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Abstract 

 

Motivated by practical engineering applications, the present study investigates the 

structural behavior and stability of thin-walled steel cylindrical shells with lateral 

confinement under two main types of loading, namely external pressure and longitudinal 

bending, both resulting in structural failure. The present work emphasizes on structural 

stability in terms of buckling, post-buckling and imperfection sensitivity. The investigation 

is computational using advanced finite element tools through the employment of a general-

purpose finite element program. The cylindrical shells under consideration and the 

corresponding confinements are simulated with nonlinear finite elements that account for 

both geometric and material nonlinearities. An extensive literature review on the examined 

mechanical issues is conducted for the evaluation and assessment of available analytical 

solutions and experimental data. A numerical simulation methodology is developed and 

verified in order to model the shell and the interaction with the confinement. Shells of 

elastic material are considered first, offering the possibility of comparing the numerical 

results with available closed-form or simplified analytical predictions. Subsequently, the 

buckling response of steel shells is examined and the results are compared with available 

experimental data. 

For the case of external pressure loading, the numerical results are presented in the 

form of pressure-deformation equilibrium paths, and show an unstable post-buckling 

response beyond the point of ultimate pressure capacity, indicating significant imperfection 

sensitivity on the value of the maximum pressure. The effects of the diameter-to-thickness 

ratio (D/t), the yield stress, the interface friction, and the medium deformability on the 

structural response are examined. It is demonstrated that even for rigid confinement 
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medium, the maximum (buckling) pressure is well below the pressure that causes 

plastification of the entire cylinder (referred to as yield pressure). Finally, based on the 

numerical results, a simplified and efficient methodology is developed which is compatible 

with the recent general provisions of European design recommendations for shell buckling, 

and could be used for design purposes. 

For the case of longitudinal bending loading of confined cylinders, the analysis refers 

to the case of the so-called lined pipes, focusing on the behavior of the thin-walled inner 

pipe (liner) which interacts with the outer pipe. Using a numerical simulation, the stresses 

and deformations in the compression zone are monitored, with emphasis on possible 

detachment of the liner from the confining medium, and on the formation of wrinkles. 

Furthermore, the development of liner ovalization, bending moment, local hoop curvature, 

axial stress, and hoop stress with increasing level of bending are investigated. The effects of 

liner thickness, friction, liner prestressing, and stiffness of the confining medium on the 

buckling curvature and wavelength are examined. The sensitivity of response on the 

presence of initial wrinkling imperfections is investigated. Finally, the effect of external 

pressure on the mechanical response is discussed. 

The present study aims at establishing the theoretical basis for understanding and 

solving a significant number of structural instabilities related to confined cylindrical shells, 

which are encountered often in numerous practical engineering applications. 
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Περίληψη 

 

Η παρούσα διδακτορική διατριβή εξετάζει τη δομική συμπεριφορά και ευστάθεια 

λεπτότοιχων χαλύβδινων κυλινδρικών κελυφών με πλευρικούς περιορισμούς που 

υπόκεινται σε δομικές φορτίσεις, και ειδικότερα σε εξωτερική πίεση και διαμήκη κάμψη. 

Κίνητρο της παρούσας έρευνας είναι η παρουσία των ανωτέρω προβλημάτων σε πρακτικές 

εφαρμογές μηχανικού, και συγκεκριμένα, στην αντοχή υπόγειων ή/και εγκιβωτισμένων 

αγωγών υπό εξωτερική πίεση και τη δομική συμπεριφορά εσωτερικώς επενδυμένων 

αγωγών υδρογονανθράκων (lined pipes) υπό καμπτική ένταση. Ιδιαίτερη έμφαση δίδεται 

στην δομική ευστάθεια και πιο συγκεκριμένα στην διερεύνηση του κρίσιμου φορτίου 

(αστοχία με τη μορφή λυγισμού), της μεταλυγισμικής συμπεριφοράς, και της ευαισθησίας 

σε αρχικές ατέλειες. Η παρούσα διερεύνηση είναι υπολογιστική και χρησιμοποιεί για αυτό 

το σκοπό δι-διάστατα και τρι-διάστατα μοντέλα προσομοίωσης. Το εξεταζόμενο 

κυλινδρικό κέλυφος καθώς επίσης και το αντίστοιχο μέσο εγκιβωτισμού προσομοιώνονται 

με πεπερασμένα στοιχεία τα οποία λαμβάνουν υπόψη μη-γραμμική συμπεριφορά υλικού 

και γεωμετρίας. Χρησιμοποιείται ένα γενικό πρόγραμμα πεπερασμένων στοιχείων για την 

προσομοίωση του κελύφους και της αλληλεπίδρασης με το μέσο εγκιβωτισμού. 

Αρχικά διεξάγεται μια εκτενής βιβλιογραφική ανασκόπηση των εξεταζόμενων 

προβλημάτων, όπου γίνεται αξιολόγηση και ταξινόμηση των διαθέσιμων αναλυτικών 

λύσεων και πειραματικών δεδομένων. Στη συνέχεια αναπτύσσεται και πιστοποιείται η 

αριθμητική μεθοδολογία προσομοίωσης. Εξετάζεται η αντοχή κελυφών από ιδεατό 

ελαστικό υλικό έναντι λυγισμού, προσφέροντας έτσι τη δυνατότητα σύγκρισης των 

υπολογιστικών αποτελεσμάτων με διαθέσιμες αναλυτικές προβλέψεις κλειστού τύπου. 
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Ακολούθως, διερευνάται η απόκριση των χαλύβδινων κελυφών και τα υπολογιστικά 

αποτελέσματα συγκρίνονται με διαθέσιμα πειραματικά αποτελέσματα. 

Στην περίπτωση των εγκιβωτισμένων κελυφών υπό εξωτερική πίεση, τα υπολογιστικά 

αποτελέσματα της εργασίας παρουσιάζονται στη μορφή δρόμων ισορροπίας πίεσης-

μετατόπισης και δείχνουν μια ασταθή μεταλυγισμική συμπεριφορά μετά το σημείο της 

μέγιστης πίεσης. Αυτή η συμπεριφορά υποδεικνύει μια σημαντική ευαισθησία του 

κρίσιμης πίεσης σε αρχικές ατέλειες. Μελετάται η επίδραση του λόγου διαμέτρου-προς-

πάχος, του ορίου διαρροής του υλικού, της τριβής, και της παραμορφωσιμότητας του 

περιβάλλοντος μέσου στην απόκριση του κελύφους. Σημειώνεται ότι, ακόμα και στην 

περίπτωση ενός άκαμπτου περιβάλλοντος μέσου, η μέγιστη πίεση είναι σημαντικά 

μικρότερη της πίεσης που προκαλεί πλήρη πλαστικοποίηση του κελύφους. Τέλος, με βάση 

τα υπολογιστικά αποτελέσματα, αναπτύσσεται μια απλοποιητική μεθοδολογία σχεδιασμού, 

η οποία είναι συμβατή με τις πρόσφατες γενικές διατάξεις των ευρωπαϊκών κανονισμών 

σχεδιασμού για την αστοχία κελυφών. Η μεθοδολογία αυτή μπορεί να χρησιμοποιηθεί για 

σχεδιαστικούς σκοπούς. 

Στην περίπτωση των εγκιβωτισμένων κελυφών υπό διαμήκη κάμψη, η ανάλυση 

αναφέρεται στην περίπτωση των επενδυμένων αγωγών, εστιάζοντας στη συμπεριφορά του 

λεπτότοιχου εσωτερικού αγωγού. Χρησιμοποιώντας την αριθμητική προσομοίωση, 

παρακολουθούνται οι τάσεις και οι παραμορφώσεις στην κρίσιμη περιοχή της θλίψης, 

δίνοντας έμφαση σε πιθανή αποκόλληση του κελύφους από το μέσο εγκιβωτισμού, και 

κυρίως στο σχηματισμό των κυματοειδών πτυχώσεων (τοπικός λυγισμός). Διερευνώνται η 

παράμετρος οβαλοποίησης, η καμπτική ροπή, η τοπική περιμετρική καμπυλότητα, οι 

αξονικές τάσεις και οι περιμετρικές τάσεις. Εξετάζεται η επίδραση στην κρίσιμη 

καμπυλότητα και στο μήκος κύματος του πάχους του κελύφους, της τριβής, της 

προέντασης του κελύφους, και της ακαμψίας του μέσου εγκιβωτισμού. Επίσης διερευνάται 

η ευαισθησία της απόκρισης στην παρουσία αρχικών ατελειών. Τέλος, εξετάζεται η 

επίδραση της εξωτερικής πίεσης στην μηχανική συμπεριφορά του συστήματος. 

Το Κεφάλαιο 2 αφορά τη μελέτη της δομικής συμπεριφοράς και ευστάθειας 

εγκιβωτισμένων αγωγών που υπόκεινται σε εξωτερική πίεση. Κίνητρο για την μελέτη του 

υπόψιν προβλήματος αποτέλεσε η δομική συμπεριφορά των υπόγειων αγωγών ύδατος ή 

υδρογονανθράκων που περιβάλλονται από έδαφος ή είναι εγκιβωτισμένοι σε σκυρόδεμα. 

Στην περίπτωση των υπόγειων αγωγών (buried pipelines), όταν ο υδροφόρος ορίζοντας 

βρίσκεται πάνω από το επίπεδο του αγωγού, το νερό φτάνει στον αγωγό διαμέσου του 

διαπερατού περιβάλλοντος του εδάφους ή του σκυροδέματος. Αυτό έχει ως συνέπεια την 
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ανάπτυξη κατάστασης υδροστατικής πίεσης γύρω από τον αγωγό, η οποία μπορεί να 

οδηγήσει σε αστοχία λυγισμού (buckling) του τοιχώματος του χαλύβδινου αγωγού. Η 

αστοχία των εγκιβωτισμένων αγωγών υπό υδροστατική πίεση είναι σημαντικά διαφορετική 

από την αστοχία λόγω θερμικών φορτίων, η οποία συχνά αναφέρεται ως “λυγισμός 

συρρίκνωσης” (shrink buckling). Στην περίπτωση της αστοχίας λόγω συρρίκνωσης, η 

θλιπτική δύναμη κατά την περιφέρεια απελευθερώνεται αμέσως μετά την αστοχία, ενώ 

αντίθετα στην περίπτωση της αστοχίας λόγω υδροστατικής πίεσης, το φορτίο της πίεσης 

εξακολουθεί να ασκείται και στο μεταλυγισμικό στάδιο. 

Στο Κεφάλαιο 3 εξετάζεται το δεύτερο θέμα της παρούσας διδακτορικής διατριβής, το 

οποίο αναφέρεται στη διερεύνηση της μηχανικής συμπεριφοράς και ευστάθειας των 

λεγόμενων επενδυμένων αγωγών (lined pipes) υπό κάμψη και εξωτερική πίεση. Ο 

επενδυμένος σωλήνας είναι ένας σωλήνας διπλού τοιχώματος που αποτελείται από δύο 

σωλήνες που βρίσκονται σε επαφή. Αποτελείται από έναν παχύ εξωτερικό σωλήνα από 

κοινό ανθρακούχο χάλυβα και έναν λεπτότοιχο εσωτερικό σωλήνα από ανοξείδωτο 

χάλυβα, ο οποίος αναφέρεται και ως “σωλήνας επένδυσης” (liner). Ο επενδυμένος αγωγός 

είναι μια σχετικά πρόσφατη τεχνολογική λύση που έχει προταθεί με επιτυχία για 

υποθαλάσσιους χαλύβδινους αγωγούς μεταφοράς υδρογονανθράκων (πετρέλαιο, αέριο 

κτλ), διότι εξασφαλίζει αντίσταση έναντι της εσωτερικής διάβρωσης του αγωγού και 

παράλληλα αντοχή στη συνδυασμένη καταπόνηση εξωτερικής πίεσης και διαμήκους 

κάμψης οι οποίες αναπτύσσονται κυρίως κατά την πόντιση του αγωγού. Ο επενδυμένος 

σωλήνας παράγεται με την εισαγωγή του εσωτερικού σωλήνα στον εξωτερικό, μέσω μιας 

κατάλληλης θερμο-υδραυλικής διαδικασίας κατασκευής. Στην κατεργασία αυτή, η 

διασύνδεση μεταξύ των δύο σωλήνων είναι καθαρά μηχανικής φύσεως, με την έννοια ότι 

το υλικό του εσωτερικού σωλήνα και αυτό του εξωτερικού σωλήνα παραμένουν δυο 

ξεχωριστά υλικά, σε αντίθεση με ότι συμβαίνει στη μεταλλουργική κατεργασία όπου τα 

δύο υλικά ενώνονται και συμπεριφέρονται ως ένα. Στην περίπτωση των επενδυμένων 

αγωγών, όταν εφαρμόζεται διαμήκης κάμψη, ο αγωγός οβαλοποιείται και σε ένα 

συγκεκριμένο στάδιο της παραμόρφωσης ο εσωτερικός αγωγός παρουσιάζει δομική 

αστάθεια στη μορφή ομοιόμορφων μικρών κυμάτων πτύχωσης (uniform wave wrinkles). 

Στη συνέχεια, και σε ένα προχωρημένο στάδιο της καμπτικής παραμόρφωσης, 

παρατηρείται η μετάβαση της μορφής της κυματοειδούς πτύχωσης σε μία δευτερεύουσα 

μορφή πτύχωσης με διπλάσιο μήκος κύματος και με πολύ εντονότερο μέγεθος. Η 

δημιουργία πτυχώσεων σημαντικού μεγέθους είναι μη επιθυμητή, ως εκτούτου, η ακριβής 
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πρόβλεψη της αστοχίας του εσωτερικού αγωγού σε λυγισμό είναι βαρύνουσας σημασίας 

για τον ασφαλή δομικό σχεδιασμό των υπόψη αγωγών. 

Μεταξύ των δύο υπό εξέταση προβλημάτων υπάρχουν σημαντικές ομοιότητες. Και τα 

δύο προβλήματα αναφέρονται στη δομική συμπεριφορά και ευστάθεια ενός λεπτότοιχου 

μεταλλικού κελύφους το οποίο είναι εγκιβωτισμένο. Ο εγκιβωτισμός αυτός επηρεάζει 

σημαντικά και αλλάζει την συμπεριφορά του κελύφους και αυτό έχει ως συνέπεια η 

γνωστή θεωρία και οι υπάρχουσες επιλύσεις των προβλημάτων για τα μη εγκιβωτισμένα 

κελύφη να μη μπορούν να εφαρμοστούν άμεσα στις παρούσες περιπτώσεις. Στο πρώτο 

πρόβλημα των εγκιβωτισμένων αγωγών υπό εξωτερική πίεση, ο λεπτότοιχος μεταλλικός 

αγωγός περιορίζεται από το περιβάλλον μέσο, με αποτέλεσμα ο αγωγός να μη μπορεί να 

οβαλοποιηθεί ελεύθερα όταν αναπτύσσεται εξωτερική πίεση. Αντίστοιχα, στο δεύτερο 

πρόβλημα των επενδυμένων αγωγών υπό διαμήκη κάμψη, ο λεπτότοιχος εσωτερικός 

σωλήνας περιορίζεται από τον παχύ εξωτερικό σωλήνα, με αποτέλεσμα ο εσωτερικός 

σωλήνας να μην είναι ελεύθερος να οβαλοποιηθεί από την επιβολή της κάμψης και να μην 

αστοχεί με τρόπο παρόμοιο με αυτόν των μη εγκιβωτισμένων αγωγών. Επιπλέον, και στις 2 

περιπτώσεις, η αποκόλληση του λεπτότοιχου κελύφους από το περιβάλλον μέσο είναι το 

κρίσιμο φαινόμενο που οδηγεί στην αστοχία με τη μορφή λυγισμού (δομική αστάθεια). 

Η παρούσα έρευνα αποσκοπεί στην δημιουργία θεωρητικού υπόβαθρου για την 

κατανόηση και την επίλυση ενός σημαντικού αριθμού προβλημάτων εγκιβωτισμένων 

κυλινδρικών κελυφών, τα οποία αναφέρονται σε πολλές πρακτικές εφαρμογές. 
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11..  IInnttrroodduuccttiioonn  

The present dissertation offers an in-depth investigation of the structural behavior and 

stability of thin-walled cylindrical shells under various loading conditions in the presence 

of lateral confinement. The work is motivated by practical engineering problems where the 

confinement can be a surrounding medium or another shell. Two principal structural 

loading conditions are mainly examined; the structural behavior of confined cylinders (a) 

under external pressure, and (b) under longitudinal bending. The first issue is motivated by 

the structural behavior of buried water or hydrocarbon pipelines surrounded by saturated 

soil medium or concrete encasement. In particular, when the groundwater table is above the 

pipeline level, the water reaches the pipe through the permeable surrounding soil or 

concrete, and hydrostatic pressure conditions develop around the pipeline, which may cause 

buckling of the steel pipeline wall. Buckling of confined cylinders under hydrostatic 

pressure is quite different than buckling under thermal effects, sometimes referred to as 

“shrink buckling”. In “shrink buckling”, hoop compressive force is relieved immediately 

after buckling occurs, whereas in hydrostatic buckling, pressure load is always present in 

the post-buckling stage. 

