

expressed by equation (2.10) implies that the plastic strain increment is 

composed by two components, one normal to the yield surface (as in the case of 

classical J2 - flow theory) and one tangent to the yield surface. Therefore, the 

present non-associative theory is associated with higher plastic strains when 

compared with J2 - flow associative theory.  
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5.1 Plastic production ratio 

In order to quantify the production of plastic flow, the so-called plastic 

production ratio is adopted, defined by Hughes and Shakib (1986), as follows:  

 
p

w  
e

e
 (5.1) 

where e  is the deviatoric part of incremental strain tensor ε , and p
e  is the 

plastic part of e . The value of w  depends on angle   between the outward 

normal n  and the deviatoric strain increment e , as shown in Figure 5 - 1. 

Equivalently, equation (5.1) can be written in a normalized form: 

    1
3

* H
w w

G
 

 
  

 
 (5.2) 

In the framework of associated plastic flow, the plastic strain rate can be 

written as 

3

2
ε s

qp

q



 (5.3) 

where the equivalent plastic strain rate is 

3

2
q

q H
  s s  (5.4) 

or equivalently 

 
1 2

3
1

3

n eq H

G

 



  (5.5) 

offering a measure of plastic strain-rate dependence on the direction of strain 

increment with respect to the outward unit normal to the yield surface n . The 
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value of w  can be expressed as 

 
1

1
3

w cos
H

G

 



 (5.6) 

or equivalently in its normalized form  

 *w cos   (5.7) 

where 

 
cos




n e

e
 (5.8) 

 

 

Figure 5 - 1: Schematic representation of deviatoric strain increment and the outward 

unit normal to von Mises surface n . 

In classical plasticity, loading paths tangential to the yield surface  2   

imply zero plastic deformation, so that 0*w   for 2   as shown in Figure 5 - 

2, corresponding to elastic behavior. Clearly, for 2   the behavior is also 

elastic. 

For the non-associative flow rule under consideration as expressed in equation 

(2.10) and using the definition of plastic production ratio in equation (5.1), the 

following expression for the plastic production ratio can be obtained: 

n

e
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w A Bcos
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 (5.9) 

 

where 
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 (5.10) 

 
2 2

1 1

1 13 3

q

B
H h

G G


 
   
   

   
 

 (5.11) 

where  qh   is a function of the Young’s modulus and secant modulus, and is 

defined by equation (2.15). 

In Figure 5 - 2 the value of *w  from the present model, expressed in 

equations (5.9) - (5.11), is also plotted in terms of angle   with the two 

continuous lines. The two lines correspond to two levels of equivalent plastic 

strain q  equal to 3% and 5% respectively. There exists a discontinuity at 

2  , which is due to the non-zero tangential component of p
ε . Apart from 

the fact that this discontinuity is not consistent with the physical problem, it 

may cause numerical convergence problems. Therefore, a zero value of 0*w   at 

2   is desired, and a modification of the plastic flow equation (2.5) is 

proposed, so that the tangential (non-associative) part of the right-hand side 

vanishes for   values approaching 2 . Towards this purpose, a modified value 
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of the secant modulus sE  is considered in terms of  , denoted as sE , as follows: 

       01  n n

s q s qE , E sin E sin ,           (5.12) 

where 
0  is a threshold value quite close to 2  and n  is a large-valued 

exponent. Therefore, the values of  qh   is replaced by  qh ,   

 
 
 

s q

q

s q

EE ,
h ,

E E ,




 
 

 
 (5.13) 

and the plastic ratio becomes a continuous function of  , approaching smoothly 

the value of zero for 2  . This is shown in Figure 5 - 2 with the dotted lines 

for values of 
0  and n  equal to 75o and 300 respectively. In such a case, 

  21
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Figure 5 - 2: Variation of plastic production ratio *w  in terms of   for various 

plasticity models. 

5.2 Comparison with other plasticity models 

The normalized values of plastic production ratio *w  in terms of  , shown 

in Figure 5 - 2, are also compared with those proposed in the models by Hughes 

and Shakib (1986) and Simo (1987). The non-dimensional measures of the 

plastic strain rate for the Hughes and Shakib (1986) model is defined in 

equation (5.17). 
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where  

3 1 1
3

H cos
H G

G cos





  
     

  
 (5.18) 
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 (5.19) 

Loading paths tangential to the smooth yield surface are assumed to engender 

elastic response and a simple cosine interpolation between 
crit  and 2  is used 

to reduce  *w   to zero.  

In the “pseudo-corner” model proposed by Simo (1987), the plastic strain 

rate can be written as  

 p ˆ  e n m  (5.20) 

where  


s

n
s

 (5.21) 
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The non-dimensional measures of the plastic strain rate is defined as 

  1* cos ˆw


 


   (5.25) 

where  

1
3

H

G


 
  
 

 (5.26) 

In Simo’s model, the production of plastic flow coincides with that of J2 - 

corner theory for   crit crit,    , and lies between the corresponding values for 

J2-flow and J2-deformation theories for  
2

crit ,


 
 

 
 

. Note that, for the needs 

of presentation of the results, the value of crit  equal to 45o is used for the both 

two models, as shown in Figure 5 - 2. 
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CChhaapptteerr  66  

VVeerriiffiiccaattiioonn  RReessuullttss  

In this chapter, numerical results for three benchmark problems of metal 

shell buckling are obtained to validate the numerical methodology described in 

the previous chapters. Large-strains are considered with the material model 

formulation described in Chapter 3. Furthermore, the integration of constitutive 

models is performed with the backward-Euler method described in section 2.2. 

The first problem refers to initial wrinkling of stainless steel tubes under 

uniform axial compression, and comparison with both experimental data and 

analytical predictions is conducted. The second problem refers to axially 

compressed imperfect metal cylinders, where the present results are compared 

with available semi-analytical solutions. The third problem refers to an 

elongated cylindrical shell, referred to as “tube”, and subjected to longitudinal 

bending, which has also been tested experimentally. In those problems, 

comparison between the predictions of the J2 - non-associative plasticity model 

and those from the classical associative model (J2 - flow rule) is conducted, 

towards verifying the reliable applicability of the non-associative model in thick 

shell buckling problems. 
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6.1 Initial wrinkling of metal tubes under axial compression 

Long, relatively thick tubes and line pipes used to transport fluids experience 

axial, shell-type buckling mainly when restrained from lateral movement. This, 

for example, is the case for a pipeline buried in a trench or resting on a 

deformable foundation. In offshore operations, compression can be caused by the 

passage of hot hydrocarbons carried from the well to a central gathering point 

by buried flow lines. Motion of the ground caused by fault movement, 

landslides, ground subsidence, permafrost melting, or soil liquefaction, can also 

result in severe compression of the lines. Both loading scenaria can impose 

compressive strains high enough to result in axial buckling. In most onshore and 

offshore pipeline operations, diameter-to-thickness ratios ( s
D t ) and steel grades 

are such that buckling occurs in the plastic range. 

Unlike elastic shell buckling, in which collapse is sudden and catastrophic, 

plastic buckling failure is preceded by a cascade of events, where the first 

instability and collapse can be separated by average strains of 1–5%. The 

behavior is summarized schematically in the axial stress-shortening response of 

a long tube shown in Figure 6 - 1 (Bardi and Kyriakides, 2006). 