The second issue examined in the present dissertation refers to the mechanical behavior 

and wrinkling of confined cylindrical shells under longitudinal bending. The work focuses 

on the mechanical behavior of lined pipes. The lined pipe is a double-wall pipe, composed 

by two pipes that are in contact; a thick-walled carbon steel “outer pipe” and a thin-walled 

corrosion-resistant inner pipe, referred to as “liner” pipe. Lined pipe is a relatively recent 

alternative solution and a promising technological application of offshore hydrocarbon (oil, 

gas etc.) steel pipelines for ensuring internal corrosion resistance and withstanding normal 

transportation pressure as well as structural loads. A lined pipe is produced by inserting the 

liner pipe into the external carbon steel pipe, through an appropriate manufacturing process, 

so that the bond between the two pipes is purely mechanical, in the sense that the outer pipe 

material and the liner pipe material remain two distinct materials. When longitudinal 

bending curvature is applied, the lined pipe ovalizes and, at a certain stage of deformation, 

the liner buckles in the form of short-wave wrinkles (uniform wrinkling). Such an event is 

undesired, and therefore, prediction of liner buckling is of significant importance for the 

safe design of these pipes. 

There exist several similarities between the two above problems; they both refer to the 

structural behavior and stability of thin-walled steel shells embedded in a confinement 
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medium. This confinement affects and alters substantially the behavior of the shell, so that 

existing solutions and test data for the corresponding unconfined shells cannot be applied in 

the present case. In the first problem of externally-pressurized confined pipes, the thin-

walled steel pipe is constrained by the surrounding medium, so that the pipe cannot buckle 

in an oval form when external pressure is developed. In the second problem of confined 

cylinders under longitudinal bending, the thin-walled cylindrical “liner” is constrained by 

the thick-walled outer pipe, so that the liner is not free to ovalize under bending and may 

not buckle in a way similar to the one observed in the unconfined cylinders. This common 

characteristic of confinement connects the two subjects, justifies the parallel investigation, 

and allows the derivation of general conclusions. 

In the following section 1.1, a brief description of the structural behavior and stability 

of unconfined cylinders under external pressure and longitudinal bending is presented in 

order to introduce the reader to the original problem of cylindrical shell stability under 

external pressure and longitudinal bending, before continuing to the investigation of the 

corresponding problems in confined cylinders. 

 

1.1 Structural behavior and stability of unconfined cylinders 

1.1.1 Unconfined cylinders under external pressure 

When uniform external pressure is applied to a cylinder, during the initial stages of 

loading, the cross-section is uniformly shrinking, maintaining its circular shape up to a 

critical pressure. Nevertheless, at a certain stage, the cylinder collapses and deformation of 

the cross-section occurs abruptly in the form of ovalization [1]. Any such collapse failure 

normally will develop into a propagating collapse failure, since the critical collapse 

pressure of a circular cylinder is several times larger than the propagation pressure [2]. 

Research on cylindrical tube buckling under external pressure dates back to the middle 

of the nineteenth century. In an early study, Bresse [3], using small deflection theory, 

studied the stability of a thin circular elastic ring under external hydrostatic pressure. In 

particular, the constitutional law is taken into account assuming isotropic elastic behavior, 

as well as the basic kinematics formulae are used in which the total deformation is formed 

as the sum of the membrane and bending strain. The equilibrium equations are determined 

in terms of the radial and tangential mid-surface displacements. The primary equilibrium 

path is defined, assuming uniform shrinkage of the ring cross-section, i.e. the radial 

displacement is proportionate to the value of the external pressure, whereas the tangential 
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displacement is equal to zero. Considering the above assumptions, the following expression 

is derived: 

3

3
e

EI
p

R
 ,         (1) 

where ep  is the critical buckling pressure, E  is the modulus of elasticity, I  is the moment 

of inertia of the ring’s cross-section, and R  is the mean radius of the ring. Bryan [4] used 

the minimum potential energy criterion of stability to formulate an expression similar to Eq. 

(1) for the case of an infinitely long elastic pipe under external hydrostatic pressure. Using 

small deflection theory, the normalized equations of stability are formed. Periodic 

(trigonometric) functions for the radial and tangential displacements are assumed, and 

appropriate boundary conditions for the prevention of the rigid body motion are applied. In 

order to account for the plane strain conditions associated with the case of an infinitely long 

cylinder (pipe), the term E  in Eq. (1) has been replaced by the term 
2(1 )E v . 

Considering this modification and substituting for 
3 12I t , where a unit width is 

considered in the longitudinal direction of the cylinder, the resulting equation is: 

3

2

2

1-
e

E t
p

D

 
  

 
,        (2) 

where D  is the mean diameter of the pipe, t  is the wall thickness, and   is the Poisson’s 

ratio. Equations (1) and (2) are frequently credited to Timoshenko because of the summary 

of ring stability presented in his classical text [5]. For a more detailed presentation of this 

buckling problem, the reader is referred to the classic book of Brush & Almroth [6]. The 

corresponding shape of the buckled cylinder is described by the following functions for the 

radial w  and the hoop u  displacements of the cross-section: 

 cos 2w A  ,        (3) 

 sin 2
2

A
u   ,        (4) 

where A  is an arbitrary factor. A schematic representation of the radial and the hoop 

displacements is depicted in Figure 1. Assuming small values for the above displacements, 

the membrane hoop strain is also small, so that the failure mode is referred to as “first-

order” inextensional or simply inextensional. More specifically the membrane strain m  is: 

2
1

2
m

u w u w

R R


   
   

 
.       (5) 
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Inserting (3),(4) and keeping only linear terms with respect to A , one readily obtains 

0m  , which implies that the circumferential length of the cylinder does not change at the 

initial post-buckling stage. 

 

Figure 1: Schematic representation of radial  w  and tangential or hoop  u  mid-surface 

displacements. 

 

In general, external pressure applied in cylindrical shells causes compressive hoop 

stresses in the cylinder wall, so that the stability of the cylinder cross-section depends on 

both the circumferential (hoop) stiffness of the cylinder against ovalization and the yield 

strength. However, for thin-walled cylinders, the hoop stiffness is small, and therefore, 

elastic collapse instability occurs at an average hoop stress well below the proportional or 

yield limit. In other words, thin-walled cylinders, when subjected to uniform external 

hydrostatic pressure, buckle in the elastic range in the form of an oval shape (Figure 2). 

 

Figure 2: Schematic representation of ovalization of the cylinder cross-section. 
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The above elastic critical pressure in equation (2) is valid for steel cylinders with rather 

high values of the diameter-to-thickness ratio. In such a case, the value of ep  is 

significantly below the yield pressure 
yp , i.e. the pressure that causes full plastification of 

the cylinder. From thin-walled vessel theory, and considering a von Mises yield criterion, 

this plastic pressure yp  is readily calculated equal to [6]: 

2
2

1

y

y

t
p

D



 

 
  

  
,       (6) 

where 
y  is the yield stress of the material under uniaxial stress conditions, and factor 

21 1     accounts for increase of yield stress in the hoop direction due to plane strain 

conditions. Assuming 0.30   for metals, this factor is equal to 1.13. Dividing the two 

pressures is equations (2) and (6), one obtains: 

2

0.98e

y y

p E t

p D

 
  

 
.        (7) 

The formulae (2) and (6) are directly applicable for the external pressure design of offshore 

pipes and tubulars. Various versions of the elastic buckling pressure formula (2) have been 

widely used in several design specifications [7],[8],[9], that employ appropriate safety 

factors accounting for initial imperfections and residual stresses. 

Upon buckling, considerable high stresses are developed at the four points of the 

ovalized cylinder cross-section, shown by dots in Figure 2, that lead to plastic strains, and 

as a consequence to the formation of a plastic hinge collapse mechanism [10]. 

Buckling of cylindrical shells under external pressure is characterized by significant 

sensitivity with respect to initial imperfections, as it was found in the numerical work of 

Kyriakides and Babcock [11]. In addition, the experimental and numerical work of Yeh and 

Kyriakides [12] demonstrated that the collapse pressure of inelastic thick-walled tubes is 

sensitive to the parameters of initial ovality, thickness variation, residual stresses, inelastic 

anisotropy, material parameter, and length of the ovalized section. Assuming a quasi 2D 

numerical model, similar to the one used in Chapter 2 of the present study, with 4-node 

reduced-integration shell elements for the cylinder, and considering a small imperfection in 

the form of an oval shape, the imperfection sensitivity of a steel cylinder with 200D t  , is 

examined. In Figure 3, the equilibrium paths pressure-ovalization for different imperfection 

amplitudes are depicted, whereas in Figure 4, the normalized maximum pressure is shown 

in terms of the imperfection amplitude. The external pressure is normalized by the plastic 
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pressure 
yp , whereas the ovalization parameter   is defined as  max min 2D D D   . 

The initial imperfection is considered a vertical residual displacement at the top of the 

cylinder, which follows the application of a radial load, and is normalized by the radius R  

of the cylinder. The theoretical value of ep  is 0.057 MPa, whereas the one of yp  is 3.537 

MPa. Curve (a) corresponds to the response of a quasi-perfect cylinder. The maximum 

pressure occurs at point A, somewhat higher than the value of ep , whereas the descending 

branch of the path corresponds to the formation of plastic hinge mechanism. Note that all 

curves, independent of the value of initial imperfection, merge, because of the plastic-hinge 

mechanism formation. 

 

Figure 3: Equilibrium paths pressure-displacement of a steel cylinder under external 

pressure for different values of initial imperfection. 
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Figure 4: Effect of initial imperfections on the maximum external pressure sustained by a 

steel cylinder. 

 

The problem of steel cylindrical shells under external pressure has direct implications 

in offshore pipelaying operations because of the so-called “Propagating Buckle”, where a 

local collapse in a long pipe under external pressure propagates flattening the entire pipe, 

often at high velocity. The lowest pressure at which a buckle will propagate is known as the 

propagation pressure [13],[14]. For typical offshore pipelines, the propagation pressure is 

only a small fraction of the collapse pressure. 

 

1.1.2 Unconfined cylinders under longitudinal bending 

The response of elongated steel cylinders under longitudinal bending is a problem 

encountered in numerous engineering applications. The accurate prediction of buckling 

deformation is a crucial issue towards safeguarding the structural integrity of the steel 

cylinder. When a long thin-walled cylinder subjected to longitudinal bending curvature, its 

cross-section ovalizes (Figure 2) resulting in loss of bending stiffness in the form of limit 

point instability. This phenomenon is referred to as “ovalization instability” or “Brazier 

effect”. In fact, Brazier [15] has been the first to detect and quantify this phenomenon. 

Assuming elastic behavior and an inextensional deformation shape for ovalization, similar 

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

n
o

rm
a
li

z
e
d

 m
a
x
im

u
m

 p
re

s
s
u

re
 (

p
m

a
x
/p

y
)

normalized imperfection amplitude (w/R)

D/t=200
σy=313 MPa
E=210000 MPa
ν=0.3
quasi 2D analysis
S4R elements



Chapter 1: Introduction 

8 

to the previous case of cylinder under external pressure, he calculated the ultimate bending 

moment and the corresponding curvature according to the following formulae: 

2

2
0.987

1
BR

Et R
M





,        (8) 

2 2
0.471

1
BR

t
k

R 



,       (9) 

where E  is the Young’s modulus, t  is the wall thickness, R  is the cylinder radius, and v  is 

the Poisson’s ratio. Reissner [16] has been the first to investigate ovalization instability for 

both initially straight and curved tubes, taking under consideration the effects of pressure. 

This buckling response of elastic tubes has also investigated more thoroughly in later 

publications [17],[18]. This phenomenon is more pronounced in long cylinders, free of 

boundary conditions. However, experimental results in [19] have shown that the increased 

axial stress at the compression side due to ovalization may cause, at a certain stage of 

deformation, bifurcation instability (buckling) in a form of longitudinal short wave-type 

“wrinkles” (Figure 5) usually before reaching a limit moment. This buckling of cylinders 

occurs within a relatively narrow area around the maximum compression side (θ=π/2 in 

Figure 2), which is often called “buckling zone”. Ovalization induces hoop stresses and 

strains, resulting in a multi-axial stress/strain state at the buckling zone. A typical moment-

curvature equilibrium path of a thin-walled elastic cylinder under longitudinal bending 

loading is shown in Figure 6. Considering a cross-sectional ovalization analysis, referred to 

as “2D”, the buckling phenomena are excluded, thus the response appears a maximum 

moment due to ovalization. On the other hand, considering 3D analysis, bifurcation from 

the ovalization equilibrium path is observed in the form of wave wrinkles. This bifurcation 

occurs before the maximum moment is reached, and a secondary equilibrium path is 

followed. 

 

Figure 5: Schematic representation of periodic wrinkles at the compression side of a bent 

cylindrical member. 
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Figure 6: Moment-curvature response of a thin-walled elastic cylinder under longitudinal 

bending; numerical results for 2D and 3D analysis. 

 

Bifurcation instability of ovalized tubes subjected to bending was recognized in early 

publications [15]. An attempt to predict the bending buckling of elastic tubes was reported 

in [20], postulating that the buckling moment of a cylinder under bending corresponds to a 

nominal stress quite similar to the buckling stress of a cylinder with the same radius under 

uniform compression. This argument has been employed to develop a simplified bifurcation 

formulation proposed in [21] for predicting shell buckling. More specifically, it is assumed 

that buckling is fully determined by the stress and deformation inside the zone of the initial 

buckle. This assumption has also been referred to as “local buckling hypothesis”. 

According to the above hypothesis, in the case of a long cylindrical shell under longitudinal 

bending, buckling will occur at the critical location when the axial compressive stress 0x  

and the hoop curvature 01/ r  satisfy the following equation: 
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.        (10) 

The change of hoop curvature 01/ r  due to bending is shown schematically in Figure 7. It is 

interesting to note that Eq. (10) is the classical Donnell’s equation for a uniformly 

compressed elastic circular cylinder with radius 0r  in the meridional direction. Subsequent 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

n
o

rm
a
li

z
e
d

 m
o

m
e
n

t

normalized curvature

2D analysis

3D analysis

Elastic
D/t=97.8

ovalization 

path

post-bifurcation 

path



Chapter 1: Introduction 

10 

works [22],[23],[24] demonstrated numerically that bifurcation predictions from this 

hypothesis for the case of elongated unconfined cylindrical elastic shells subjected to 

bending are in very good agreement with finite element results. 

 

Figure 7: Schematic representation of local hoop curvature during ovalization of the 

cylindrical shell. 

 

According to the above simplified formulation, the corresponding buckling wavelength 

can also be estimated. Assuming that the state of stress is constant within the buckling 

zone, axi-symmetric conditions can be considered so that the value of the buckling half-

wavelength hwL  can be estimated by the following equation, which stems from axi-

symmetric buckling analysis of elastic cylindrical shells under uniform meridional 

compression [5]: 

 

1/4
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The above refer to cylinders made of elastic material for the range of D/t values of 

interest. A particularity of the bending behavior of steel tubes is that buckling occurs in the 

plastic range. First yielding may not offer a reliable measure of bending strength and 

deformation capacity. Experimental evidence [19] has demonstrated that rather thick-

walled cylinders, with D/t ratio values below 40, exhibit significant inelastic deformation 

before buckling occurs in the form of localized wrinkles at the compression side of the 

cylinder. In several engineering applications, it is important to determine the curvature at 

which bifurcation (buckling) would occur, and this bifurcation curvature depends on the 

radius of hoop 

curvature

deformed 
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value of D/t ratio. For thicker cylinders [22], uniform wrinkling may not be catastrophic, 

allowing significant inelastic deformations and, eventually, limit-moment instability. 

Beyond the limit point, stiffness is reduced and at a certain point, the cylinder would fail 

because of localized deformation. On the other hand, thinner cylinders exhibit a secondary 

bifurcation and buckling localization, before a limit moment is reached. 