The cylinder is under uniform axial compression, so that a constant state of 

stress exists around the circumference. In rather thick cylinders, the cylinder 

material enters into the inelastic range and then buckles. First buckling 

corresponds to an axisymmetric wavy pattern the cylinder axial stiffness is 

significantly reduced. Figure 6 - 1 shows schematically the response of such a 
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cylinder, with a rounded stress-strain material curve that exhibits considerable 

hardening in the inelastic (post-yield) range.  

 

Figure 6 - 1: Stress-shortening responses expected in a compression test of an inelastic 

circular cylinder. Shown is the onset of wrinkling (A) followed by axisymmetric collapse 

(B) or non-axisymmetric collapse (C’) (Bardi and Kyriakides, 2006). 

Upon formation of those axisymmetric waves, the response depends on the 

value of the s
D t  ratio. In thicker cylinders (i.e. low values of s

D t  ratio), a 

limit load on the load-displacement path occurs, followed by a localization of 

the axisymmetric wavy pattern, where a single wave develops much more than 

all the other waves. Subsequently, a second bifurcation to a non-axisymmetric 

deformation pattern may occur, resulting in a further decrease of axial load 

capacity.  

In thinner cylinders, the transition from the axisymmetric wavy pattern to a 

non-axisymmetric deformation state is observed before the occurrence of a limit 

load. This implies a further decrease of cylinder axial stiffness, so that a limit 
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point occurs quite early. Beyond this limit point, localization of deformation 

usually occurs, resulting in cylinder collapse and failure. 

Numerical results for benchmark problems of metal shell buckling are 

obtained to validate the numerical methodology described in the previous 

chapters. The first problem refers to wrinkling of stainless steel tubes under 

uniform axial compression, and comparison with both experimental data and 

analytical predictions is conducted. Bifurcation analysis of perfect cylinders, 

associated with the initial development of wrinkles is described first. 

Subsequently, simulation of gradual development and localization of wrinkles in 

initially imperfect cylinders is presented using a nonlinear incremental analysis. 

The tubes under consideration have been tested by Bardi and Kyriakides 

(2006a) and are made of stainless steel material SAF 2507 super-duplex, which 

can be described for uniaxial tension through a Ramberg-Osgood stress-strain 

curve [equation (6.1)] 

1
3

1
7

n

E

 




  
   

   

 (6.1) 

where the values of E ,   and n  have been determined through an appropriate 

tensile test equal to 194 GPa, 572 MPa and 13 respectively. The cylindrical 

shells are thick-walled with diameter-to-thickness ratio between 20 and 50, and 

are appropriately machined so that the buckling area can be considered free of 

boundary conditions. More details on the specimens and the experimental 

procedure can be found in Bardi & Kyriakides (2006a). 
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Initial wrinkling of those tubes as obtained from a bifurcation analysis 

conducted with the present numerical tools. The numerical results are compared 

with experimental results and analytical solutions. More specifically, the 

bifurcation load at first wrinkling and the corresponding wavelength can be 

calculated analytically using equations (6.2) and (6.3). 
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where R  and 
st  are the radius and wall thickness of the tube and 

aC  are the 

instantaneous material moduli according to J2 - deformation plasticity theory, at 

the bifurcation stage. Expressions for moduli 
aC , for both associative and non-

assocative J2 - plasticity, can be found in Bardi and Kyriakides (2006). It should 

be noted that first wrinkling of those thick-walled cylinders in the plastic range 

is always axisymmetric (Figure 6 - 4) as shown analytically by Gellin (1979). 

The analytical and numerical predictions for the critical stress and strain are 

plotted against s
D t  in Figure 6 - 2 and Figure 6 - 3, respectively, together with 

experimental results reported in Bardi et al. (2006b). In this figure, ○ and ● 

refer to the upper and lower bound of first wrinkling observed in tests (Bardi 

and Kyriakides, 2006a) respectively. In the same graph, the corresponding 

analytical and numerical predictions using J2 - flow (associative) and the present 

(non-associative) theory both analytically and numerically are also shown. Note 
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that the numerical predictions of J2 - flow theory have been obtained from the 

present finite element technique and the constitutive equations for the 

associative flow rule; these equations are obtained from the flow rule (2.10) 

omitting the second term on the right-hand-side. The analytical predictions are 

obtained from equation (6.2) using the appropriate instantaneous moduli 
aC  

for the associative and non-associative case. The comparison with experimental 

data shows the superiority of the non-associative flow model with respect to the 

associative flow model in predicting bifurcation in the plastic range. 

Furthermore, a very good comparison of the present numerical model and the 

corresponding analytical results from equation (6.2) is shown. The axisymmetric 

buckling shape is shown in Figure 6 - 4. 

 

Figure 6 - 2: Critical stress (onset of wrinkling) with respect to specimen sD t  ratio, 

analytical predictions refers to equation (6.2) 
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Figure 6 - 3: Critical strain (onset of wrinkling) with respect to specimen sD t  ratio 

 

Figure 6 - 4: Bifurcation (first wrinkling) shape of axially loaded stainless steel cylinder 

( sD t =26.3). 
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limit load instability (occurrence of maximum load on the load-displacement 

curve), followed by the development of localized buckling patterns. To describe 

this process, an initially axisymmetrically wrinkled pattern is assumed and 

gradual development and localization of this wrinkling pattern is monitored. 

Towards this purpose, a thick-walled cylinder  26.3
s

D t  , with the same 

material is considered, using a tube segment of length equal to seven half-

wavelengths. Each half-wavelength corresponds to the first buckling shape of 

Figure 6 - 4, and an initial wave-type imperfection is imposed with a small 

amplitude 0,max  equal to 0.1% of thickness. The half-wave length hwL  has been 

determined from the bifurcation analysis described above, equal to 14.515 mm. 

The load-displacement equilibrium path is shown in Figure 6 - 5a. Considering a 

small bias in the amplitude of one wrinkle (as initial imperfection), the analysis 

leads to a maximum load due to wrinkle localization denoted as limit state as 

shown in Figure 6 - 5a, where the numerical analysis the experimental curve are 

compared. The comparison between the non-associative model and tests results 

is very good in terms of the maximum load, the corresponding deformation and 

the initial post buckling behavior. It is noted that the limit (maximum) load 

occurs at a value of imposed displacement L  equal to 4.5%, which is well 

beyond the strain at which first wrinkles occur in the perfect cylinder (1.8%), 

shown in Figure 6 - 5b. This means that first bifurcation may not be related to 

the ultimate axial compression capacity of the cylinder, as noted by Bardi and 

Kyriakides (2006). Figure 6 - 5b shows the buckled configuration of the 
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cylindrical shell and the localization of wrinkling deformation at a value of 

imposed displacement L  equal 5%. In Figure 6 - 5c the evolution of radial 

displacement along a cylinder generator is shown, illustrating the non-uniform 

growth of wrinkle amplitude; the central ripple grows significantly more than 

the others, resulting in localization of wrinkled pattern and loss of structural 

strength. Finally, in Figure 6 - 5a, the numerical results using the classical J2 - 

flow theory are also shown. The comparison is satisfactory up to a certain level, 

but this associative model does not predict accurately the ultimate load 

deformation and the initial post buckling behavior.  
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(b) 

 

(c) 

Figure 6 - 5: (a) Stress-displacement response, comparison with the test result reported 

in Bardi & Kyriakides (2006); (b) Deformed configuration of axially loaded cylinder 

with localized wrinkling corresponding to L  value of 5%; (c) evolution of radial 

displacement along a cylinder generator with increasing axial compression for specimen 

with 26.3sD t  and yield stress 572 MPa . 
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Figure 6 - 6: Reproduction of a deformed configuration of the shell at different values of 

displacement for specimen with 26.3sD t  and yield stress 572 MPa . 