Several analytical attempts have been reported to develop a simplified formulation for 

predicting buckling of steel cylinders similar to the one proposed previously for elastic 

cylinders. Those attempts have employed both the elastic-plastic material moduli for J2-

flow or J2-deformation theory of plasticity. Despite the superiority of J2-deformation 

theory, those attempts have not been successful. 

Buckling of shells under axial compression and bending is generally characterized by 

significant sensitivity with respect to initial imperfections. This was investigated in the 

early work of Koiter [25], and concluded that imperfection sensitivity of a structure is 

directly related to its initial post-buckling behavior. Numerical results from thin-walled 

cylindrical shells subjected to bending [22],[26] have showed that the ultimate bending load 

and the corresponding critical curvature are reduced with increasing imperfection 

amplitude. 

 

1.2 Scope of the present work 

The mechanical behavior presented in the previous section refers exclusively to 

cylinders without confinement. However, in many technological applications, steel 

cylinders are confined within a surrounding medium or another shell. Because of this 

interaction, existing numerical solutions and analytical predictions for the buckling 

resistance of unconfined thin-walled cylinders are inadequate to predict the stage at which 

the cylinder buckles. The following two subsections offer a short description for two 

problems investigated in the present dissertation, outlining the purpose of the present study. 

 

1.2.1 Confined cylinders under external pressure 

In several engineering applications, steel cylinders subjected to external pressure are 

confined within a surrounding medium. Under those conditions, the cylinders may buckle 

because of excessive hoop compression. Typical examples of externally-pressurized 

cylinders which may fail under confined conditions are (a) buried steel pipelines [27], (b) 

thin-walled liners used to rehabilitate damaged pipelines [28], (c) tunnels and ducts that 
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transport gases or liquids in power plants are often lined with cylindrical steel shells [29], 

and (d) steel tubes as casing in oil and gas production wells [30]. 

Chapter 2 of the present dissertation investigates the mechanical response of thin-

walled cylinders surrounded by a rigid or deformable medium, subjected to uniform 

external pressure, applied directly on the outer cylinder surface. Emphasis is given on 

structural stability in terms of buckling, post-buckling, imperfection sensitivity, and 

medium deformability. The present investigation is computational and employs a quasi 

two-dimensional model, assuming no variation of load and deformation along the cylinder 

axis. The cylinder and the surrounding medium are simulated with nonlinear finite elements 

that account for both geometric and material nonlinearities. 

The behavior of cylinders made of elastic material embedded in a rigid cavity is 

examined first, and a successful comparison of the numerical results is conducted with 

available closed-form analytical solutions and experimental data for rigidly-confined elastic 

cylinders [31],[32]. Subsequently, the external pressure response of confined thin-walled 

steel cylinders is examined in terms of their sensitivity on the presence of the initial out-of-

roundness of the cylinder and the initial gap between the cylinder and the surrounding 

medium. The numerical results are presented in the form of pressure-deformation 

equilibrium paths and show an unstable post-buckling response (rapid drop of pressure) 

beyond the maximum pressure level, indicating severe imperfection sensitivity on the value 

of the maximum pressure. A plastic-hinge mechanism is also developed that results in a 

closed-form expression and illustrates the post-buckling response of the cylinder in an 

approximate yet very representative manner. Furthermore, the effects of the deformability 

of the surrounding medium are examined. In particular, soil embedment conditions are 

examined, with direct reference to the case of buried thin-walled steel pipelines. The 

distribution of plastic deformation within the steel cylinder, as well as the variation of 

cylinder-medium contact pressure around the cylinder cross-section are also depicted and 

discussed. 

The numerical results are employed to develop an efficient design methodology, which 

is compatible with the recent general provisions of European design rules and 

recommendations for shell buckling [33],[34], and could be used for design purposes. The 

numerical results show good comparison with available experimental results [35],[36], the 

proposed design methodology and with a simplified closed-form expression [35], which 

could also be used for design purposes. Furthermore, a relevant chapter for the design of 

confined steel cylinders, within the framework of the European Design Recommendations 
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[34], is developed and presented in Appendix A, for possible inclusion of the present work 

in future editions of the EDR. 

Finally, based on the numerical results, a comparison is attempted between the present 

buckling problem and the problem of “shrink buckling”. The differences between those two 

problems of confined cylinder buckling are pin-pointed, emphasizing the significantly 

different response of the two problems with respect to the presence of initial imperfections. 

 

1.2.2 Confined cylinders under longitudinal bending 

In several engineering applications, cylindrical members subjected to longitudinal 

bending are confined within a surrounding medium or another shell. Some representative 

examples of these applications are (a) the bending response of a lined pipe (sometimes 

referred to as mechanically-clad pipe) [37],[38], where a corrosion-resistant thin-walled 

liner is fitted inside a carbon–steel outer pipe, (b) the nano-composite tubes [39],[40], 

where an inner carbon nanotube is confined in a polymer matrix, and (c) the buried steel 

pipelines under strike-slip tectonic fault displacements [41], where permanent ground 

deformation is applied on the pipeline. 

The study in Chapter 3, without loss of generality, focuses on the application of lined 

pipes and investigates extensively the wrinkling of such pipes under bending loading with 

or without the presence of external pressure. The lined pipe is a double-wall pipe, 

composed by two pipes that are in contact; a thick-walled “outer pipe” and a thin-walled 

inner pipe, referred to as “liner” pipe. The motivation of this study stems mainly from the 

use of such pipes in energy pipeline applications (oil, gas etc.). Lined pipes are produced 

through an appropriate manufacturing procedure, consisting of heating the outer pipe, 

inserting the liner and pressurizing it until both pipes come to contact, and finally cooling 

the outer pipe [37],[38]. Considering the liner pipe as a thin-walled cylindrical shell prone 

to buckling, the lateral confinement due to the deformable outer pipe constitutes a 

paramount parameter for its mechanical behavior. It is noted that single-wall pipes under 

bending ovalize and buckle before reaching a limit moment [19]. On the other hand, in 

double-wall pipes, the liner is not free to ovalize, and because of this confinement, existing 

numerical solutions [23],[24] or analytical predictions [21] for the bending buckling 

resistance of unconfined thin-walled tubes are inadequate to predict the buckling resistance 

of the bent liner. Therefore, to predict the response and the buckling strength of the thin-

walled liner, it is necessary to account for its contact with the confining thick-walled outer 

pipe. 
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In the present investigation, the problem is solved numerically, using nonlinear finite 

elements to simulate the lined pipe and the interaction between the liner and the outer pipe. 

Nonlinear geometry with large strains is taken into account, and the material of both pipes 

is elastic-plastic. First, an ovalization bending analysis of the lined pipe is conducted, where 

a slice of the pipe between two adjacent cross-sections is considered, excluding the 

possibility of buckling. Stresses and strains in the compression zone are monitored 

throughout the deformation stage, detecting possible detachment of the liner from the outer 

pipe and the formation of wrinkles. Subsequently, a three-dimensional analysis is 

conducted to examine the wrinkling behaviour of elastic and steel lined pipes under 

bending with or without the presence of external pressure. The possibility of bifurcation in 

a wrinkling pattern, including the possibility for a secondary bifurcation, is examined. The 

values of corresponding buckling curvature are determined and comparison with available 

experimental results is conducted in terms of wrinkle height development and the 

corresponding buckling wavelength. The results of the present research can be used for 

safer design of lined pipes in pipeline applications. 
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22..  CCoonnffiinneedd  ccyylliinnddeerrss  uunnddeerr  eexxtteerrnnaall  pprreessssuurree  

 

2.1 Introduction 

In several engineering applications, steel cylinders subjected to external pressure are 

confined within a surrounding medium. Under those conditions, the cylinders may buckle 

because of excessive hoop compression. Buried steel pipelines [1] under such loading 

conditions can often fail in the form of structural instability; when the groundwater table is 

above the pipeline level, the water reaches the pipe through the permeable surrounding soil 

or concrete encasement, and hydrostatic pressure conditions develop around the pipeline, 

which may cause buckling of steel pipeline wall. In addition, thin-walled liners, made of 

steel or plastic material, used to rehabilitate damaged pipelines [2], may also fail under 

similar loading conditions. Furthermore, tunnels and ducts that transport gases or liquids in 

power plants are often lined with cylindrical steel shells [3], which may buckle because of 

external pressure under lateral confinement. Finally, steel tubes employed as casing in oil 

and gas production wells [4] are also typical examples of externally-pressurized cylinders, 

which may fail under confined conditions. 

In all the above applications, significant hoop stresses develop in the cylinder wall due 

to either thermal effects or hydrostatic pressure conditions because of ground water and the 

permeability of the surrounding medium. When these hoop stresses exceed a critical level, 

the steel cylinder loses its structural stability and buckles. In such a case, due to the 

surrounding medium, the cylinder wall is not free to deform in the outward direction, and 

buckling occurs in the form of an “inward lobe” at a pressure level significantly higher than 

the one under unconfined conditions. A schematic representation of the “inward lobe” 

buckling shape is depicted in Figure 8, whereas the corresponding failure mode by an 

external pressure experiment [5] is shown in Figure 9. 

The study presented in this part of dissertation focuses on buckling and post-buckling 

of confined cylinders under uniform external pressure, motivated by the structural response 

of buried pipelines surrounded by saturated soil medium or concrete encasement. When the 

groundwater table is above the pipeline level, the water reaches the pipe through the 

permeable surrounding soil or concrete and hydrostatic pressure conditions develop around 

the pipeline, which may cause buckling of the steel pipeline wall. It should be noted that 

buckling of confined cylinders under hydrostatic pressure is quite different than buckling 

under thermal effects, sometimes referred to as “shrink buckling” [6],[7],[8],[9],[10],[11]. 



Chapter 2: Confined cylinders under external pressure 

19 

In “shrink buckling”, hoop compressive force is relieved immediately after buckling occurs, 

whereas in hydrostatic buckling, pressure load is always present in the post-buckling stage. 

For an extensive literature review on the “shrink buckling” problem, the reader is referred 

to the paper by Omara et al. [2]. In section 2.6 of the present chapter, a direct comparison 

between the present problem of “hydrostatic buckling” and the problem of “shrink 

buckling” is offered, based on numerical simulation results. 

 

Figure 8: Schematic representation of the buckling problem of an externally-pressurized 

cylinder confined by the surrounding medium. 

 

Figure 9: External pressure collapse of a confined pipe; buckling mode in the form an 

“inward lobe”. Experimental testing by Omara et al. [5]. 
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2.1.1 Literature review 

The single-lobe mode buckling of Figure 8 has been observed in experiments (Figure 

9, [5]) and in real applications of externally-pressurized cylinders under confined 

conditions. The first analytical attempt to predict this buckling behavior has been reported 

in the paper by Glock [12]. Glock presented an energy formulation and solution of the 

hydrostatic buckling problem of rigidly confined elastic cylinders, assuming no friction 

between the ring and the stiff (non-deformable) medium, as well as no variation of stress 

and deformation in the axial direction of the cylinder. Minimization of the potential energy 

and assuming a constant hoop membrane force around the cylinder cross-section, resulted 

in the following expression for the buckling pressure: 

2.2
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,        (12) 

where E  is the Young’s modulus,   is Poisson’s ratio, D  is the cylinder diameter and t  is 

the wall thickness. A brief presentation of this analytical solution is offered in the 

subsection 2.3.2 of the present chapter, whereas for a concise presentation of the Glock’s 

solution, the reader is referred to the paper of Omara et al. [2]. It is interesting to note that 

for diameter-to-thickness ( D t ) values between 100 and 300, which are typical values for 

buried pipelines and rehabilitation liners, the value of pressure GLp  calculated from 

equation (12) is significantly higher than the buckling (bifurcation) pressure ep  of a long 

(free of boundary conditions) externally-pressurized perfectly-round elastic cylinder under 

unconfined conditions, given by the following formula [13]: 
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Combination of equations (12) and (13), results in: 
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It can be readily verified that the ultimate value of pressure GLp  calculated from equation 

(12) is 20 – 48 times higher than the buckling pressure 
ep  under unconfined conditions. 

The validity of Glock’s equation (12) in predicting the buckling pressure of tightly-

fitted elastic cylinders in a rigid cavity has been verified by the finite element results 

reported by El-Sawy and Moore [14]. Based on their numerical results and accounting for 

the presence of initial gap g  between the cylinder and the rigid surrounding medium 
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(“loosely-fitted cylinders”), El-Sawy and Moore proposed the following empirical 

analytical expression for the buckling pressure of elastic cylinders: 
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The last term within the parenthesis in the right-hand side of equation (15) expresses the 

increase of the classical elastic formula for unconfined conditions [see equation (13)] when 

rigid confining conditions are imposed on the externally-pressurized cylinder. Assuming a 

zero value of initial gap ( 0g  ), the comparison between equation (15) and Glock’s 

formula (12) shows that the former empirical formula can predict quite accurately the 

buckling pressure of tightly-fitted elastic cylinders in a rigid cavity. The validity of Glock’s 

formula has also been tested against with experimental data [15],[16],[17]. 

In a later publication, Boot [18] enhanced Glock’s solution [12] to account for the 

presence of initial gap between the cylinder and the non-deformable surrounding medium, 

and reported implicit analytical expressions for the buckling pressure. The effects of 

confinement deformability on the structural behavior of a confined elastic ring have been 

investigated by Bottega [19], who examined analytically the behavior of two concentric, 

contacting elastic rings, subjected to two self-equilibrating interfacial point loads. Li and 

Kyriakides [20] studied the problem of two concentric, contacting elastic rings, subjected to 

external pressure, and extended those results to investigate buckling propagation in an 

elastic cylinder in contact with an outer elastic cylindrical shell [21]. Those publications 

indicated that the stiffness of the outer (confining) elastic ring has a significant effect on the 

structural behavior and the buckling capacity of the inner elastic ring. 

The above works on confined cylinder buckling refer to cylinders with elastic material 

behavior. Compared with the numerous publications on elastic cylinders, relatively few 

investigations exist on the corresponding buckling problem of steel cylinders, which is 

associated with elastic-plastic material behavior. As a first approximation, the ultimate 

external pressure capacity can be estimated as the pressure that causes first yielding at the 

outer fiber of the cylinder wall. Adopting this concept, Montel [22] used Timoshenko’s 

solution for thin ring deflection [23] and experimental results [24] to develop a semi-

empirical formula for the buckling pressure of cylinders embedded in a rigid (non-

deformable) cavity, in terms of the material yield stress y , the cylinder geometry D t , the 

initial out-of-roundness with amplitude 0 , and the initial gap with maximum value g  

between the cylinder and the rigid cavity: 
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Montel [22] proposed equation (16) for a range of parameters, namely 60 340D t  , 

250 500yMPa MPa  , 00.1 0.5t  , 0.25g t   and 0.0025g R  . Clearly, the 

ultimate pressure Mp  predicted by equation (16) is a decreasing function of both 

imperfection types 0  and g  as well as a decreasing function of the diameter-to-thickness 

ratio D t . Furthermore, it can be readily shown that for D t  between 100 and 300, the 

value of Mp  is well below the yield or plastic pressure yp  of the cylinder, i.e. the nominal 

pressure that causes full plastification of the cylinder wall. From thin-walled vessel theory, 

and considering a von Mises yield criterion under plane strain conditions for the deforming 

cylinder cross-section, this plastic pressure yp  is readily calculated equal to: 
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where 
y  is the yield stress of the material under uniaxial stress conditions, and factor 

21 1     accounts for increase of yield stress in the hoop direction due to plane strain 

conditions. Assuming 0.30   for metals, this factor is equal to 1.13. Note that the plastic 

pressure yp  is a decreasing function of the D t  ratio. Combining equations (16) and (17), 

and assuming 0.30  , one obtains for perfect cylinders ( 0 0g   ): 
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It is interesting to note that, for D t  values ranging between 100 and 300, Montel’s 

equation predicts a pressure capacity 
Mp  ranging from 36% to 62.4% of the plastic 

pressure yp . 

Failure at first yielding was also assumed by Amstutz [25], who using a two-

dimensional model developed a formula for the external pressure collapse of embedded 

rings, which has been widely used for design purposes. The problem was also investigated 

by Jacobsen [26]. Assuming failure at first yielding, accounting for the presence of gap 

between the cylinder and the rigid medium, and considering a cosine function to describe 

the single-lobe buckling shape, Jacobsen resulted in implicit analytical expressions for the 

ultimate external pressure. A numerical solution for the ultimate pressure sustained by a 
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steel cylinder embedded in a rigid cavity was reported by Yamamoto and Matsubara [27], 

using elastic-plastic ring analysis through beam finite elements and assuming a uniform gap 

between the steel ring and the confining medium. The importance of material nonlinearity 

on the cylinder response was noted, and an empirical formula, valid for low-strength steel 

 235y MPa   that fits well with the finite element results, was developed through a 

curve fitting procedure. 