6.2 Imperfection sensitivity of cylindrical shells in the inelastic range 

The buckling performance of imperfect thick-walled cylinders subjected to 

axial (meridional) compression has been examined analytically by Gellin (1979). 

Gellin enhanced the methodology initially proposed by Koiter (1963) for elastic 

thin-walled cylinders, employing shell kinematics based on DMV shell theory, 

and elastic-plastic material behavior through J2 - deformation theory. 

Comparison is conducted for a thick-walled cylindrical shell with 
sD t  equal 

to 51. The material behavior can be described by equation (6.2), with E ,   and 

n  equal to 194 GPa, 572 MPa and 5 respectively, so that the ratio of the 

effective yield stress   to the classical buckling stress of the elastic shell 
e

c   

is 0.5 (
e

c  is defined equal to  23 1sE t R ). The analysis assumes an initial 

imperfection in the form of first axisymmetric buckling mode (see Figure 6 - 7) 

obtained by a bifurcation analysis, as described above. 

Considering a tube segment of length equal to twice the value of half-
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wavelength  2 hwL L , and the axisymmetric initial imperfection, secondary 

bifurcation to a non-axisymmetric mode is calculated. The results of the 

numerical calculations are presented in Figure 6 - 7, where the bifurcation load 

of the imperfect shell crP  is normalized by the bifurcation load of the perfect 

shell 0cr,P  and plotted in terms of the imperfection amplitude 0,max  showing a 

very good comparison with Gellin’s results. 

 

Figure 6 - 7: Imperfection sensitivity in the plastic range for a metal cylinder with 

51sD t  and yield stress 572 MPa . 
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various instabilities which result in their structural failure. Brazier (1927), in a 

pioneering publication, has demonstrated analytically that bending of relatively 

thin-walled circular elastic tubes induces ovalization to the tube cross-section. 

The growth of ovalization causes a progressive reduction in the bending stiffness 

of the shell, leading to a maximum value of moment, referred to as “limit 

moment” or “ovalization moment”. With increasing bending beyond this “limit 

point”, a drop in moment occurs. In practical applications, this limit moment 

instability is often preceded by shell bifurcation-type instabilities characterized 

by short-length axial waves, as demonstrated in recent numerical works 

[Karamanos and Houliara (2006, 2010)]. 

In the case of thicker cylindrical shells ( 100sD t ), the response and the 

ensuing instabilities, are strongly influenced by both cross-sectional ovalization 

and the plastic behavior of the metal material. Experimental works, together 

with semi-analytical solutions have demonstrated that although the ovalization 

imposed on the shell cross-section is relatively small for shells bent into the 

plastic range, it still leads to the development of a limit moment. Nevertheless, 

in addition to limit load instability, the shell exhibits various shell-type buckling 

modes in the form of uniform wrinkles along the compression side of the bent 

tube. Under increasing bending, localization of wrinkled patterns or secondary 

buckling into a non-uniform wrinkling pattern has been observed in several 

experiments. 

The above structural behavior is simulated numerically, using the numerical 
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tools described in the present work. The tube is made of aluminum (AL 6061-

T6), diameter and thickness are equal to 31.75 mm (1.25 in) and 0.889 mm 

(0.035 in) respectively, 35.7sD t  and has been tested experimentally 

(Kyriakides and Ju, 1992). Material behavior is described by a Ramber-Osgood 

of stress-strain curve equation (6.1), with E ,   and n  equal to 67.36 GPa, 282 

MPa and 28 respectively, corresponding to a yield stress of 283.4 MPa . 

At first, wrinkling on the ovalization bending prebuckling state is 

determined, and the corresponding half-wavelength is computed ( hwL ). A 

sequence of analyses is performed to determine the half-wavelength (Figure 6 - 

8). The moment is normalized by the fully-plastic moment ( 2

0 Y sM t D ) and 

the curvature is normalized by the value of characteristic value 2

I st D  .  

 

Figure 6 - 8: Comparison of results for the half-wavelength (Kyriakides and Ju, 1992) 

with present numerical predictions. 
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The structural response of thick cylindrical shells and the ensuing instabilities 

are strongly influenced by the plastic behavior of the metal material, as well as 

by the ovalization of the cross-section, implying a highly nonlinear prebuckling 

state. Along this nonlinear path, the shell exhibits various shell-type buckling 

modes in the form of wrinkles along its compression side. First bifurcation 

occurs in a uniform wrinkling pattern shown in Figure 6 - 9, denoted by the 

first arrow ( ) on the primary path. Subsequently a secondary bifurcation on 

the prebuckling path is also detected, in the form shown in Figure 6 - 9 denoted 

by the second arrow ( ). Figure 6 - 9 shows the predicted ovalization-curvature 

response for the shell. 

 

Figure 6 - 9: Moment-curvature diagram of alumium tube with 35.7
s

D t   and 

283.4 y MPa   from ovalization analysis; first and secondary bifurcation occurs in (a) 

and(b), respectively. 
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Figure 6 - 10: Ovalization-curvature diagram of aluminium tube with 35.7
s

D t   and 

283.4 y MPa   from ovalization analysis. 

        

(a) (b) 

Bifurcation shapes of bending loaded aluminium tube with 35.7
s

D t  , 

(a) 1st buckling mode(uniform wrinkling).and (b) 2nd buckling mode. 
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The post-buckling behavior of the shell can be analyzed by allowing for 

deformations which vary along the length of the shell. A shell with initial 

geometric imperfections is considered. The imperfection is in the shape of the 

critical buckling mode obtained from the bifurcation analysis presented above. 

The results of the effect of imperfections with amplitudes 0,i   =0.15% and 

0.45% are shown in Figure 6 - 12 using tube segment of length equal to 2 hwL . 

The main influence of the imperfections on the calculated responses is seen to 

occur once the shell enters the plastic range of the material. Due to the 

imperfections, the shell becomes more compliant and the limit load instability 

occurs at a smaller curvature than that of the perfect shell. The limit point 

indicated by (  on the response, and the secondary bifurcation on the primary 

path is calculated indicated by ( X ). 

 

Figure 6 - 12: Moment-curvature diagram of tube with 35.7
s

D t  . 
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From the results presented so far, it has been demonstrated that at some 

curvature the shell develops uniform wrinkles. As the result, the overall stiffness 

of the shell is reduced and the limit load develops. It has been shown that 

structures which exhibit such behavior tend to develop localized buckling soon 

after the limit load. The possibility of this occurring will be checked by 

considering a section of the shell containing a number of wrinkles  7 hwL L . A 

small imperfection is included which provides a small bias to the amplitude of 

the one of the wrinkles. For the shell with 35.7
s

D t   the wrinkles were found 

to localize. The effect of localization on the response is shown in Figure 6 - 13, 

where the uniform wrinkle analysis and the localized wrinkle analysis are 

compared. Results for 0,i  =0.15% and 0.45% are shown in Figure 6 - 15, 

respectively, with i   kept constant and equal to 0.015% of thickness. 
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Figure 6 - 13: Comparison of test results (Kyriakides and Ju, 1992) with present 

numerical predictions.  