A more rigorous investigation of buckling and post-buckling behavior of confined 

cylinders under external pressure, was conducted by Kyriakides and Youn [28] using a 

semi-analytical formulation, based on nonlinear ring theory. The ring was assumed 

inextensional, and elastic-plastic behavior was modeled through a bilinear material curve. 

The results of Kyriakides and Youn [28] have been used to study buckle propagation in 

confined long metal pipes [29]. Motivated by the structural design of rehabilitation metal 

liners, El-Sawy, extending the work in [14], examined numerically the buckling response of 

tightly-fitted [30] and loosely-fitted [31] steel cylinders, surrounded by a rigid boundary 

and subjected to external pressure. Parametric studies in terms of yield stress 
y , and 

diameter-to-thickness ratio D t  have been conducted, accounting for the initial gap 

between the cylinder and the surrounding stiff boundary, and the numerical results were 

compared with the analytical results of Jacobsen [26]. An empirical equation showing the 

border between elastic and plastic buckling has also been developed. 

 

2.1.2 Scope of the present research 

The present work, motivated by the structural behavior of buried pipelines, focuses on 

the structural stability of steel cylinders under uniform external pressure confined by a 

deformable medium. Furthermore, the study considers the development of a simple and 

efficient methodology for the structural stability design of confined steel cylinders, within 

the framework of the new European shell stability design rules [32] and recommendations 

[33]. The cylinders are thin-walled with diameter-to-thickness ratio ( D t ) that ranges 

between 100 and 300, which is typical for water pipelines or rehabilitation liners, and may 

fail under external pressure (vacuum) conditions in a “single-lobe” shape. Assuming 

constant pressure around the pipe, and no variation of stress and deformation in the axial 

direction of the cylinder, a quasi two-dimensional idealized problem under plane strain 

conditions is considered. Both the cylinder and the medium are modeled using finite 

elements, which account for inelastic effects and large deformations. The analysis is aimed 
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primarily at tracing the pressure-displacement equilibrium path, and determining the 

maximum pressure sustained by the cylinder, for different values of D t  ratio and yield 

stress 
y  of steel material. The sensitivity of ultimate pressure with respect to initial out-of-

roundness of the ring geometry and the presence of a small gap between the ring and the 

medium are investigated. 

The response of imperfect elastic cylinders with different values of the D t  ratio is 

examined first for rigid confinement, and the value of the elastic imperfection reduction 

(“knock-down”) factor is determined. Subsequently, buckling of perfect and imperfect steel 

cylinders that buckle in the inelastic regime is examined considering a rigid confinement 

and different values of the yield stress 
y  of steel material, presenting the results in terms 

of a “slenderness shell parameter”. A simple plastic-hinge model is also developed to 

illustrate cylinder response beyond the ultimate pressure. Furthermore, the effects of elastic 

medium deformability, expressed by the medium modulus E , on the cylinder buckling 

pressure are examined. The influence of preloading on the top of the medium are also 

investigated. The distribution of plastic deformation and the variation of cylinder-medium 

contact pressure around the cylinder cross-section are also depicted. Next, a methodology 

for the design of confined steel cylinders, within the framework of the new European shell 

stability design rules [32] and recommendations [33], is developed, which accounts for 

rigid and deformable medium. The present finite element results are compared with 

experimental results [22],[24], the proposed design methodology and available analytical 

results [12],[14],[22], towards better understanding of confined cylinder behavior. 

Furthermore, a relevant chapter for the design of confined steel cylinders, within the 

framework of the European Design Recommendations [33], is developed and presented in 

Appendix A, for possible inclusion of the present work in future editions of the EDR. 

Finally, the problem of “shrink buckling” is modeled and the results are compared with 

available experimental data, as well as results from the corresponding hydrostatic buckling 

problem. 
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2.2 Finite element simulation 

The structural behavior of confined cylinders under uniform external pressure is 

examined numerically using nonlinear finite element tools. The general-purpose finite 

element program ABAQUS [34] is employed to simulate the buckling response of 

pressurized confined cylinders. The analysis considers nonlinear geometry through a large-

strain description of the deformable medium, as well as inelastic material behavior. 

Assuming no variation of loading and deformation in the longitudinal direction of the 

cylinder, the finite element model is quasi two-dimensional with one element in the 

longitudinal direction of the cylinder, considering a strip of the cylinder under plane-strain 

conditions, i.e. restraining displacements in the longitudinal direction. Because of the 

symmetry of the single-lobe post-buckling shape of the cylinder, half of the cylinder cross-

section is analyzed, applying appropriate symmetry conditions at the 0   plane. Four-

node reduced-integration shell elements (S4R) are employed for the modeling of the thin-

walled cylinder, whereas eight-node reduced-integration solid elements (C3D8R) are used 

to simulate the surrounding medium. A typical finite element mesh for the elastic medium 

used in the present analyses is shown in Figure 10. In this model, L  and H  are equal to 1.5 

and 3 cylinder diameters respectively. Following a short parametric study, it has been 

concluded that consideration of a larger medium domain, and the use of a finer finite 

element mesh have a negligible effect on the numerical results. Furthermore, a total of 150 

shell elements around the cylinder half circumference have been found to be adequate to 

achieve convergence of solution and accuracy of the numerical results. 

A J2 flow (von Mises) plasticity model, with isotropic hardening is employed in the 

analysis to simulate inelastic behavior of the steel material of the cylinder. Following a 

short parametric study, the use of a kinematic hardening rule was shown to have no 

influence on the numerical results. The soil material is considered elastic in the majority of 

cases examined in this paper. In a few cases, soil material is also described through an 

elastic-perfectly plastic Mohr-Coulomb constitutive model, characterized by cohesion c , 

friction angle  , elastic (Young’s) modulus E , and Poisson’s ratio  . A contact 

algorithm is considered to simulate the interface between the cylinder and the medium. 

Unless otherwise specified, frictionless contact is assumed in the results. A few analyses 

have been performed to examine the effects of friction, which is considered through the 

friction coefficient  , where tan  , and   is the friction angle of the interface 

between the cylinder and the medium. Uniform external pressure is applied around the 
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cylinder, and the nonlinear pressure-deflection ( p  ) equilibrium path is traced using a 

Riks continuation algorithm. 

 

Figure 10: Finite element model of cylinder-medium system. 

 

The sensitivity of cylindrical response and strength on the presence of initial 

imperfections is of particular importance in the present study. Two types of initial 

imperfections are considered. The first type of imperfection is an initial gap between the 

confining medium and the cylinder. The gap is introduced in the model, assuming that the 

circular cavity of the medium has a radius slightly larger than the circular cylinder radius, 

and that the cylinder and the cavity are initially in contact at    (Figure 11a), so that the 

maximum gap between the cylinder and the medium occurs at 0  , and it is denoted as 

.g  

The second type of imperfection is a small initial “out-of-roundness” imperfection on 

the steel cylinder in the form of a small localized displacement pattern at the vicinity of the 

0   location. It is an imperfection of the shape of the buckling mode of the confined 

cylinder (“single-lobe” mode). One way to impose this initial out-of-roundness in steel 

cylinders is through the consideration of a small downward vertical load applied at the 

0   location. After the load is removed, and despite the elastic rebound of the steel 
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cylinder wall, the cylinder at this location contains a small residual displacement 0 , which 

is considered as the initial out-of-roundness amplitude, as shown in Figure 11b. Clearly, 

this type of method may not be suitable for elastic cylinders, due to the complete recovery 

of shape during the unloading step. Alternatively, this out-of-roundness imperfection can be 

imposed considering an initial stress-free displacement pattern, in the form of a “single-

lobe” at the vicinity of the 0   location, chosen in the form of the consecutive shapes of 

the perfect confined elastic cylinder under external pressure. This method of imposing 

initial out-of-roundness is suitable for both elastic and elastic-plastic (steel) cylinders. 

   

Figure 11: Schematic representation of a confined ring with (a) gap-type initial 

imperfection and (b) “out-of-roundness” initial imperfection. 
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2.3 Buckling of confined elastic cylinders 

Using the finite element simulation described in the previous section, the response of 

thin-walled rigidly-confined elastic cylinders with D t  values between 100 and 300 is 

examined in this section. The cylinder capacity is compared with analytical expressions and 

numerical results reported by Glock [12] and El-Sawy & Moore [14], as well as with 

available experimental data [15],[16],[17]. The material of the cylinder is considered elastic 

with a modulus E  equal to 210,000 MPa and Poisson’s ratio   equal to 0.3. A frictionless 

interface is considered between the elastic cylinder and the confining medium. The 

modulus of the surrounding medium E  has a value equal to 21,000 MPa, which is the one-

tenth of the modulus E  of the steel material. Considering this value of E , the confining 

medium is practically non-deformable and may be considered as rigid. Numerical results 

with a value of E  higher than 0.1E  have shown no influence on the cylinder response. 

The value of Poisson's ratio   for the surrounding medium is considered equal to 0.3. 

 

2.3.1 Perfect elastic cylinders 

The pressure-displacement curves depicted in Figure 12 show the equilibrium path of 

pressure p  versus the vertical displacement   of point A at 0   (see Figure 8), 

normalized by the cylinder radius R  ( R ), for “perfect cylinders”, i.e. zero gap between 

the cylinder and the medium ( 0g R  ), and a negligible geometric initial out-of-roundness 

( 0 0R  ). All equilibrium paths are characterized by a point of maximum (limit) pressure 

maxp , beyond which, the cylinder exhibits a significant drop of pressure, indicating an 

unstable behavior. In all cases examined, the computed values of maxp , shown in Figure 13 

with symbol ▲, are in excellent agreement with analytical predictions GLp  obtained by 

equation (12) and EMp  expressed through the closed-form expression (15). Note that the 

value of maximum pressure maxp  is more than 20 times larger than the value of the 

corresponding elastic buckling pressure ep  under unconfined conditions, expressed by 

equation (13). The large values of the max ep p  ratio express quantitatively the very 

significant effect of confinement on the buckling resistance. Furthermore, the results offer a 

very good verification of the validity of Glock’s analytical solution for confined elastic 

cylinders in a stiff (non-deformable) medium, with no imperfections. It is interesting to 
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note that Glock’s predictions and, therefore, the present finite element results are in close 

agreement with the experimental data reported in [15],[16],[17]. 

 

Figure 12: Response of “perfect” elastic cylinders under external pressure embedded in a 

rigid confinement medium. 

 

Figure 13: Comparison between numerical results and analytical predictions from Glock’s 

equation (12) and El-Sawy & Moore equation (15) for the buckling pressure of rigidly-

confined elastic cylinders. 
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2.3.2 Glock’s analytical solution 

A brief presentation of Glock’s analytical solution [12] for external pressure buckling 

of elastic rings confined within a rigid medium is presented below. The kinematics was 

based on the Donnell approximations of thin-ring equations [13]. More specifically, the 

total hoop axial strain is given by the following equation as a sum of membrane and 

bending strain: 

m kz   ,         (19) 

where the membrane and bending strain are given in terms of the radial w  and tangential u  

displacements of the ring reference line at mid-thickness as follows: 

  2

2

1 1
m u w w

R R
     ,       (20) 

2

w
k

R


 .         (21) 

Ring deformation consists of two parts, the “buckled” region and the “unbuckled” region as 

shown in Figure 14.  

 

Figure 14: Schematic representation of Glock’s model [12]; the cylinder is divided in two 

parts, a buckled portion and an unbuckled portion. 

 

An assumed shape function ( )w   for the buckled region is considered in the following 

form: 
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where   is the angle that defines the border between the “buckled” and the “unbuckled” 

ring portions, so that      . Forming the total potential energy   of the ring, 

assuming a constant hoop axial force aveN  around the ring, and requiring minimization of 

  with respect to both   and  , closed-form expressions for the pressure p , the 

amplitude of buckled shape  , and the axial force N  are obtained in terms of angle  : 

4 236
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Subsequently, minimization of pressure in terms of angle  , results in final closed-form 

expressions for the critical pressure GLp , the corresponding angle cr , and the 

corresponding amplitude of the buckling shape: 
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.       (28) 

Thus, for the case of a ring under plane-strain conditions, equation (26) can be written in 

the form of equation (1). 



Chapter 2: Confined cylinders under external pressure 

32 

Consecutive deformation configurations of an imperfection-free elastic cylinder with 

D t  equal to 200 under external pressure are shown in Figure 15a and the corresponding 

points on the pressure–deflection path are depicted in Figure 15b. The numerical results 

indicate that the maximum pressure maxp  is equal to 1.948 MPa and occurs at the stage 

where the local curvature at 0   becomes zero (i.e. when “flattening” of the cylinder wall 

occurs). These outcomes are in agreement with the analytical solution of Glock [12]. From 

equation (12), Glock’s prediction is equal to 1.999 MPa, very close to the numerical value. 

Furthermore, using equations (21) and (22) of Glock’s solution, and conducting the 

appropriate differentiation of the radial displacement function ( )w  , the local change of 

hoop curvature 0k  at the buckle location 0   is calculated as follows: 

2

0 2 2

(0)

2

w
k

R R

 



  
    

 
.       (29) 

Therefore, at the stage of maximum (critical) pressure, the change of hoop curvature 
0,crk  

can be obtained analytically substituting equations (27) and (28) into equation (29) to get: 

0,

1 1
1.033crk

R R
   .       (30) 

Adding the value of equation (30) to the initial hoop curvature (equal to 1 R ), the 

instantaneous total hoop curvature of the deformed configuration at the stage of buckling is 

readily computed equal to zero. This result from Glock’s solution implies that the 

maximum pressure occurs at the stage where the local curvature at the 0   location 

becomes zero, i.e. the cylinder becomes locally flat and immediately after inversion of the 

cylinder wall occurs. The above analytical prediction shows a very good correlation with 

and is verified by the numerical results shown in Figure 15. 
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Figure 15: (a) Consecutive deformation shapes of a tightly-fitted elastic cylinder; 

(b) Configuration (2) corresponds to the ultimate pressure stage. 
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2
nom

pD

t
           (31) 

from elementary mechanics of materials, is of particular interest. Furthermore, stresses, a  

and b  refer to the membrane and bending stress respectively and are given by the 

following formulae [12]: 

22
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N t
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A D






  
     

   
,       (32) 
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.        (33) 

In Table 1, stresses a  and b  are both normalized by the value of nom  at buckling, i.e. 

considering maxp p  in equation (31). In general, a fairly good comparison has been 

obtained between the numerical results and the analytical solution for elastic cylinders 

provided in [12]. 

 

 D/t=100 D/t=200 D/t=300 

 Analytical 

[12]  

FEM 

(present) 

Analytical 

[12]  

FEM 

(present) 

Analytical 

[12]  

FEM 

(present) 

pmax [MPa] 9.187 9.066 1.999 1.948 0.819 0.788 

δcr/R 0.04563 0.04598 0.0262 0.0255 0.0189 0.0211 

φcr [rad] 0.4669 0.4674 0.3539 0.3591 0.3009 0.2952 

kcr 1.033 1.127 1.033 1.087 1.033 1.144 

σnom [MPa] 453.3 - 194.8 - 118.2 - 

σα/σnom 1.17 1.20 1.18 1.22 1.20 1.28 

σb/σnom 5.09 5.78 5.93 6.47 6.51 8.44 

Table 1: Comparison between analytical results [12] and numerical results for rigidly-

confined elastic cylinders. 

 

An important observation refers to the magnitude of the hoop stresses. The above 

results demonstrate that equation (31) may not be a reliable formula for computing the hoop 

stress on the pressurized cylinder at the prebuckling stage. In addition, although the value 

of membrane stress a  is comparable with the value of nom , the value of b  is 

significantly higher, implying a substantial bending deformation before buckling. It is also 

noted that the above results assume elastic behavior of the cylinder material. Therefore, it is 
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expected that steel cylinders will have a reduced strength due to early yielding caused by 

the development of significant bending stress b . 

The numerical results of Figure 16 show that at low levels of external pressure loading, 

membrane hoop stress is developed at the critical location 0   of the cylinder as also 

predicted by the equation (31) of the nominal hoop stress. At this stage, bending stresses 

are not significant. However, beyond a level of about half the maximum pressure, the 

bending stress is considerably increased, reaching a value of 5.3 times the membrane stress, 

just before buckling. Furthermore, the membrane stress is increased and deviates from the 

value of nominal hoop stress predicted by the equation (31) before buckling. 