The progressive development of localized deformations in the shell is 

illustrated in Figure 6 - 14, which shows the ovalization predicted along the 

length of the shell analyzed at different value of curvature. 
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Figure 6 - 14: Ovalization along length of the shell at different value of curvature. 

 

Figure 6 - 15: Comparison of predictions of uniform wrinkle and localized wrinkle 

analysis.  
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Figure 6 - 16: Deformed configuration of a bent shell with localized wrinkling 

 35.7
s

D t  .  

The wrinkles are seen to grow uniformly up to the limit load, beyond which 

the central part of the shell ovalizes faster than the other parts. Figure 6 - 16 

shows the deformed configuration of the shell analyzed, which illustrates the 

non-uniform growth of the amplitude of the wrinkles. The central wrinkle is 

grown significantly more the others. 

A shell with initial geometric imperfections is considered next. The 

imperfections are related to the second buckling mode obtained from the 

bifurcation analysis presented above. The effect of using the shape of the second 

bifurcation as initial imperfection with different amplitudes is shown in Figure 6 

- 17.  
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Figure 6 - 17: Moment-curvature diagram of tube with initial imperfection the shape of 

the second bifurcation 

The results show that even very small initial wrinkles of the cylinder wall 

may have significant effects on the structural response of the cylindrical member 

under bending loading. 
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CChhaapptteerr  77  

SStteeeell  TTuubbuullaarr  MMeemmbbeerrss  uunnddeerr  AAxxiiaall  

CCoommpprreessssiioonn  aanndd  BBeennddiinngg  

The numerical formulation developed in the previous chapter is employed for 

the analysis of high-strength steel circular hollow section tubes. These tubular 

members are basically thick-walled cylindrical shells that buckle in the plastic 

range. 

7.1 Introduction 

High-strength steel circular hollow section (CHS) tubes are becoming popular 

in a variety of structural engineering applications, such as tubular columns of 

building systems or members of tubular lattice structures. The principal 

characteristic of these steel products, with respect to CHS tubes of normal steel 

grades, is the elevated yield stress value, which implies increased ultimate 

capacity, resulting in a good relationship between weight and strength. They 

can also be efficient in cases where space occupancy becomes a critical design 

criterion.  

According to current design practice, the ultimate capacity of steel CHS 
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members under axial compression and bending loads depends primarily on 

whether the section is classified as “compact” or “non-compact”, i.e. on the 

ability of the cross-section to sustain significant inelastic deformation before 

failure in the form of local buckling. The provisions of EN 1993-1-1 standard 

specify four (4) cross-sectional classes. More specifically, Class 4 corresponds to 

thin-walled sections, which are able to sustain compression due to axial/bending 

load only in the elastic range. On the other hand, Class 1 comprises thick-walled 

sections that are able to deform well into the plastic regime, without exhibiting 

local buckling, whereas Classes 2 and 3 refer to intermediate type of structural 

behavior. For the case of CHS tubular members, classification in EN 1993-1-1 is 

based on the value of the diameter-to-thickness ratio, as well as on the value of 

the material yield stress, as shown in the second column of Table 7 - 1. The 

same classification is also adopted by the CIDECT guidelines (Rondal et al., 

1996) for hollow section stability, whereas similar provisions for cross-sectional 

classification on CHS members can be found in other specifications (e.g. AISC, 

API RP2A – LRFD). 

The above classification provisions have been initially developed for the case 

of high-strength steel CHS tubular members with 460Y MPa   . Within the 

EN 1993 steel design framework, a new standard has been issued recently (EN 

1993-1-12) to specify the applicability of the other EN 1993-1-xx standards in 

high-strength steel applications. According to EN 1993-1-12, the EN 1993-1-1 

classification provisions, shown in Table 7 - 1, may be applied for high-strength 
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steel members as well. However, the existing classification for CHS tubular 

members appears to be rather conservative for high-strength steel tubular 

members; as an example one can readily obtain from Table 1 that CHS sections 

with 
s

35D t   and 690Y MPa   , are classified as Class 4 sections, which 

implies a low ultimate capacity, within the elastic range. On the other hand, 

such a section subjected to bending is expected to exhibit significant inelastic 

deformation before local buckling. 

The key issue in the above classification of CHS members is their cross-

sectional strength, mainly in terms of local buckling, which constitutes a shell-

buckling problem in the inelastic range. Inelastic buckling of relatively thick-

walled steel cylinders under compressive loads has been the issue of significant 

research. Early experimental observations (Lee 1962; Batterman, 1965) as well 

as the results of the previous chapter have shown that under pure axial 

compression or bending, thick-walled cylinders – in contrast with thin-walled 

ones – do not fail abruptly, but one can observe significant wall wrinkling before 

an ultimate load occurs. Analytically, a main challenge for solving this problem 

has been the combination of structural stability principles with inelastic multi-

axial material behavior. In particular, it has been recognized that buckling 

predictions depend on the choice of plasticity theory (Gelin 1979; Tvergaard 

1983), and for a thorough presentation of metal cylinder buckling behavior 

under uniform axial compression, the reader is referred to the recent papers by 

Bardi & Kyriakides (2006) and Bardi et al. (2006).  
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In addition to uniform axial compression, bending buckling of tubular 

members has also received significant attention, motivated mainly by their use 

in pipeline applications. Experimental works indicated that failure of thick-

walled tubes under bending is associated with tube wall wrinkling, has several 

similarities with the case of uniform axial compression, but is characterized by a 

nonlinear prebuckling state – due to cross-sectional ovalization – and a more 

localized buckling pattern on the compression side of the cylinder. The reader is 

also referred to the papers by Ju & Kyriakides (1992) and Karamanos & 

Tassoulas (1996), where semi-analytical and numerical tools have been 

developed respectively for simulating the formation of local buckling due to 

bending. These works have shown that the adoption of a non-associative corner-

like plasticity theory may provide the most accurate results with respect to 

experimental data. 

The present chapter aims at employing the non-associative model in order to 

examine the cross-sectional classification of high-strength steel CHS seamless 

tubular members. The investigation described in the present chapter is 

numerical, based on the special-purpose finite element formulation, presented in 

previous chapters, and is aimed at determining the maximum load at which 

failure occurs, either because of bifurcation to a wavy pattern or due to 

localization of deformation. It has been part of an extensive European research 

program, ATTEL, on the structural behavior of high-strength steel tubular 

members (Jaspart et. al., 2012). These high-strength steel tubes have also been 
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considered by Pournara et al. (2012) in terms of their structural beam-column 

behavior. In that work the need for a more reliable classification of high-

strength steel CHS sections has been addressed. 

The seamless tubes under consideration have yield stress equal or higher than 

590 MPa, and diameter-to-thickness ratio ranging between 20 and 60, which are 

typical for structural applications. Initial imperfections and residual stresses 

from real measurements are taken into account in the present analysis. The 

numerical results are presented in the form of diagrams, which show the 

cylinder strength and deformation capacity (axial and bending) in terms of 

cylinder slenderness, and are aimed towards evaluating the applicability of 

existing classification rules in EN 1993-1-1 for high-strength steel CHS tubes. 

Table 7 - 1: Classification in EN 1993-1-1, based on the value of the diameter-to-

thickness ratio 

Class Class limits 
Class limits in terms 

of shell slenderness  * 

1 250
s

D t   
1 0.278    

2 2 250 70sD t    
1 20.278 0.329       

3 2 270 90
s

D t    
2 30.329 0.373       

4 290
s

D t   
3 0.373    

*
 
is the “shell slenderness” and defined as Y e   , where 0.605e xEC t R  is 

the elastic buckling stress, and the value of xC  is taken equal to 0.6 (Appendix IV) 
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7.2 Material characterization and imperfection measurements 

Results are obtained for 355.6-mm-diameter (14-inch) high-strength-steel 

tubes with thickness ranging between 6.4 mm and 16 mm covering a wide range 

of structural CHS sections. Two materials with yield stress equal to 590 MPa 

and 735 MPa are used, with nearly constant hardening modulus equal to 40E  

(Pournara et al. 2012), as shown in the nominal stress – engineering strain curve 

of the high-strength steel material  735Y  MPa  in Figure 7 - 1. The 

elongations limit corresponding to maximum nominal stress 8%. 

 

 

Figure 7 - 1: Nominal stress – engineering strain curve of the high-strength steel 

material. 
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The finite element model is capable of including the effects of initial 

imperfections, by prescribing the configuration of the shell surface in the initial 

(reference) stage. In the present analysis, the initial imperfection is assumed in a 

wavy form, similar to the buckling shape obtained from the bifurcation analysis 

on the pre-buckling equilibrium path. In addition to initial imperfections, the 

finite element model accounts for the presence of residual stresses, which may 

have a significant effect on the buckling load. The amplitudes of initial 

imperfections and residual stresses are obtained from measurements conducted 

by Centro Sviluppo Materiali SpA on the tubes under considerations in the 

course of the ATTEL project. 

Initial wrinkling measurements have been obtained using an ultrasonic 

device. Tube wall coordinates were measured at every 10 mm along 8 equally-

spaced generators, for a pipe length of equal to about two tube diameters. 

Typical results from those measurements are shown in Figure 7 - 2(a) for three 

typical generators. 

These measurements along the generators have been processed to estimate 

initial wrinkling, as well as cross-sectional distortions (i.e. out-of-roundness 

imperfections) at specific cross sections along the tube.  
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(a) 

 

(b) 

Figure 7 - 2: Typical data from (a) measurement of generator geometry (b) out-of-

roundness of three cross-sections. 
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Figure 7 - 3: Statistical evaluation of 
0 , the measured absolute-value amplitude of the 

axisymmetric imperfection. 

 

 

Figure 7 - 4: Statistical evaluation of n , the measured absolute-value amplitude of the 

non-axisymmetric imperfection. 
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It is assumed that the deviation of every cross-section from the perfect round 

shape is the superposition of an "extensional" component, which is uniform 

around the cross-section, and can be considered as axisymmetric initial 

imperfection associated with pure “bulging” or “shrinking”, and a non-uniform 

component which corresponds to cross-sectional out-of-roundness (distortion) as 

shown in Figure 7 - 2(b). In Figure 7 - 3 and Figure 7 - 4, 
0  and 

n  represent 

the measured amplitudes of the axisymmetric and the non-uniform imperfection 

components respectively, with respect to tube thickness. A statistical evaluation 

of 
0  and 

n  is offered in those Figures; the values of 
0 =0.8% and 

n =1.8% 

correspond to an 80% upper limit of the measurements, and are considered as 

representative initial imperfection values to for the parametric study described 

in the next section. 

Residual stress measurements have also been performed in both the axial and 

the circumferential hoop direction (Pournara et al. 2012). The measurements in 

the hoop direction have been obtained through the “splitting ring” method, as 

specified in ASTM E1928-99, and resulted in an opening deformation (gap) of 

17.7 mm, corresponding to a maximum hoop stress of 122 MPa (about 16% of 

the actual yield stress). Furthermore, to estimate the residual stresses in the 

axial direction, longitudinal strips have been obtained from the tubes, and their 

curvature has been measured, corresponding to a maximum stress of 26 MPa, 

which is only 4% of the yield stress. The values of residual stresses in the axial 

direction are very low, due to the fact that the tubes under examination are 
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seamless, and therefore, they can be neglected.  

7.3 Analysis Methodology 

7.3.1 Methodology for axial loading 

Infinitely long cylindrical shells with axisymmetric and non-axisymmetric 

initial imperfections are analyzed under axial compression loading by 

appropriate implementation of the ‘‘tube-element’’. Non-axisymmetric modes 

and bifurcations along the equilibrium path are identified. Experimental 

observations as well as numerical results have shown that first wrinkling in the 

plastic range is axisymmetric. First, the corresponding bifurcation load and 

wavelength can be calculated analytically using equations (6.2) and (6.3), and 

have shown to be very close to the numerical results. 

The present analysis follows the steps described in Chapter 6.1. Assuming a 

half-wave length from equation (6.3), axisymmetric wrinkling on the 

prebuckling state for the uniformly-compressed cylinder is determined. Then, 

considering a tube segment of length equal to twice the value of half-wavelength 

2 hwL L , and an axisymmetric initial imperfection, secondary bifurcation to a 

non-axisymmetric mode is calculated. In this analysis, the axisymmetric 

imperfection amplitude 
0  is 0.8%, as indicated by the corresponding 

measurements.  

Subsequently, two possible limit states are examined. First, localization of the 

axisymmetric wrinkling pattern is examined, using a tube segment of length 
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equal to several half-wavelengths. Considering a small bias in the amplitude of 

one wrinkle, the analysis leads to a maximum load 
1N  due to wrinkle 

localization denoted as limit state (a). In addition, a tube segment of length 

equal to two half-wavelengths is analyzed with a combination of axisymmetric 

and non-axisymmetric imperfections, with relative amplitudes 
0  and 

n  equal 

to 0.8% and 1.8% respectively, so that a maximum load 
nN  is obtained. This 

limit state is denoted as limit state (b). The smallest value of 
1N  and 

nN  

determines the ultimate axial load (strength) of the cross-section 
uN . The axial 

shorting 
u
 corresponding load 

uN  is also calculated. 

7.3.2 Methodology for bending loading 

The second part of this study concerns the prediction of ultimate capacity 

under bending loading, following the analysis steps described by Ju&Kyriakides 

(1992). The analysis is similar to the one in axial loading described above. At 

first, wrinkling on the ovalized bending prebuckling state is determined, and the 

corresponding half-wavelength is computed hwL . Then, using an initial 

imperfection on a tube segment of length equal to 2 hwL , secondary bifurcation is 

detected along the equilibrium path.  

Subsequently, two possible limit states are examined, following a 

methodology similar to the one described for axial loading; (a) localization of 

wrinkling pattern with an ultimate moment 
1M  and (b) a combination of 

imperfection corresponding to initial and secondary buckling modes associated 
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with a maximum moment 
nM . The minimum value from the corresponding 

maximum moments 
1M  and 

nM  determines the ultimate moment of the cross-

section, denoted as 
uM . 