An attempt to predict the increase of hoop stresses due to local deformation of the 

pressurized cylinder at the critical region is offered by the following AISI formula [35]: 

1
2 2

pD

t R




 
  

 
.        (34) 

In this equation, the nominal hoop stress of equation (31) is multiplied by an amplification 

factor that depends on the radial displacement  . However, as shown in Figure 16, the 

proposed AISI formula does not improve the predictions of equation (31), and does not 

account for the development of significant bending stresses. 

 

Figure 16: Membrane and bending stresses at the critical location compared with the 

analytical formula of AISI recommendation [35] for hoop stress. 
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2.3.3 Verification by experimental data 

In the previous paragraphs, the excellent comparison of Glock’s equation with the 

present numerical results has been established. Limited published experimental data are 

available for evaluating the theoretical models and numerical results of confined cylinders 

under external pressure. These experimental works refer to confined cylinders made of 

elastic material, but the tests have not been published in public domain. A brief description 

of three sets of data is offered in the paper by Omara [2]; the corresponding tests have been 

performed by Aggarwal and Cooper [15], Lo et al. [16], and Guice et al. [17]. A short 

overview is presented below for the sake of completeness. 

Aggarwal and Cooper [15] conducted external pressure tests of 49 confined cylinders 

at Coventry Polytechnic, U.K. in 1984 with a range of D t  from approximately 30 to 90 

and a variety of material properties (modulus of elasticity from 895.7 MPa to 2521.74 

MPa). In these tests, the cylinders were inserted first in steel pipes. Subsequently, the 

pressure was applied and increased between the cylinder and casing in increments of 

approximately 10% of the expected failure pressure, until failure. Internal observation was 

carried out to determine when buckling occurred. As expected, the experimental failure 

pressure was found to be much larger than the theoretical buckling pressure obtained by 

equation (13) for elastic unconfined cylinders under external pressure. In other words, 

buckling resistance of the cylinders appeared to be significantly enhanced by the 

constraining effects of the surrounding pipe. Comparison of test results with predictions 

offered by the equation (12) of Glock [12] for confined cylinders, indicated a very good 

agreement. 

Lo et al. [16] conducted an experimental program at Utah State University in 1993 

sponsored by Shell Development Company to evaluate the buckling resistance of confined 

cylinders made with various epoxy resins. The specimens of the tests had a constant outside 

diameter and different thicknesses. The results of these tests were also found to compare 

very well with the predictions from Glock’s equation. 

Finally, Guice et al. [17] conducted tests on the long-term effects of hydrostatic 

pressures on confined cylinders under the Corps of Engineers Construction Productivity 

Advancement Research (CPAR) program in 1994 at Louisiana Tech University. Seven 

different products from five companies were evaluated. Several short-term tests for each 

product were also conducted. Test specimens were 12 inches in diameter and D t  ratio 
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ranged from 30 to 60. The comparison of those tests with Glock’s equation is also very 

good. 

The comparison of the above confined cylinder tests with both the confined (Glock) 

theory equation (12) and unconfined theory equation (13) is summarized in Table 2, taken 

from ref. [2], in terms of the average test values. The values in Table 2 indicate (a) good 

comparison with Glock’s equation and (b) the paramount effect of confinement on the 

maximum pressure capacity sustained by the cylinder. 

 

Data 

PTEST / PPREDICTION 

Confined 

theory, Eq. (12) 

Unconfined 

theory, Eq. (13) 

Aggarwal and Cooper [15] 1.20 11.89 

Shell Development Company [16] 1.10 13.38 

Louisiana Tech University [17] 0.90 9.81 

Table 2: Comparison of experimental data with analytical predictions [2]. 

 

 

2.3.4 Imperfection sensitivity 

The numerical results obtained for perfect elastic cylinders in Figure 12 indicate a 

substantial drop of pressure in the equilibrium path beyond the critical pressure point, 

which is a severe indication of imperfection sensitivity. Furthermore, in Figure 13, 

numerical results for the maximum pressure of imperfect elastic cylinders are presented, 

which also demonstrate that the behavior of the confined elastic cylinders is sensitive to the 

presence of initial imperfections. In the present study, two types of initial imperfections are 

considered, namely initial gap between the cavity and the outer surface of the cylinder, and 

initial out-of-roundness in the form of a localized inward deformation at 0  . 

The structural behavior of the externally-pressurized cylinder and the effects of 

confinement can be better understood, if one follows the pressure-displacement curve of the 

deforming cylinder, assuming a small gap between the cylinder and the rigid confining 

medium, in the form depicted in Figure 11a. The corresponding numerical results are 

shown in Figure 17 and offer a first indication of imperfection sensitivity in the presence of 

an initial gap between the pressurized cylinder and the confining medium, a situation 

referred to as “loosely-fitted” cylinder. The results refer to elastic cylinders with D t  ratio 
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equal to 200, whereas the gap size g  is less or equal to 2.7×10
-3

 times the cylinder radius 

R , i.e. less than 27% of the cylinder thickness. These numerical results indicate a 

significant effect of the gap on the maximum pressure carried out by the elastic cylinder. In 

particular, a gap size equal to only 6.7% of the cylinder thickness is responsible for a 10.9% 

reduction of maximum pressure with respect to the maximum pressure that an 

imperfection-free cylinder can sustain. 

Furthermore, the behavior under very low levels of external pressure is considered, as 

shown in Figure 17b. Initially, the cylinder exhibits uniform contraction, until the pressure 

corresponding to ep  is reached, i.e. the elastic buckling pressure under unconfined 

conditions, calculated from equation (13). At that pressure level, the cylinder buckles in an 

oval shape [13] but, very quickly, it accommodates itself within the confinement boundary, 

and this is represented by the change of slope in the pressure-displacement diagram, also 

shown in Figure 17b. Therefore, the cylinder is able to sustain significant further increase 

of external pressure, as represented by the increase of pressure beyond the critical pressure 

level for unconfined conditions ( ep ). 

Under those confined conditions, the top part of the cylinder, i.e. the part 

corresponding to the maximum gap location, behaves similar to an arch subjected to 

uniform external pressure and supported at the two “touchdown” points. This leads to 

buckling in the form of an inward single-lobe buckling mode, sometimes referred to as 

“inversion buckling”, characterized by a limit point on the pressure-deformation 

equilibrium path and unstable response beyond the limit point represented by a rapid drop 

of pressure, as shown in Figure 17a. The value of pressure at the limit point is referred to as 

maximum pressure maxp . For the particular case of imperfection-free cylinders it is also 

referred to as critical pressure, denoted as crp . 
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Figure 17: Structural response of rigidly-confined elastic cylinders in the presence of small 

gaps; (a) general response and (b) initial response for very low-pressure values. 
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The initial out-of-roundness imperfection, in case of elastic cylinders, is imposed 

assuming a stress-free initial configuration that follows the buckled shapes of the perfect 

elastic cylinder, as depicted in Figure 15a. Particularly in Figure 13, the initial out-of-

roundness imperfection of amplitude 0 0.027R   follows the shape of the perfect elastic 

cylinder at the point of maximum pressure, as depicted in the configuration (2) of Figure 

15a. It is noted also that the numerical results for 
35.4 10g R   (symbol ■) in Figure 13 

are in very good agreement with the empirical equation (15) proposed by El-Sawy and 

Moore [14]. Furthermore, Figure 18 depicts the pressure-displacement curves of an elastic 

cylinder with D t  ratio equal to 200, and demonstrates the imperfection sensitivity of the 

cylinder response. The values of initial out-of-roundness amplitude ( 0 R ) correspond to 

the initial values of the pressure-displacement curves on the horizontal axis of the graph. 

Figure 19 and Figure 20 show the sensitivity of maximum pressure value on the amplitude 

of initial out-of-roundness and initial gap imperfection respectively. 

 

 

Figure 18: Structural response of rigidly-confined elastic cylinders in the presence of small 

initial out-of-roundness imperfection amplitudes. 
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Figure 19: Buckling pressure of imperfect elastic cylinders over the buckling pressure of 

the corresponding perfect elastic cylinders in terms of initial out-of-roundness. 

 

 

Figure 20: Buckling pressure of imperfect elastic cylinders over the buckling pressure of 

the corresponding perfect elastic cylinders in terms of initial gap. 

 

0

0.2

0.4

0.6

0.8

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Normalized Out-of-roundness (δο/R)

α
=

P
m

a
x
/P

c
r

D/t=150

D/t=200

D/t=250

D/t=300

E'/E=10-1

g/R=0

0

0.2

0.4

0.6

0.8

1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Normalized gap (g/R)

α
=

P
m

a
x
/P

c
r

D/t=150

D/t=200

D/t=250

D/t=300

E'/E=10-1

δ0/R=0



Chapter 2: Confined cylinders under external pressure 

42 

The above sensitivity on initial imperfections can be expressed in terms of the so-called 

“imperfection reduction factor”  , sometimes referred to as “knock-down” factor, also 

adopted in [32],[33] for the buckling load of imperfect elastic shells, so that: 

max crp p .         (35) 

For the purposes of the present study, the reduction factor  , is assumed in the following 

form: 

m

C
 


,         (36) 

where   is an imperfection parameter that represents the size of the initial imperfection, 

considering both out-of-roundness and gap, and ,C m  are constant coefficients to be 

determined from the numerical results. The results in Figure 19 and Figure 20 indicate a 

dependency of the imperfection sensitivity on the D t  value. Based on those results, this 

imperfection parameter is considered in the following form: 

0 Kg D

R t

    
    

  
 .       (37) 

In the above expression, coefficient K  expresses the relative influence of the two forms of 

imperfections (gap and out-of-roundness) on the ultimate pressure maxp . From the 

numerical results of Figure 20, a value equal to 3 is obtained for this coefficient ( 3K  ). 

Upon determining the value of K , a standard curve fitting technique is employed, the 

values of C  and m  are calculated equal to 0.15 and 0.7 respectively, so that the elastic 

reduction factor becomes: 

0.70.7

0

0.15 0.15

3g D

R t





 
     

   
    

.      (38) 

The imperfection reduction factor predicted through equation (38) is plotted against finite 

element results in Figure 21. The comparison indicates that equation (38) can provide good 

predictions for the ultimate pressure of externally-pressurized elastic cylinders in the 

presence of initial imperfections. 



Chapter 2: Confined cylinders under external pressure 

43 

 

Figure 21: Imperfection sensitivity of rigidly confined elastic cylinders under external 

pressure; finite element results and predictions of equation (38). 
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roundness imperfections in externally-pressurized elastic cylinders confined within a rigid 
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expression: 

max 01

n

cr

p
C

p t

 
   

 
,        (39) 

where crp  is the buckling pressure of the corresponding ‘‘perfect” cylinder (referred to as 

“critical pressure”), C  is a positive constant that depends on the D t  ratio, and exponent n  

expresses the rate of decay. This equation is considered in the same form as the sensitivity 

imperfection formula from general post-buckling theory of elastic systems [36],[37]. Figure 

22 presents an attempt to fit the above formula (39) with the finite element results. It is 

interesting to note that for the range of small values of imperfection amplitude, the value of 

2/3 on the exponent n  results in good predictions of the maximum pressure of imperfect 

cylinders. 
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Figure 22: Effects of small initial out-of-roundness imperfection amplitudes on the 

buckling pressure of imperfect elastic cylinders; FEM results and predictions from the 

imperfection sensitivity formula of equation (39). 
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2.4 Buckling of confined steel cylinders 

The results presented in the previous section refer exclusively to cylinders with elastic 

material response. They also apply to very thin-walled steel cylinders that buckle in the 

elastic range. However, in the majority of practical applications, buckling of steel cylinders 

occurs beyond yielding of the steel material. Using the numerical models described in the 

previous sections, the structural stability of externally-pressurized confined steel cylinders 

is examined in the present section, assuming an elastic confining medium and a frictionless 

interface between the cylinder and the medium. The values of pressure p  are normalized 

by the yield pressure  2 1.13y yp t D   [see equation (17)], whereas the displacement 

  of point A at 0   (see Figure 8) is normalized by the cylinder radius R . 

The material of the cylinder is steel, with yield stress 
y  and ultimate stress u  equal 

to 313 MPa and 492 MPa respectively, whereas post-yield hardening is zero up to 

engineering strain equal to 1.5%. The nominal stress – engineering strain (s-e) curve is 

depicted in Figure 23. The s-e values of Figure 23 are converted to true stress – plastic 

strain values according to the following equations to be inserted in ABAQUS: 

 1true nom e   ,        (40) 

ln ln(1 )p truee
E


    .        (41) 

 
Figure 23: Stress-strain curve of the cylinder material. 
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2.4.1 Rigid confinement 

2.4.1.1 General response 

The response of a thin-walled steel cylinder with D t  200 is shown in Figure 24 for 

different values of initial out-of-roundness. The values of initial out-of-roundness 

amplitude ( 0 R ) correspond to the initial values of the pressure-displacement curves on 

the horizontal axis of the graph. A zero gap between the cylinder and the medium, and a 

confinement medium modulus E  equal to 10% of E  are assumed ( E=21,000 MPa). The 

value of E  corresponds to practically rigid confinement (e.g. concrete encasement). 

Numerical results with higher values of E  indicated no further influence on the response. 

The equilibrium curves in Figure 24 represent the nonlinear relationship between the 

applied pressure and the downward displacement of the cylinder point at 0  . The results 

demonstrate that the value of the ultimate pressure maxp  is substantially smaller than the 

yield pressure 
yp , even for negligible initial imperfection. 

 

Figure 24: Response of tightly-fitted steel cylinders ( 0g R  ), embedded in a rigid 

confinement medium; numerical results for different values of initial out-of-roundness and 

plastic-hinge collapse mechanism equation (49). 
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Comparison between the numerical results from the elastic case (Figure 12) and those 

shown in Figure 24 for steel cylinders shows that, in steel cylinders, the ultimate pressure 

capacity maxp  occurs at a lower level of pressure, because of the significant effect of 

inelastic material behavior on the pressure capacity of the cylinder. Furthermore, the finite 

element results indicate that the maximum pressure of elastic-plastic (steel) cylinders 

occurs very soon after first yielding, and corresponds to a deformation stage before 

“flattening” of the cylinder wall occurs at 0   location. Figure 25a depicts the successive 

deformed configurations of the steel cylinder, whereas the corresponding points on the 

pressure–deflection path are depicted in Figure 25b. A comparison between deformed 

shapes from elastic and inelastic cylinder behavior, which both correspond to the same 

deflection of point A ( 0.932R  ), is shown in Figure 26. This comparison indicates that 

the “post-buckling” shape of inelastic cylinders is characterized by more abrupt changes of 

local curvature at the symmetry point A and the “touchdown” point B, which is attributed 

to the concentration of plastic deformation at those points. 



Chapter 2: Confined cylinders under external pressure 

48 

 

 

Figure 25: (a) Consecutive deformation shapes of an initially “perfect” steel cylinder, (b) 

corresponding points on the pressure-deflection path; configuration (2) corresponds to the 

ultimate pressure stage. 
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Figure 26: Comparison between deformed shapes from elastic and inelastic cylinder 

behavior, which both correspond to the same deflection of point A ( 0.932R  ). 
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Figure 27: Distribution of plastic deformation in terms of equivalent plastic strain, along 

the pipe section in the buckled area (
110E E   , 200D t  ). 
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Figure 28: Definition of three-hinge model, describing plastic collapse mechanism. 

 

It is assumed that the material is rigid-plastic and that deformation occurs only in the plastic 

hinges. Assuming inextentionality of the deformed ring, the length of A B  is equal to the 

length of AB . Equilibrium is enforced equating the internal plastic work rate 
intW , 

dissipated at the plastic hinges, with the external work rate 
extW  of the external pressure: 

int extW W .         (42) 

Internal work rate is considered equal to the product of the full-plastic moment 
pM  of the 

cylinder wall times the rate of relative rotations at all three plastic hinges  , neglecting 

the work required for the translation of the moving hinges at B  and B . For a cylinder 

segment of unit length and thickness t , with negligible effects of hoop compression on the 

plastic moment, 
2 4p yM t . External work rate 

extW  per unit length is equal to the 

product of pressure p  times the rate of change of the area enclosed by the cylinder cross-

section A . Therefore, equation (42) can be written approximately as follows: 

   pM p A   .        (43) 

From the geometry of the deformed ring (Figure 28), one readily obtains: 
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Inserting equations (44)-(47) into equation (43), and conducting the appropriate 

differentiations, one obtains the following equilibrium equation for arbitrary rate  : 

2

4

3

pM
p

R 



.        (48) 

The above closed-form expression can also be written in the following dimensionless form: 

2

2

3
y

p t

p D

R R

 

 
  
     

   
   

.       (49) 

In Figure 24, equation (49) is plotted together with the numerical results, verifying that 

the pressure beyond its maximum value is a rapidly decreasing function of cylinder 

deformation. Furthermore, the comparison shows that equation (49) underestimates the 

pressure by about 30-35%. This difference is attributed to the non-consideration of the 

additional internal work required for hinges B  and B  to travel along the cylinder 

perimeter. The development of a more sophisticated plastic collapse mechanism, which 

accounts for this additional internal work, is out of the scope of the present work. 

 

2.4.1.3 Imperfection sensitivity 

The presence of a small gap between the cylinder and the surrounding medium may 

also have significant effect on the maximum pressure, as shown in Figures 29. The gap 

size, denoted as g , is the maximum distance between the cylinder and the cavity inner 

surface at 0  , and it is normalized by the cylinder radius R . The numerical results in 

Figures 29, compared with the corresponding results of Figure 24, indicate that the 

presence of a rather small gap results in a significant reduction of the ultimate pressure 

capacity maxp  of the cylinder. For zero initial out-of-roundness ( 0 0R  ), the ultimate 

pressure capacity is reduced by 40% for an initial gap size equal to 0.27% of the cylinder 

radius R  (or equivalently equal to 27% of the cylinder thickness t ) and by 64% for a gap 

size equal to 0.8% of the cylinder radius R  (or equal to 80% of t ). In both cases depicted in 

Figures 29, the maximum pressure is further decreased in the presence of initial out-of-

roundness imperfections ( 0 R ). 
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Figures 29: Effects of initial out-of-roundness and initial gap on the external pressure 

response of a loosely-fitted steel cylinder embedded in a rigid confinement medium. 
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The effects of initial gap ( g R ) and out-of-roundness ( 0 R ) imperfections on the 

maximum pressure (
max yp p ) are summarized in Figure 30 for a cylinder with D t  200 

and 
y  313 MPa. The finite element results indicate that for values of initial out-of-

roundness 0  greater than 3.5% of the cylinder radius R , the value of maximum pressure 

maxp  is independent of the value of initial gap g . 

 

Figure 30: Effects of initial out-of-roundness and initial gap on the maximum pressure 

sustained by a confined steel cylinder embedded in a rigid confinement medium. 
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critical buckling pressure ep  for elastic unconfined cylinders, calculated from Εq. (13). 

Nevertheless, upon buckling, the cylinder very quickly accommodates itself within the rigid 

cavity, allowing for significant further increase of external pressure. This is represented by 

the increase of pressure beyond the critical pressure level (
yp p 0.016). The smaller the 

gap size, the sooner the pressure increases. Under those conditions, the top part of the 

cylinder behaves similar to an arch subjected to uniform external pressure, supported at the 

two “touchdown” points. This leads to the so-called “inversion buckling”, characterized by 

a limit-point on the pressure-deformation equilibrium path and unstable response beyond 

the limit point. 

 

 

Figure 31: External pressure response of confined steel cylinders with 0 0R   for 

different values of initial gap ( g R ), embedded in a rigid confinement medium 

 110E E   ; low pressure levels. 
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A graphical summary of the above described structural behavior of confined elastic or 

steel cylinders with initial gap between the cylinder and the surrounding medium is 

depicted in Figure 32. 

 

Figure 32: Graphical summary of the structural behavior of confined cylinders with initial 

gap between the cylinder and the surrounding medium  

 

 

2.4.1.4 Effect of D t  ratio 

The value of maximum external pressure that the cylinder can sustain depends on the 

value of the D t  ratio. Figure 33 shows the response of a thicker steel cylinder ( 100D t  ) 

under external pressure, confined within a stiff boundary. The response is similar to the one 

presented in Figure 24 for the thin-walled cylinder with 200D t  . However, the ultimate 

pressure maxp  for the thicker cylinder ( 100D t  ) is higher than the ultimate pressure of 

the thin-walled cylinder ( 200D t  ), and closer to the plastic pressure yp . On the other 

hand, one should notice that maxp  is still lower than the plastic pressure of the cylinder yp , 

even in the absence of initial imperfections. The simplified model equation (49) is also 

included in Figure 33 and it is compared with the finite element results. The comparison 

indicates that this equation offers an approximation of the post-buckling behavior, verifying 
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the rapid decrease of pressure upon reaching maxp , similar to the case of the thin-walled 

cylinder ( 200D t  ), discussed in a previous paragraph. 

 

Figure 33: Response of tightly-fitted steel cylinders ( 0g R  ) with 100D t , embedded 

in a rigid confinement medium (
110E E   ); numerical results for different values of 

initial out-of-roundness and plastic-hinge collapse mechanism equation (49). 
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Figure 34: Effects of initial out-of-roundness and D t  ratio on the maximum pressure 

sustained by a confined steel cylinder embedded in a rigid confinement medium. 
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Figure 35: Response of steel cylinders with different values of 
y , embedded in a rigid 

confinement medium (
110E E   ); pressure in [MPa] versus normalized displacement. 

 
Figure 36: Normalized response of steel cylinders with different values of y , embedded in 

a rigid confinement medium (
110E E   ). 
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2.4.2 Deformable confinement 

The results presented in the previous sections refer exclusively to the case of cylinders 

enclosed within a non-deformable (rigid) cavity, considering an elastic confinement 

medium with high values of modulus E . However, quite often in buried pipeline 

applications, the steel cylinder is embedded in a soft medium, which should be modelled as 

a deformable cavity. In the present section, using the finite element tools, the influence of 

embedment flexibility on the mechanical response of externally-pressurized cylinders is 

examined. Motivated by the buckling problem of externally-pressurized buried pipelines, 

the top boundary of the finite element model is free, whereas the nodes on the three other 

boundaries are fixed. 

 

2.4.2.1 General response 

The influence of medium deformability on the buckling response of a steel cylinder 

( y 313 MPa, D t  200) with no imperfections ( 0 0g   ) for different values of the 

confining medium modulus E  is shown in Figure 37 in terms of the pressure-deformation 

curves. In this analysis, the gravity load of the surrounding medium is not considered. The 

results indicate that there is a substantial reduction of the maxp  value with decreasing values 

of E , due to the elastic deformation of the medium. This reduction is attributed to the 

more pronounced deformations of the confined steel cylinder within the soft medium, under 

moderate pressure levels. Furthermore, with decreasing values of E , the response becomes 

smoother, and it characterized by a “plateau” on the equilibrium path about the maximum 

pressure. Figure 38, Figure 39, and Figure 40 depict the pressure versus deformation 

equilibrium paths of steel cylinders for different values of initial out-of-roundness, for three 

values of E E  ratio, equal to 310 , 410  and 53.3 10  respectively. The last value of 

medium stiffness E  corresponds to loose sand [38].  
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Figure 37: Pressure versus deformation equilibrium paths of perfect steel cylinders 

( 0g R  , 0 0R  ) for different values of confinement medium modulus ( E E ). 

 
Figure 38: Response of tightly-fitted steel cylinders ( 0g R  ), embedded in a confinement 

medium with 
310E E   , for different values of initial out-of-roundness. 
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Figure 39: Response of tightly-fitted steel cylinders ( 0g R  ), embedded in a confinement 

medium with 
410E E   , for different values of initial out-of-roundness. 

 

Figure 40: Response of tightly-fitted steel cylinders ( 0g R  ), embedded in a confinement 

medium with 
53.3 10E E    , for different values of initial out-of-roundness. 
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For the better understanding of the effect of confinement on the buckling response of 

confined cylinders, the ultimate pressure capacity maxp , is depicted with respect to a 

modulus ratio parameter, defined as  logx E E  . Figure 41 shows the drop of the maxp  

value with decreasing values of E  for an elastic and a steel “perfect” cylinder 

 0 0R g R    with 200D t  . It is interesting to note that for 
43 10E E    , the two 

curves coincide, indicating that buckling of steel cylinders with D t  200 in a highly 

deformable medium occurs in the elastic range. In other words, the effects of confinement 

are significantly reduced. 

 

Figure 41: Comparison between elastic and steel perfect cylinders ( 0 0R g R   ) with 

respect to the E E  value. 

 

2.4.2.2 Imperfection sensitivity 

The variation of maximum pressure with respect to initial out-of-roundness for four 

different values of the confinement medium modulus E  is plotted in Figure 42 and in 

Figure 43 for zero  0g R   and non-zero gap  35.4 10g R    respectively. The results 

indicate that there is a significant imperfection sensitivity, which is more pronounced for 

stiff confinement than for deformable confinement. Comparison between the results from 

Figure 42 and Figure 43 indicate that the presence of gap affects the value of maximum 

pressure but this effect becomes less important increasing the flexibility of the surrounding 

medium. 
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Figure 42: Effects of initial out-of-roundness and stiffness of confinement medium ( E E ) 

on the maximum pressure sustained by a confined steel cylinder ( 0g R  ). 

 

Figure 43: Effects of initial out-of-roundness and stiffness of confinement medium ( E E ) 

on the maximum pressure sustained by a confined steel cylinder (
35.4 10g R   ). 
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Figures 44 show the drop of the maxp  value with decreasing values of E  for elastic 

and steel imperfect cylinders with 200D t  ; particularly for (a) 0 0.012, 0R  g R   , 

and (b) 0 0, 0.0027R  g R   . These figures indicated that buckling of steel cylinders in 

a highly deformable medium (high values of the modulus ratio parameter) occurs in the 

elastic range. 

 

Figures 44: Comparison between elastic and steel cylinders with respect to the E E  value 

for (a) 0 0.012, 0R  g R   , and (b) 0 0, 0.0027R  g R   . 
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2.4.2.3 Effect of D t  ratio 

The influence of D t  ratio on the 
max max,p p 

 versus E  relationship, where 
max,p 

 is 

the ultimate pressure of the cylinder in a rigid confinement ( E ), can be neglected as 

shown in Figure 45. 

 

Figure 45: Variation of maximum pressure with respect to the E E  value for perfect steel 

cylinders ( 0 0R g R   ) and different values of D t  ratio. 

 

2.4.2.4 Effect of yield stress 
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increase of the ultimate pressure maxp , in the case of a soft confinement medium (Figure 

46), the ultimate pressure maxp  seems to be rather insensitive to the value of yield stress 

.y  In such a case, the value of maxp  is quite small, due to the small contribution of the 

surrounding medium. In all three cases ( 235 MPa , 313 MPa  and 566 MPa ) of Figure 46, 

buckling occurs in the elastic range and, therefore, yielding of steel material occurs after a 

maximum pressure occurs. The results of Figure 46 are also depicted in Figure 47 in a 

dimensionless form. 
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Figure 46: Response of steel cylinders with different values of 
y , embedded in a soft 

medium (
53.3 10E E    ); pressure in [MPa] versus normalized displacement. 

 
Figure 47: Normalized response of steel cylinders with different values of y , embedded in 

a soft confinement medium (
53.3 10E E    ). 
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2.4.2.5 Contact pressure 

The contact pressure developed in the interface between the cylinder and the medium is 

shown in Figure 48 for the case of a soft confinement modulus E  ( E E = 53.3 10 ). Note 

that the maximum contact pressure occurs at point A2, which is located at the “touchdown” 

area with maximum plastic deformation. 

 

Figure 48: Variation of contact pressure between the steel cylinder and the elastic medium. 

 

2.4.2.6 Effect of friction 

Figure 49 and Figure 50 show the effects of friction between the cylinder and the 

medium for a value of 
310E E    and a small value of E E = 53.3 10  respectively. 
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o
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numerical results show that the consideration of friction results in a small increase of the 

ultimate capacity maxp . The friction effect is somewhat more pronounced in the case of a 
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Figure 49: Effects of friction between the steel cylinder and the elastic surrounding 

medium for 
310E E   . 

 
Figure 50: Effects of friction between the steel cylinder and the elastic surrounding 

medium for 
53.3 10E E    . 
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2.4.3 Effect of preloading 

2.4.3.1 General response 

The effect of vertical preloading on the top of the surrounding medium is shown in 

Figure 51 and Figure 52 for the case of soft surrounding medium (
53.3 10E E    ). 

Preloading is considered in the form of a vertical pressure q  on the top edge of the 

medium, which is applied first and it is kept constant while the external pressure p  is 

increased. The values of q  in Figure 51 represent loading in a buried pipeline from 

overlying soil of height that ranges between 0 and 15 meters, assuming a unit weight of soil 

equal to 
315kN m . The values of vertical pressure q  are normalized by the quantity 

 
2

0 yq t R  (
0q q q  ). The numerical results show that, in the case of soft medium, 

preloading has a beneficial effect on the pressure capacity of the cylinder. On the other 

hand, negligible effects on the cylinder response have been observed in the case of a stiff 

medium. 

 
Figure 51: Effects of uniform preloading at the top of the surrounding medium, on pressure 

response of confined steel cylinders. 
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Figure 52: Variation of maximum pressure maxp , sustained by the cylinder, in the presence 

of preloading at the top of the surrounding medium. 
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2.4.3.2 Effect of gravity 

The previous results have been obtained without considering gravity of the surrounding 

medium. In the following, the effects of gravity on the structural response of the cylinder 

are examined. Motivated by the case of buried pipelines, soil conditions are considered for 

the surrounding medium. Figure 53 and Figure 54 show the pressure-displacement response 

of a steel cylinder with / 200D t  , for 0.3   and 0.49   respectively. The steel 

cylinder (
y =313 MPa) is embedded in an elastic medium of density equal to 20 kN/m

3
 

and Young’s modulus 'E  ranging from 25 to 100 MPa, which is typical for clays [38]. In 

this analysis, gravity of the cylinder/soil system is considered as a first step, and 

subsequently, external pressure has been applied on the outer surface of the cylinder. The 

results in Figure 53 refer to 0.3   and indicate a high value of maxp  at small values of 'E . 

This observation is more pronounced in Figure 54 which refers to 0.49  , a nearly-

incompressible medium. 

This indication can be explained if the detachment w  of the cylinder from the 

surrounding medium replaces the displacement   of the cylinder in the horizontal axis. 

The corresponding graphs are shown in Figure 55 and Figure 56 for low values of 'E . Due 

to gravity loading, the cylinder remains in contact with the medium up to a significant level 

of pressure and buckling is prevented. Immediately after detachment, buckling occurs quite 

abruptly, associated with a rapid drop of pressure. This sudden collapse is more pronounced 

in the case of a nearly-incompressible medium  0.49  , as shown in Figure 56. In the 

case of a high value of 'E , detachment occurs at relatively low pressure levels and the 

behavior has similarities with the one described in the previous sections for rigid boundary. 

For the better understanding of the effect of the gravity on the structural behavior of the 

confined cylinders, the corresponding results without the presence of gravity are reported. 

In particular, Figure 57 depicts the pressure-displacement response of a perfect steel 

cylinder ( y =313 MPa) with / 200D t  , and for a nearly-incompressible elastic medium 

 0.49   with Young’s modulus 'E  ranging from 25 to 100 MPa. Finally, in Figure 58, 

the critical pressure values with or without the presence of gravity are compared in terms of 

the Young’s modulus of the elastic medium. 
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Figure 53: Structural response of perfect steel cylinders for different values of confinement 

medium modulus; pressure versus displacement    equilibrium paths for 0.3  . 

 

Figure 54: Structural response of perfect steel cylinders for different values of confinement 

medium modulus; pressure versus displacement    equilibrium paths for 0.49  . 
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Figure 55: Structural response of perfect steel cylinders for different values of confinement 

medium modulus; pressure versus detachment  w  equilibrium paths for 0.3  . 

 

Figure 56: Structural response of perfect steel cylinders for different values of confinement 

medium modulus; pressure versus detachment  w  equilibrium paths for 0.49  . 
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Figure 57: Pressure versus displacement equilibrium paths of perfect steel cylinders for 

different values of confinement medium modulus without the presence of gravity. 