7.3.3 Parametric study 

The above advanced numerical tools are used to examine buckling of 

cylindrical high-strength steel shells under pure axial compressive load and pure 

bending. The cylindrical shells under consideration are thick-walled with 

properties shown in Table 7 - 2. 

Table 7 - 2: Geometric and mechanical properties of tubes 

Tube  st  mm  
sD t *  Y  MPa    Class** 

1 6.4 55.56 735 0.517 4 

2 8.0 44.45 735 0.463 4 

3 10.0 35.56 735 0.414 4 

4 12.5 28.45 735 0.370 3 

5 14.2 25.05 735 0.347 3 

6 16 22.22 735 0.327 2 

7 14.2 25.05 590 0.311 2 

8 16 22.22 590 0.293 2 

* D is equal to 355.6 mm for all tubes,  

** According to EN-1993-1-1 
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The structural behavior is summarized schematically in the axial load-

displacement response of the thin-walled Tube 1 in Figure 7 - 5, whereas the 

behavior of Tube 4 is shown in Figure 7 - 6. The load is normalized with the 

value
y yN A , where A  and 

y
 are the cross sectional area and the yield 

stress, respectively. The reported displacement is normalized by the tube length. 

At a certain displacement value indicated by the first arrow (↓) on the load-

displacement curve, first axisymmetric wrinkling is calculated. Secondary 

bifurcation to a non-axisymmetric mode on the primary path is calculated 

indicated by the second arrow (↓). The paths corresponding to the two possible 

limit states are examined, as described in section 7.3.1. The ultimate maximum 

strength axial load of the cross-section 
uN , is equal to 

1N , for the localization 

analysis and is indicated by the arrow (↑) in the two graphs. 

 

Figure 7 - 5: Axial load – displacement diagram of Tube 1. 
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Figure 7 - 6: Axial load – displacement diagram of Tube 4. 

 

Figure 7 - 7:. Moment-curvature diagram of thin-walled Tube 1. 
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Figure 7 - 8: Moment-curvature diagram of Tube 4. 

The bending behavior is shown in the moment- curvature response of Tube 1 

in Figure 7 - 7 and of Tube 4 in Figure 7 - 8. The moment is normalized by the 

fully-plastic moment ( 2

p Y sM t D ) and the curvature is normalized by the 

value of characteristic curvature 2

i sk t D . 

7.4 Comparison with experimental results 

Some limited experimental results are also reported on the high-strength steel 

CHS seamless tubes under consideration for verification purposes. The tests 

have been conducted by CSM in the course of ATTEL project, and comprise 

three (3) tests with uniform axial compression, and two (2) tests on bending. 

The tubes have cross-sections denoted as A, B and C (see Table 7 - 3), and a 

steel material with yield stress equal to 735 MPa. The slenderness values for 
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sections A, B and C are equal to 0.370, 0.395 and 0.305. The axial load tests 

failed because of buckle development in the form of bulging near the welds, a 

typical failure mode for this type of loading. All three tests showed that they 

are capable of sustaining an axial load significantly higher than the full plastic 

thrust of the section (see Table 7 - 3). The two bending experiments on sections 

A and B, because of test set-up limitations, did not reach the local buckling 

stage. Nevertheless, it has been possible to bend the two tubes at curvature 

levels corresponding to bending moments higher than the fully plastic moment 

(see Table 7 - 3). 

 

Table 7 - 3: Experimental results on the high-strength steel tubes 

Section  D mm   st  mm  

Yield 

Stress 

[MPa] 

Ultimate Thust 

 ,expuN  kN  

 ,expu yN N   

Ultimate Moment

 ,expuM  kNm  

 ,expu pM M   

A 355.6 12.5 735 
10254 

(1.033) 

1168.6 

(1.402) 

B 323.9 10 735 
7961 

(1.082) 

805.93 

(1.438) 

C 193.7 10 735 
4414 

(1.102) 
 

classification of HSS CHS members 
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7.4.1 Comparison with numerical results and test data and discussion 

The above predictions of ultimate capacity are plotted against the finite 

element results and the test data, in Figure 7 - 9 and Figure 7 - 10 for the axial 

compression and bending respectively, with respect to the slenderness parameter 

 . The ultimate axial load and bending moment values are normalized by 
yN  

and 
pM  respectively. The comparison between numerical results, test data and 

design provisions indicates that the EN 1993 standard provides a rather 

conservative ultimate capacity in terms of both axial and bending moment for 

the value of initial imperfections assumed in the present study. 

 

 

Figure 7 - 9: Stability curve in EN1993 compared with numerical results and 

experimental data. 
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Figure 7 - 10: Stability curve in EN1993 compared with numerical results and 

experimental data. 

In addition, Figure 7 - 11 and Figure 7 - 12 show the numerical results for 

the deformation capacity of the cross-section for axial (
u ) and bending (

uk ) 

respectively, normalized by the corresponding values at initial yielding stage (
y  

and 
yk ), with respect to the value of  . The values of 

u  and 
uk  correspond to 

uN  and 
uM  respectively. The values of 

u y   and 
u yk k  indicate significant 

deformation capacity of the tubes under consideration, well beyond first 

yielding. 

To distinguish between class 1 and class 2, the key issue is deformation 

capacity. It has been empirically established that a ratio of ultimate 

deformation over the yield deformation equal to 4, offers a reliable limit for the 
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“border” between class 1 and class 2 sections.  

Therefore, in bending: 

 If 
maxM  less than 

yM : class 4. 

 If 
maxM  less than 

pM  but higher than 
yM : class 3. 

 If 
maxM  equal or higher than 

pM , and 
maxk  less than 4 yk : class 2. 

 If 
maxM  equal or higher than 

pM , and 
maxk  larger than 4 yk : class 1. 

In axial compression 

 If 
maxN  less than  y pN N : class 4. 

 If 
maxN  equal or higher than 

yN , and 
max  “very close” to 

y : class 3. 

 If 
maxN  equal or higher than 

yN , and 
max  less than 4 y : class 2. 

 If 
maxN  equal or higher than 

yN , and 
max  larger than 4 y : class 1. 

 

Figure 7 - 11: Deformation capacity of the cross-section under axial load conditions. 
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Figure 7 - 12: Deformation capacity of the cross-section under bending moment.
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A large-strain J2 - non-associative plasticity model has been developed for 

nonlinear analysis of cylindrical shells. The model maintains the basic 

formulation and implementation features of the standard J2 - flow theory, but 

contains the necessary modifications and enhancements for accurate shell 

buckling predictions, without any additional parameters required by corner or 

pseudo-corner theories, reported in previous publications. The model is 

consistent with shell theory requirements (zero stress normal to the shell 

laminae), it is numerically integrated through both the robust backward-Euler 

and forward-Euler substitution scheme.  

An enhanced version of the model for large strains is also presented, based 

on an additive decomposition of the rate-of-deformation tensor. This allows the 

direct application of the above robust integration schemes in large-strain 

analysis through a polar decomposition of the deformation gradient and 

appropriate rotation of the stress and strain tensors, while accounting for zero 

stress normal to shell laminae. The non-associative constitutive model is 

implemented within a special-purpose finite element formulation, which uses a 
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three-node “tube element”. Bifurcation buckling in the inelastic range is 

detected along the equilibrium path through an implementation of the 

“comparison solid” concept. Special emphasis is paid on the continuity of plastic 

flow, to overcome numerical problems of convergence.  