 

Figure 58: Effect of gravity on the maximum pressure of perfect steel cylinders for different 

values of confinement medium modulus. 
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2.4.3.3 Elastic-plastic medium 

Finally, the behavior of a steel cylinder with / 200D t  , embedded in a deformable 

elastic-plastic medium is examined. The medium is considered a soft-to-firm clay, which is 

modeled through a Mohr-Coulomb inelastic material model, with cohesion c  50 kPa, 

friction angle 0  , Young’s modulus E 25 MPa and Poisson’s ratio  0.49. The 

effects of gravity have been taken into account, as an initial loading step. Figure 59 shows 

the structural response of the steel cylinder in terms of the pressure-displacement curve for 

the elastic-plastic medium, compared with the corresponding curve assuming elastic 

medium. The two curves practically coincide. They slightly deviate only after significant 

deformation, well into the post-buckling range. The coincidence of the two curves is more 

pronounced when stiffer soil properties are employed. Figure 60 shows the distribution of 

plastic deformation in the deformable medium at a displacement value of 30 mm 

 / 0.04R  , well beyond the buckling stage. Plastic deformation occurs at the 

“touchdown” points B and B' (see Figure 8), where the pressurized cylindrical arch is 

supported. It is interesting to note that at the stage where buckling occurs, no plastic 

deformation is detected within the medium. 

 

Figure 59: Effect of elastic-plastic medium on the structural response of confined steel 

cylinder. 
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Figure 60: Distribution of equivalent plastic strain on the medium. 
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2.5 Development of design methodology 

For the purposes of describing buckling of confined cylinders in the inelastic range in a 

simple and efficient manner, a general methodology for the design of confined steel 

cylinders is adopted, within the framework of the new European shell stability design rules 

[32] and recommendations [33]. The proposed methodology is based on the so-called “shell 

slenderness” parameter, defined as follows [32],[33]: 

pl

cr

R

R
  ,         (50) 

where plR  represents the load that causes full-plastic failure and crR  the load corresponding 

to the elastic buckling condition of the perfect cylinder. In the present case, the fully-plastic 

pressure 
yp  of equation (17) can be used for plR , whereas Glock’s critical pressure GLp  in 

equation (12) offers a very good analytical expression for the critical pressure crR , so that 

the slenderness parameter in equation (50) can be written as follows: 

1.222.26 (1 )y y

GL

p D

p E t

 


  
   

 
.     (51) 

 

2.5.1 Rigid confinement 

In the case of perfect elastic cylinders ( 0 0g   ) embedded in a stiff confinement 

 110E E   , the numerical results in Figure 12 show that the ultimate pressure maxp  is 

equal to the one predicted by equation (12), i.e. equal to GLp . Therefore, combining 

equations (12) and (51), one can write: 

max

2

1

y

p

p 
 ,         (52) 

Neglecting strain hardening effects, the value of yp  cannot be exceeded, i.e. max yp p . 

Therefore, it would be tempting to argue that for steel cylinders with slenderness values   

less than unity, the maximum pressure maxp  would be equal to yp , whereas equation (52) 

would express the maximum pressure of steel cylinders with slenderness values   greater 

than unity. 

The validity of the above argument is examined using the present numerical tools, and 

the corresponding results are depicted in Figure 61, for imperfection-free cylinders within a 
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stiff confinement medium and for three values of yield stress 
y  ( 235 MPa , 313 MPa  and 

566 MPa ). Specifically, the variation of ultimate pressure maxp  normalized by the fully-

plastic pressure 
yp  is depicted in terms of dimensionless “slenderness” parameter  . 

Nevertheless, the numerical results in Figure 61 do not support the above argument. In 

particular, it is shown that for   values less than 2.2, the buckling pressure maxp  deviate 

significantly from equation (52). On the other hand, for   values greater than 2.2, the 

buckling pressure maxp  can be expressed quite accurately by equation (52), which implies 

that buckling occurs in the elastic range. In other words, the value of 2.2, denoted by 
p , 

defines the transition between elastic and inelastic buckling regime. 

 

Figure 61: Variation of maximum pressure maxp  of steel cylinders with no imperfections 

( 0g R  , 0 0R  ), embedded in a rigid confinement medium (
110E E   ) with respect 

to the slenderness parameter   defined in equation (51). 

 

For slenderness values   less than p , i.e. for buckling in the inelastic range, the 
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the plastic pressure 
yp  for rather small values of  . The numerical results of Figure 61 

indicate that a value of   equal to 0.25 is representative of the cylinder behavior. This is a 

characteristic slenderness value denoted as 0 , and referred to as “squash limit relative 

slenderness”. 

Based on the above results, it is possible to develop a buckling curve that expresses the 

maximum pressure maxp  in terms of the slenderness value   of the cylinder. This curve 

should consider the general case of imperfect cylinders, so that it is used for design 

purposes. More specifically, taking into account the definition of the imperfection reduction 

factor   in equation (35), one can write: 

max

2

y

p

p




 ,         (53) 

which is valid for the elastic buckling range, i.e. for 2.2p   . The value of the 

imperfection reduction factor   can be computed from equation (38). For values of   less 

than the plastic limit slenderness ( 2.2p  ), buckling is associated with material behavior 

in the inelastic range. In such a case, the maximum pressure values maxp  deviate from the 

elastic solution (52). In particular, for very small values of  , the value of maxp  approaches 

the plastic pressure yp . 

In the absence of a closed-form analytical expression for the buckling pressure in the 

inelastic regime, similar to elastic buckling equation (12) for elastic buckling, the following 

expression, introduced in [32],[33], is adopted: 

max 0

0

1
y p

p

p



 


 

 
     

,       (54) 

where   is constant, and   depends on imperfection parameter   [equation (37)]. 

Equation (54) is valid for intermediate values of cylinder slenderness 0 p    . Finally, 

for slenderness values less than 0 , the cylinder collapses due to the development of 

excessive plastic deformation, so that neglecting strain hardening, one can write: 

max 1
y

p

p
 .         (55) 

It is important to note that, the value of   in equation (54) is determined equating 

expressions (53) and (54) for p  , and one readily obtains: 
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2
1

p





  .         (56) 

Furthermore, the numerical results indicate a dependence of   on the initial imperfection, 

which can be expressed as follows: 

0.6 3    , 0.3  ,       (57) 

where   is the imperfection parameter and is given by equation (37). 

Figures 62 show the predictions of the above design methodology for perfect and 

imperfect  0 0.012R   steel cylinders against the numerical finite element results for 

three values of yield stress 
y  ( 235 MPa , 313 MPa  and 566 MPa  respectively). The 

comparisons indicate that the proposed methodology offers an efficient approach for 

predicting the ultimate pressure of confined cylinders in both the elastic and the inelastic 

range. 
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Figures 62: Variation of maximum pressure maxp  of steel cylinders embedded in a rigid 

confinement medium with respect to the slenderness parameter   defined in equation (51); 

finite element results and predictions of equations (53), (54), (55). 
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Summarizing the above proposed methodology for the prediction of the buckling 

pressure maxp  of confined steel cylinders in a rigid cavity  110E E   , the following 

equations with the corresponding applicability ranges are concluded: 

max 1
y

p

p
 ,   for 0 0.25   .    (58) 

max 0

0

1
y p

p

p



 


 

 
     

, for 
0 p    .    (59) 

max

2

y

p

p




 ,   for 2.2p   .    (60) 

The methodology is fully compatible with the general methodology for shell buckling 

design [32],[33], and could be used for design purposes. 

 

2.5.2 Deformable confinement 

It is also possible to incorporate the effect of E E  in the present design methodology 

proposed above, introducing an appropriate reduction factor f , expressing the ratio of 

maxp  in a deformable medium over 
max,p 

: 

max

max,

p
f

p 

 ,         (61) 

where 
max,p 

 is the ultimate pressure of the cylinder in a rigid confinement  E . 

Based on the corresponding numerical results for deformable confinement presented in the 

subsection 2.4.2, the reduction factor f  can be written as follows: 

20.05 0.1 0.95 if 1 5
( )

1 if 1

x x x
f x

x

    
 


,     (62) 

where x  is the modulus ratio parameter, 

log
E

x
E

 
   

 
,        (63) 

which can be used for an efficient description of the effects of medium deformability on the 

ultimate pressure. 

The comparison between numerical results and the analytical predictions is shown in 

Figure 63 and demonstrate that equation (62) can be used for an efficient description of the 

effects of medium deformability on the ultimate pressure. 
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Figure 63: Comparison between numerical results and analytical prediction from equation 

(62) for the maximum pressure with respect to the E E  value. 

 

The design methodology developed in the present section is summarized in the 

following steps: 

 Step 1: Calculate yp  and GLp  from equations (17) and (12) respectively, as well as 

the slenderness parameter of the cylinder   from equation (51). 

 Step 2: Compute the elastic imperfection sensitivity parameter   from equation 

(38). Subsequently, compute coefficient   from equation (56), and exponent   from 

equation (57). 

 Step 3: Depending on the value of  , calculate the ultimate pressure capacity maxp  

from equations (53), (54) or (55). This is the ultimate pressure for rigid confinement. 

 Step 4: In the case of a deformable medium, multiply the value of maxp  with the 

value of f  from equation (62). 

The above proposed methodology is compatible with the design provisions for shell 

buckling in [32],[33]. Furthermore, a relevant chapter for the design of confined steel 

cylinders, within the framework of the European Design Recommendations [33], is 

proposed in Appendix A. 
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2.5.3 Montel’s equation 

As an alternative to the design methodology proposed above, equation (16) proposed 

by Montel [22] can be used to estimate the buckling pressure of imperfect steel cylinders 

under external pressure confined within a rigid (non-deformable) cavity. The Montel’s 

simplified equation and the corresponding applicability ranges were briefly presented in the 

literature review of the present chapter (subsection 2.1.1). However, for convenience, the 

simplified formula is reminded below: 

   
1.5

0

14.1

1 1.2 2

y

Mp
D t g t






   

.      (64) 

The predictions of Montel’s equation are compared with the present finite element 

results in Figures 64. The comparison shows that, despite its simplicity, the empirical 

formula (64) can provide reliable, yet somewhat conservative, estimates of the maximum 

pressure sustained by a cylinder encased in a stiff boundary, within a good level of 

accuracy, even beyond the applicability ranges specified in the publication of Montel [22]. 

Therefore, the formula can be used for the design of buried pipelines encased in concrete or 

other cylinders confined within a stiff medium. 
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Figures 64: Comparison between numerical results and analytical predictions from 

Montel’s equation (16) of steel cylinders embedded in a rigid confinement medium with 

respect to the out-of-roundness imperfection (a) for different values of D/t ratio and (b) for 

different values of gap imperfection amplitude g R . 
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2.5.4 Comparison with experimental data 

Montel [22] documents a series of tests on small- and large-scale specimens of steel 

pipes confined in concrete [24]. Equation (64) was developed by evaluating these test 

results and attempting to fit the most significant parameters governing the problem into a 

single equation. Most tests were carried out with steel grades with 
y  equal to 350 MPa . 

Tests with these steel qualities were conducted for a range of D t  ratios corresponding to 

the validity range provided by Montel  60 340D t  . In this range, equation (64) yields 

quite accurate results for the critical buckling pressure. However, fewer tests were 

conducted with higher-strength steel qualities and all of these had D t  ratio of about 140. 

The limitation of the computational value of yield strength that can be used in equation (64) 

was derived from these tests. 

In the present study, four of those tests are compared with the numerical results and the 

proposed design methodology. The main geometric and material properties for each test 

specimen are reported in Table 3, whereas the values of critical pressure are summarized 

and compared in Table 4. Test #1 and Test #2 obtained from two identical small-scale 

specimens with D t  ratio equal to 66.7, yield strength 
y  equal to 304 MPa , initial out-of 

roundness 0 0.009R   and initial gap 0.0002g R  . The corresponding pressure 

displacement curve obtained numerically is compared in Figure 65 with the experimental 

results. Test #3 has 133.33D t  , yield strength 
y  451 MPa  and initial out-of roundness 

0 0.005R  , while Test #4 has 142.8D t  , y  746 MPa , and 0 0.007R  . Since no 

initial gap between pipe and medium was measured for these tests, a typical value of g R  

equal to 0.00067 was chosen for these two tests. For the test (Test #4) with steel yield 

strength of 746 MPa , the value of 
y  in equation (64) was assumed equal to 500MPa  as 

proposed by Montel, because it exceeds the applicability limit of the equation. The 

pressure-displacement equilibrium paths obtained numerically for the Test #3 and Test #4 

are depicted in Figure 66 and Figure 67 respectively and compared with the experimental 

critical pressure value. In general, it is shown a good comparison between the experimental 

and numerical results. 
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 TTeesstt  ##11 TTeesstt  ##22 TTeesstt  ##33 TTeesstt  ##44 

D/t ratio 66.7 66.7 133.3 142.8 

Out-of-roundness ( 0 R ) 0.009 0.009 0.005 0.007 

Initial gap ( g R ) 0.0002 0.0002 0.00067 0.00067 

Yield strength (
y ) [ MPa ] 304 304 451 746 

Table 3: Geometric and material characteristics of test specimens. 

 

 Maximum Pressure 

 Test #1 Test #2 Test #3 Test #4 

Experimental  6.1 MPa 6.7 MPa 2.9 MPa 2.6 MPa 

Numerical (FEM) 6.14 MPa 6.14 MPa 2.84 MPa 2.88 MPa 

Design Methodology 5.47 MPa 5.47 MPa 2.70 MPa 2.57 MPa 

Montel Equation (64) 5.74 MPa 5.74 MPa 2.75 MPa 2.42 MPa 

Table 4: Comparison of critical pressure between experimental, numerical and analytical 

results. 

 

Figure 65: Pressure-displacement equilibrium path for two identical tests (Test #1 and Test 

#2) and comparison with experimental results. 
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Figure 66: Pressure-displacement equilibrium path for the Test #3 and comparison with 

the experimental critical pressure. 

 

Figure 67: Pressure-displacement equilibrium path for the Test #4 and comparison with 

the experimental critical pressure.  
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2.6 Shrink buckling of confined cylinders 

2.6.1 Introduction 

The single-lobe buckling mode of a thin-walled cylinder or ring in a cavity, shown in 

Figure 8, can be obtained with two types of loading. The first type of loading is external 

pressure on the cylinder outer surface, sometimes referred to as “hydrostatic pressure” 

problem, investigated extensively in the previous sections (particularly in sections 2.3, 2.4 

and 2.5). Alternatively, this buckling mode may be obtained under thermal loading, where 

the cavity prevents the extension of the encased cylinder. Similar to thermal loading, shrink 

buckling may also occur when the outer cavity contracts (shrinks), moving inwards and 

applying external pressure to the encased cylinder, forcing it to buckle. In several practical 

applications, sleeving the inside of cylinders can lead to shrink buckling as well. In all 

those cases, the resultant buckling is often referred to as “shrink buckling”, as opposed to 

“hydrostatic buckling” presented in the previous sections. 

Early works on this subject have been conducted by [7] and [11], pin-pointing the 

importance of initial imperfections on the maximum compression. Notable analytical 

contributions on the problem of “shrink buckling” have been reported in [39]-[42], whereas 

Sun et al. in [43] presented a thorough experimental investigation of the problem, using a 

simple set-up of compressed hemi-circular very thin-walled rings ( D t  400) within a rigid 

cavity, focusing on the effects of initial imperfections. 

The shrink buckling problem has several similarities but it is not the same as the 

hydrostatic buckling problem. The main difference is that in shrink buckling under thermal 

loading or sleeving, the buckled part of the cylinder is laterally free, whereas in hydrostatic 

buckling, pressure load is always present, applied on the buckled portion of the cylinder in 

the post-buckling stage. To understand the consequences of this difference on the 

mechanical behavior and strength of the loaded cylinder, a series of numerical simulations 

are conducted in the course of the present study, simulating the experimental set-up of Sun 

et al. [43], shown in Figure 68. It consists of a thin-walled cylindrical specimen encased 

within a rigid hemi-circular cavity, compressed symmetrically at points B and B’. A small 

imperfection is imposed in the central point A, assuming an initial stress-free displacement 

pattern, in the form of an inward localized displacement. 



Chapter 2: Confined cylinders under external pressure 

91 

 

Figure 68: Schematic representation of test set-up [43]. 

 

2.6.2 Finite element modeling 

The numerical model employed for simulating this experiment is shown in Figure 69 

and it is very similar to the one described in section 2.2; shell elements and solid elements 

are used to model the cylinder and the rigid cavity respectively. The material of the cavity 

is considered isotropic elastic with Young’s modulus E= 21,000 MPa and Poisson’s ratio 

 = 0.30, corresponding to rigid confinement conditions. Numerical results are obtained for 

the case of an elastic and a steel cylinder. Both cylinders have a D t  ratio equal to 200, 

whereas the material of the steel cylinder has a yield stress equal to 313 MPa, similar to the 

material used extensively in section 2.4. 
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Figure 69: Finite element model of cylinder-medium system. 