The numerical results are in excellent agreement with available experimental 

data and analytical predictions, and demonstrate that the present methodology 

is capable of describing accurately and efficiently buckling and post-buckling 

behavior of rather think-walled cylindrical shells in the inelastic range. In 

addition, the comparison with test data demonstrates the superiority of this 

non-associative model with respect to the classical associative J2 - plasticity 

model in predicting shell buckling in the inelastic range.  

Furthermore, wrinkling and post-wrinkling behavior of thick-walled high-

strength CHS seamless tubular have been presented in terms of both the 

ultimate load and the deformation capacity of typical cross-sections, in order to 

determine their ability to sustain load above the first yield level. The results 

have been compared with limited test data, and with the EN 1993 provisions for 

CHS member classification. Considering imperfections and residual stresses 

obtained from real measurements on high-strength steel seamless tubes, the 

finite element results indicated significantly higher ultimate capacity with 

respect to the design rules of the above specification rules, as well as a 

substantial deformation capacity, indicating the conservativeness of the EN 

1993 provisions for high-strength steel CHS member classification. 
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The contributions of the present dissertation can be summarized in the 

following:  

 A J2 - non-associative plasticity model is developed, capable of 

describing the effects of yield surface vertex on the structural response 

and buckling of shells in an efficient manner.  

 Robust integration schemes are presented, accounting for zero stress 

normal to shell surface and the “consistent moduli” are reported.  

 A large-strain J2 - non-associative plasticity model is also developed 

for efficient large-strain nonlinear analysis of cylindrical shells, and is 

integrated using the polar decomposition of deformation gradient and 

appropriate rotation of stress and rate of deformation tensors.  

 The constitutive model is implemented in a user material subroutine 

and incorporated in an in-house finite element technique for shell 

buckling analysis.  

 The present numerical results are compared successfully with 

available experimental data and analytical predictions.  

 The comparison with test data demonstrates the superiority of this 

non-associative model with respect to the classical associative J2 - 

plasticity model in predicting shell buckling in the inelastic range.  
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 Buckling calculations on thick-walled seamless tubulars made of high-

strength subjected to axial compression and bending are performed, in 

terms of both the ultimate load and the deformation capacity, and 

their ability to sustain load well beyond the elastic range is 

determined.  

 Based on the numerical results, considering imperfections and residual 

stresses obtained from real measurements on high-strength steel 

seamless tubes, those tubes exhibit significantly higher ultimate load 

and deformation capacity with respect to the predictions of existing 

design rules, indicating the conservativeness of current design practice 

for the case of high-strength steel tubulars.  
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Equation Chapter 9 Section 1AAppppeennddiixx  II  

JJ22  --  AAssssoocciiaattiivvee  CCoonnssttiittuuttiivvee  MMooddeell  aanndd  

IImmpplleemmeennttaattiioonn  

The classical formulation of J2 - flow theory with isotropic hardening is 

described in detail in this Appendix. Furthermore, its numerical integration is 

presented, using backward-Euler and forward-Euler schemes. 

I.1 Model description 

In the framework of associated plastic flow the plastic strain rate can be 

written as 

 ε s
σ

p F
 


   (I.1) 

where   is a positive scalar. 

The consistency condition 0F   implies  

 
3

2
q

kH
  s s  (I.2) 

The von Mises equivalent stress is defined as 

 
3

2
q  s s  (I.3) 
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and the equivalent plastic strain rate, using equations (I.1) and (I.3) becomes 

 22 2 2

3 3 3
ε ε s s

p p

q q        (I.4) 

 Then the plastic strain increment can be expressed as 

 
3

2
ε s

qp

q



 (I.5) 

and using equation (I.1), equation (I.5) becomes 

    
3 3 3 3

n n
2 2 2 2

ε s s s s s
p n

q q H H H
      (I.6) 

where  s n s n
n    and 

s
n

s
  is the unit normal to the yield surface. The rate 

form of the classical flow theory in equation (I.6) implies that the plastic strain 

increment is always normal to the yield surface. The instantaneous moduli for 

this model can be written as follows 

 
2

2 3 1
2 3

3 1 3
ep

G
G K G

q H G

  
      

   
D I J s s  (I.7) 

The components of 
epD  with respect to the covariant basis can be written 
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 (I.8) 

I.2 Numerical integration of the J2 - Associative Plasticity Model 

The method employed to integrate the above constitutive equations follows 
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an elastic predictor–plastic corrector scheme. Using the backward-Euler 

integration scheme for equation (I.1), the increment of plastic strain is written 

 1

1

3

2

p

q n

nq
  



ε s  (I.9) 

The final stress at stage  1n  is written 

 1 1

1

3

2
σ σ s

qe

n n

n

G

q
 



 


 (I.10) 

where the purely elastic (trial) stress is defined by the formula Δe

n σ σ D ε . 

From (I-10) the deviatoric stress is 

 1 1

1

3

2
s s s

qe

n n

n

G

q
 



 


 (I.11) 

or  

1

1

1

3
1

2

s se

n

q

n

G

q






 
 

 


 (I.12) 

which shows that the final deviator stress 
1sn
 is co-linear with the elastic stress 

s
e . Therefore, in the deviatoric plane, “plastic correction” from the elastic 

predictor onto the yield surface takes place “radially”. Squaring equation (I.11), 

the effective stress at the final state is calculated as follows 

 1 3e

n qq q G     (I.13) 

From (I-13), the yield function becomes 

  3 0e

q q qn
q G k       (I.14) 
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The above non-linear equation (I.14) is solved in terms of the equivalent plastic 

strain 
q  using Newton’s method. Once 

q  is found, equation (I.12) provides 

1sn
 and (I.11) the final stress 

1σn
. Finally the equivalent plastic strain at stage 

 1n  is 
1q q qn n
    , which completes the integration process. 

 

 

Figure I - 1: Geometrical representation of “radial return” algorithm. 

 Nevertheless, in accordance with shell theory, it is required that the traction 

component normal to any shell lamina is zero at any stage of deformation. In 

such a case, the strain increment can be decomposed in two parts (see equation 

(2.22)). The final stress becomes 

 1 33 1

1

3
2σ σ a s

qe

n n

n

G
G

q
 



  


  (I.15) 

where σ
e  is the elastic predictor that corresponds to the known part of ε  (eq. 

(2.28)).It should be noted that σ
e  is different from the elastic prediction σ

e . 

From equation (I.15) the hydrostatic and the deviatoric parts of the final stress 
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are written as 

 33

1 33  e

np p K g  (I.16) 

  1 33

1

1
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3
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s s a
e
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q
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q





 






 (I.17) 

Equation (I.17) shows that n 1s  and e
s  are not co-linear and the correction is 

not on the deviatoric plane. Squaring equation (I.17), the von Mises equivalent 

stress at the final state is calculated as follows 

 
33

2 33 33

1 33 334 6 3
ee

n qq q G g g G s G        (I.18) 

where  3 2 s s e e eq . 

From consistency, the final stress has to satisfy the yield criterion and this can 

be expressed as follows 

    1 33     n q qq n
q , k  (I.19) 

Enforcing the conditions of zero stress normal to any shell lamina ( 33 0n+1  ), 

and using (I-15) the following equation is obtained 

    
33

33 33 33

1 1 33

4
3 0

3

e

n q n

G
q G p g s g g 

 
    

 
   (I.20) 

 Summarizing the above formulation, equations (I.16), (I.18), (I.20) and the 

yield criterion (I.19) constitute a system of four equations to be solved for the 

four unknowns, namely, 
1nq , 

1np , q
 and 

33 . Considering q
 and 

33  as 

the primary unknowns, equations (I.20) and (I.19) can be solved in terms of 
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q
, 

33  using Newton’s method as described in more detail in Appendix II-2. 

I.3 Linearization moduli for the von Mises Plasticity Model 

The consistent rigidity moduli are computed from the basic equation 

1

1

c n
ep

n









σ
D

ε
. In the following, four-order tensor 

1 1n n  σ ε  is computed for the 

backward-Euler integration scheme and presented in the previous section. In 

particular, the final stress 
1nσ  can be written as 

  1 1 1 12     σ D ε N  Nn n q n q nd d G d d   (I.21) 

where the dimensionless tensor N  is defined at a certain stress state σ  by the 

following expression: 

 
1

3

2
N N s

e e

n eq
    (I.22) 

Differentiation of equation (I.22) gives 

 1 1

1

N N σ
N σ ε

σ σ ε

e e e
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n
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 (I.23) 

One can show that 

 
1 3

2


   



N
N N I

σ q q
 (I.24) 

Therefore, 
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N
N N I

σ

e
e e

e q q
 (I.25) 

and differentiation of the purely elastic (trial) stress gives 
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1σ D ε

e

nd d   (I.26) 

Using equations (I.25) and (I.26), equation (I.23) becomes 
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 (I.27) 

Differentiation of equation (I.14) gives 
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or equivalently, 
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Substituting, 
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 (I.30) 

so that 

 
1 1 1 1
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 (I.31) 

Finally, the condition of zero stress normal to shell laminae is imposed 

considering 33 0d   in the rigitidy moduli of equation (I.31). 



 

161 

 



 

162 

 

Equation Section 2AAppppeennddiixx  IIII  

AApppplliiccaattiioonn  ooff  NNeewwttoonn’’ss  MMeetthhoodd  iinn  

CCoonnssttiittuuttiivvee  MMooddeell  IImmpplleemmeennttaattiioonn  

II.1 J2 - non-associative model 

 Equations (2.30), (2.32), (2.36), (2.35) or (2.30), (2.40), (2.41), (2.35) are 

solved using the Newton method. The unknowns Δ q and 
33Δ  are chosen as the 

primary unknowns considering that equations (2.35) and (2.36) or (2.35)  and 

(2.41)  are the basic equations. Denoting as  Δ q  and  33Δ   the corrections 

of Δ q  and 
33Δ , the Newton equations become: 
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where 

 
11 22 12 21det A A A A A   (II.3) 

The Δ q  and 
33Δ is updated by  
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 (II.4) 

The iteration continues until 
1 2 0b , b  . 

For the backward-Euler scheme, the constants 
ijA  and 

ib  are given in the 

following expressions: 
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and  

 
   1 1 33n q qq n

b q , k        (II.9) 

  
33

1 33 33 33 33

2 1 33

1 11 1

33 4 3
1

3








 

   
        
    

q n e

n

n nn

G HG G G
b p g s g g s

h qh h
 (II.10) 

where 
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For the forward-Euler scheme, the constants 
ijA  and 

ib  are given in the 

following expressions: 
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where 
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 (II.20) 

II.2 J2 - associative model 

In the framework of associated plastic theory, equations (I.16), (I.18), (I.19) 

and (I.20) are solved using the Newton method. For the backward-Euler 

scheme, the constants 
ijA  and 

ib  are given in the following expressions: 
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and  
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For the forward-Euler scheme, the constants 
ijA  and 

ib  are given in the 

following expressions: 
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Equation Section 3AAppppeennddiixx  IIIIII  

AAllggoorriitthhmm  ffoorr  PPoollaarr  DDeeccoommppoossiittiioonn  iinn  

CCuurrvviilliinneeaarr  CCoooorrddiinnaatteess  

This algorithm computes the squares of the principal stretches 2

i ,  1 2 3i , , , 

which are the eigenvalues of C , by solving in closed form the characteristic 

polynomial. The algorithm has been introduced by Franca (1989), it is described 

in the book of Simo and Hughes (1998), pp 244, and is adapted herein for the 

case of curvilinear coordinates. The covariant base vector and the contravariant 

(reciprocal) base vector in the beginning of the step 
iG , j

G , the covariant base 

vector and the contravariant base vector in the current configuration 
ig , j

g

respectively, are given. Let 
ia ,  1 2 3i , ,  be the principal invariants of U defined 

as 
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and 
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end if. 

Compute the invariants of U  
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Furthermore, the coefficients ,   (i=1,2,3)i iA B  in the expressions (3.13) and (3.16) 

for U , 
1

U  are defined as 
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where 1 2 3D i i i  . 
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Equation Section 4AAppppeennddiixx  IIVV  

CCllaassssiicciiffiiccaattiioonn  ooff  CCHHSS  TTuubbuullaarr  MMeemmbbeerrss  

Table 1 shows the classification of CHS tubular members according the EN 

1993-1-1. For consistency with the present analysis, the slenderness limits have 

been also given in terms of the so-called “shell slenderness”, defined as: 

 Y

e





 (IV.1) 

where 

0.605e x

t
EC

R
  (IV.2) 

is the elastic buckling stress, and the value of 
xC  is taken equal to 0.6, 

representing an infinitely long cylinder, free of boundary condition effects. 

For Class 1, 2 and 3 CHS sections ( 0.372 ), the EN 1993-1-1 standard 

specifies that the ultimate axial compressive capacity 
uN  is equal to the fully-

plastic axial load Y YN A , where A  is the cross-sectional area. If the value of 

  exceeds 0.372, then the cross-section is classified as Class 4, implying that 

buckling occurs in the elastic range, and its ultimate axial compressive capacity 

uN  is calculated from the EN 1993-1-6 rules for buckling of cylindrical shells, as 

follows: 

,u x RkN A  (IV.3) 
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where the buckling strength 
,x Rk  can be written: 

 , x Rk Y     (IV.4) 

The reduction function   depends on shell slenderness as follows: 
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 (IV.5) 

where, assuming “excellent manufacturing quality”, the corresponding value of 

Q  is equal to 40, so that 

 
1.44

0.62

1 1.91


 w t




 (IV.6) 

1

40


w R

t t


 (IV.7) 

1.581P   (IV.8) 

For the case of bending loading, those provisions specify that Class 1 and 2 

cross-sections have an ultimate moment capacity 
uM  equal to the plastic 

bending moment P Y plM W , where 
plW  is the plastic bending modulus of the 

cross-section. For Class 3 sections, 
uM  is specified equal to the elastic bending 

moment Y Y elM W , where 
elW  is the elastic bending modulus. Finally, for Class 

4 CHS sections, 
uM is specified equal to ,x Rk elW , where the critical axial stress

,x Rk  is calculated from equations (IV.4) - (IV.8) above. 
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