 

2.6.3 Numerical results 

The numerical results are presented in Figure 70, showing the maximum (buckling) 

acting stress at points B and B’ in terms of the size of initial imperfection. Both curves are 

decreasing functions of the imperfection amplitude. The acting stress   is equal to the 

force F  applied at points B and B’ divided by the cross-sectional area of the ring model. 

For value of initial imperfection approaching zero, the curve for the elastic cylinder goes 

asymptotically to infinity. This implies the absence of buckling for a geometrically perfect 

system, a conclusion also reported in early analytical works [41], as well as in the tests of 

Sun et al. [43]. The steel cylinder has a similar behavior, but the buckling stress is 

significantly reduced with respect to the corresponding stress of the elastic cylinder. In 

addition, for small values of imperfection amplitude ( 0 0.4t  ), the steel ring fails due to 

yielding at a stress level equal to the yield stress of the material 
*

y  under plane strain 

conditions. 

shell model
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Figure 70: Maximum acting stress for rigidly confined elastic and steel cylinders. 

 

The absence of buckling in an imperfection-free cylinder constitutes the main 

difference between the shrink buckling and the hydrostatic buckling problem. As noted, this 

is attributed to the fact that hydrostatic pressure is always applied on the post-buckled 

portion of the cylinder, whereas external loading is released from the buckled portion in the 

case of shrink buckling. 
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2.7 Conclusions 

The mechanical behavior of thin-walled elastic and steel cylinders, surrounded by a 

deformable elastic medium, has been examined in terms of their structural stability under 

uniform external pressure. The study is motivated by the structural response of buried water 

or hydrocarbon pipelines surrounded by saturated soil medium or concrete encasement. The 

examination is computational using a nonlinear quasi two-dimensional model through the 

employment of the general-purpose finite element program ABAQUS. 

Numerical results for the ultimate pressure of cylinders of elastic material are found to 

be in very close agreement with available closed-form analytical predictions [12],[14] and 

are also supported by available experimental data [15],[16],[17]. Furthermore, the 

numerical results show a significant sensitivity of the ultimate pressure in terms of initial 

imperfections, in the form of both initial out-of-roundness of the cylinder cross-section and 

the presence of initial gap between the cylinder and the surrounding medium. It is also 

demonstrated that reduction of the medium modulus results in a substantial reduction of the 

pressure capacity of the cylinder. The pressure-deflection equilibrium paths indicate a rapid 

drop of pressure capacity after reaching the maximum pressure level. A three-hinge plastic 

collapse mechanism with one stationary and two moving plastic hinges is developed that 

results in a closed-form expression and illustrates the post-buckling response of the cylinder 

in an approximate yet very representative manner. The maximum plastic deformation 

within the steel cylinder as well as the maximum contact pressure between the cylinder and 

the medium occurs at the vicinity of the moving hinges. Furthermore, the vertical 

preloading of the medium results in a pronounced increase of the ultimate pressure 

sustained by the cylinder. 

Based on the numerical results, and to predict the ultimate pressure in the inelastic 

range in a simple and efficient manner, a systematic methodology is developed, which is 

based on a “shell slenderness” parameter. The methodology is compatible with the general 

provisions of recent European shell stability design rules [32] and recommendations [33] 

for shell buckling, and could be used for design purposes. Furthermore, the simplified 

formula proposed in [22] is found to be quite close to and on the conservative side of the 

present numerical results and could also be used for the prediction of buckling pressure of 

buried pipelines and other rigidly encased steel cylinders. Moreover, experimental results 

[22],[24] compare very well with the numerical results, as well as with the predictions of 

the proposed design methodology. 



Chapter 2: Confined cylinders under external pressure 

95 

The corresponding problem of “shrink buckling” has also been examined, through a 

rigorous simulation of experiments reported in [43], and the main differences with the 

hydrostatic buckling problem have been pin-pointed, emphasizing the significantly 

different response of the two problems with respect to the presence of initial imperfections. 

Finally, it should be noticed that according to several design recommendations, the 

external pressure capacity of steel pipelines encased in a rigid cavity (e.g. concrete 

encasement), was taken equal to the nominal pressure that causes yielding of the cylinder, 

assuming that the rigid confinement prevents instability in the elastic range [1],[35]. The 

results of the present study demonstrated that this argument may be valid only for the case 

of shrink buckling. On the other hand, consideration of an ultimate pressure equal to 
yp , 

calculated by equation (17), leads to unsafe design of hydrostatically-loaded cylinders. For 

the range of D t  ratio of interest, hydrostatically-loaded steel cylinders encased in a rigid 

cavity are able to sustain only a portion of the yield pressure 
yp , even in the absence of 

initial imperfections. 
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33..  CCoonnffiinneedd  ccyylliinnddeerrss  uunnddeerr  lloonnggiittuuddiinnaall  bbeennddiinngg  

 

3.1 Introduction 

In several engineering applications, cylindrical members subjected to longitudinal 

bending are confined within a surrounding medium or another shell. Some representative 

examples of these applications are (a) the bending response of the lined pipe (sometimes 

referred to as mechanically-clad pipe), where a corrosion-resistant thin-walled liner is fitted 

inside a carbon–steel outer pipe, (b) the nano-composite tubes, where an inner carbon 

nanotube is confined in a polymer matrix, and (c) the buried steel pipelines under strike-slip 

tectonic fault displacements, where permanent ground deformation is applied on the 

pipeline. In the present chapter the bending response of the lined pipes is extensively 

investigated. 

Safeguarding the structural integrity of oil and gas steel pipelines requires erosion 

damage protection from oil or gas pollutants, which include hydrogen sulfide, chlorides, 

and water. One possibility to ensure internal corrosion resistance of hydrocarbon pipelines 

would be the use of a corrosion-resistant material for the line pipe, such as a stainless steel 

or a nickel alloy. However, the cost of producing line pipes thick enough to withstand 

normal transportation pressure as well as structural loads is prohibitive, considering that 

most of these materials lack the strength of carbon steels. An alternative solution, which 

makes the best use of corrosion-resistant alloys and carbon steels, is the use of a “lined 

pipe”, also referred to as “mechanically clad pipe”. This is a double-wall pipe, consisting of 

a load-bearing high-strength, carbon steel outer pipe, lined with a thin-walled sleeve made 

from a corrosion-resistant material (Figures 71). In particular, the so-called “mechanically 

clad or lined pipe” is a promising application of this concept. It is produced by inserting the 

liner pipe into the external carbon steel pipe, through an appropriate manufacturing process, 

so that the bond between the two pipes is purely mechanical, in the sense that the outer pipe 

material and the liner pipe material remain two distinct materials. 

The lateral confinement of the liner pipe due to the deformable outer pipe constitutes 

the main characteristic of the double-wall pipes with respect to single-wall pipes. Single-

wall pipes under bending ovalize (Brazier effect) and buckle before reaching a limit 

moment. On the other hand, in double-wall pipes, the liner is not free to ovalize and, 

therefore, the mechanical behaviour of the liner requires consideration of its interaction 

with the outer pipe. 
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The study presented in this part of dissertation focuses on the mechanical behavior and 

wrinkling of lined pipes under the combined action of bending loading and external 

pressure, motivated by the use of such pipes in offshore pipeline applications (oil, gas etc.) 

with emphasis on their underwater installation process, where a corrosion-resistant thin-

walled liner is fitted inside a carbon steel outer pipe. When longitudinal bending curvature 

is applied, the lined pipe ovalizes and, at a certain stage of deformation, the liner buckles in 

the form of short-wave wrinkles. 

 

3.1.1 Literature review 

Previous research works on single-wall pipes [1],[2],[3] have demonstrated that the 

installation of offshore pipelines in deep-water constitutes a crucial stage in underwater 

pipeline design procedure. At that stage, the pipeline is subjected to significant bending 

deformation in the presence of external pressure so that, significant stresses develop in the 

pipeline wall, associated with excessive cross-sectional ovalization and possible local 

buckling, which may result in pipeline collapse, especially if “buckle propagation” is 

triggered [4],[5]. Over the last two decades, a substantial amount of research has been 

dedicated to the bending response of pipes, and design tools for the safe design of 

deepwater pipelines have been developed and incorporated in relevant design specifications 

[6],[7]. For a detailed presentation of offshore pipeline mechanics, the reader is referred to 

the recent book by Kyriakides and Corona [8]. 

The above research works and design specifications refer exclusively to single-wall 

pipes. In the case of installing underwater lined pipes, the existing design tools could be 

used to ensure the structural stability of the load-bearing thick-walled outer pipe. However, 

under the combined loading conditions of bending deformation and external pressure, the 

thin-walled liner pipe is not free to ovalize and exhibits significant deformation, which may 

cause wrinkling of its wall, while the outer pipe remains stable. Therefore, the mechanical 

behaviour of the liner requires consideration of its interaction with the outer pipe. Because 

of this interaction, existing numerical solutions and analytical predictions for the bending 

buckling resistance of unconfined thin-walled tubes [9] are inadequate to predict the 

curvature at which the liner buckles. In order to predict the curvature at which buckling of 

the thin-walled liner occurs, it is necessary to account for its contact with the confining 

thick-walled outer pipe and to examine possible liner detachment from the outer pipe which 

may lead to wrinkling of the liner. A wrinkle on the liner wall may not be acceptable, 

because it does not allow proper pipeline pigging, it is obstacle to hydrocarbon flow and is 
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associated with stress raisers at the buckled area, which would lead to fatigue cracking of 

the liner wall under repeated loading during operational conditions [10]. 

The present work investigates the mechanical behavior of lined pipes subjected 

primarily to bending deformation, focusing on the structural stability (wrinkling) of the 

thin-walled liner. Previous experimental work on this subject has been conducted at Delft 

University of Technology and has been reported by Focke [11], motivated by the use of 

lined pipes in offshore applications, installed with the pipe reeling method. In the above 

series of experiments, lined pipes (Figures 71) were tested under bending over a variable 

curvature boundary (Figure 72), simulating the mechanical behavior of an offshore pipe 

during laying on a stinger (Figure 73). The experiments concerned X65 pipes with nominal 

diameter equal to 12 inches, lined with 3-mm-thick 316L stainless steel pipes. The 

experimental results aimed at determining the initiation and the size of liner pipe wrinkling, 

as well as the degree of ovalization occurring during the spooling-on phase of the pipe 

reeling process. 

 

Figures 71: Typical photos of lined pipes after experimental testing [11]. 
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Figure 72: Bending rig of experimental testing of lined pipes [11]. 

 

Figure 73: Pipe installation by reeling method. 

 

In the lined pipes tested in [11], the liner was fitted inside the carbon steel outer pipe 

through a thermo-hydraulic manufacturing process, resulting in a tightly-bonded lined pipe, 

where the outer pipe “compresses” the liner pipe, introducing a significant hoop 

compressive stress in the liner, which is often called “residual stress” or “prestressing” and 

the two pipes are mechanically bonded together. In this process, the outer pipe is heated 

first. Subsequently, the liner pipe is inserted inside the outer pipe and pressurized internally 
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so that it is expands and it is in good contact with the outer pipe. Finally, the outer pipe is 

cooled and the internal pressure of the liner pipe is removed, so that the two pipes are 

mechanically bonded together. The manufacturing process of those lined pipes, referred to 

as Tight-Fit Pipes (TFP), is described in detail in [12], while the numerical simulation of 

this procedure is discussed in Appendix B. 

Experimental tests and numerical investigations on liner wrinkling behavior of lined 

pipes under bending loading have been also conducted at TU Delft and have been reported 

by Hilberink [13]. In this series of experiments, four-point bending tests of 12 inch lined 

pipes were conducted (Figure 74) and buckling shapes of the liner pipe were detected and 

measured (Figure 75). The influence of friction and mechanical bonding (prestressing) on 

the behavior of the lined pipe during bending is also reported, and the numerical results are 

compared with experimental data. 

 

Figure 74: Four-point bending test of lined pipes [13]. 
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Figure 75: Photo of wrinkled liner pipe after experimental testing [13]. 

 

 

Tkaczyk et al. [14] presented a combined experimental and numerical research 

program on 6’’ and 12’’ mechanically lined pipes, candidates for reeling application 

(Figure 76). Emphasis was given on liner wrinkling development under cyclic loading, to 

account for installation and in-service conditions. Special tests on wrinkling formation were 

also conducted and simulated with finite elements. 

 

Figure 76: Schematic representation of reeling installation procedure [14]. 
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Recently, Peek and Hilberink [15] presented an analytical bifurcation solution for 

axisymmetric wrinkling on a lined pipe under axial compression without internal pressure. 

Their solution indicates that the incipient wrinkling strain for the snug-fit pipe without any 

imperfections is the same as for a single pipe with 5/3 times the wall thickness of the liner 

and the same midsurface diameter. 

Finally, another engineering application of double-wall pipes under lateral confinement 

is related to the bending buckling behaviour and stability of a nano-composite tube 

reinforced by an inner single-walled carbon nanotube. Nowadays, nano-composite tubes are 

related to significant applications, whereas their investigation considers a shell of an 

equivalent thickness [16]. The usage of carbon nanotube as reinforcement constituent in 

composite materials of polymer base, where it is confined in a polymer matrix, is of 

particular interest. In this application, the nanotube bends together with the polymer 

confinement and because of its thin wall, it may buckle if compressive stress exceeds a 

critical value. This problem was investigated in [17], using an analytical approach, based on 

Brazier’s ovalization analysis, enhanced to account for the effects of the confining medium. 

However, the definition of the critical load is an open issue for discussion and solving [18]. 

 

3.1.2 Scope of the present research 

The research reported in the present chapter is numerical, based on advanced finite 

element simulation tools, and is aimed at understanding the mechanical response of the 

thin-walled liner pipe subjected to bending with or without the presence of external 

pressure, as well as determining the deformation of the lined pipe at which the liner 

wrinkles, through a rigorous simulation of the wrinkling process. The lined pipe is modeled 

using nonlinear finite elements capable at simulating the interaction between the liner and 

the outer pipe. Inelastic effects of the material properties and nonlinear geometry with large 

strains are taken into account. The hoop residual stresses due to manufacturing process are 

inserted to the model as initial conditions (prestressing) and then, bending curvature is 

applied. First, an ovalization bending analysis of the lined pipe is conducted, where a slice 

of the pipe between two adjacent cross-sections is considered, excluding the possibility of 

buckling. In this analysis, the stress and deformation of the liner in the compression zone is 

monitored, with emphasis on possible detachment    of the liner from the outer pipe. 

Furthermore, the liner ovalization   , bending moment  m , local hoop curvature  01 r , 

axial stress  0x , and hoop (circumferential) stress  0  are investigated. Using a simple 
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buckling hypothesis, it is possible to estimate the curvature at which liner wrinkling occurs. 

Subsequently, a three-dimensional analysis is conducted to examine buckling of the liner in 

the form of a uniform wrinkling pattern. The curvature cr  at which buckling occurs and 

the corresponding buckling wavelength hwL  are determined. The transition from a uniform 

wrinkling configuration to a localized buckling pattern is also investigated. In addition, the 

sensitivity of response on the presence of initial wrinkling imperfections is investigated. 

At first, lined elastic pipes where the elastic liner is stress-free and initially in contact 

with the elastic outer pipe are examined focusing on the buckling modes of first and second 

bifurcation. Specifically, lined pipes with nominal diameter equal to 12.75 inch and 

thickness of the outer pipe ranging between 4 and 60 mm are considered in the analysis. 

Next, the mechanical behavior of three lined steel pipes (carbon steel pipes, lined with 

stainless steel pipes) of different dimensions are investigated, taking into account the effects 

of prestressing. Furthermore, a comparison with available experimental results in terms of 

the buckling shape, the buckling wavelength, and the wrinkling height is conducted. 

Finally, the mechanical behavior of lined steel pipes under bending in the presence of 

external pressure is examined. 

 

3.2 Finite element modeling 

The response of lined pipes under uniform bending is examined numerically using 

nonlinear finite element tools. The general-purpose finite element program ABAQUS [19] 

is employed to simulate the mechanical response of lined pipes. The analysis considers 

nonlinear geometry through a large-strain description of the outer and the liner pipe, 

whereas the material of liner pipe and outer pipe is considered both elastic and elastic-

plastic (steel material). In the latter case, the steel materials of the outer and the liner pipe 

are described through J2 (von Mises) flow plasticity models with isotropic hardening, 

calibrated through stress-strain curves from uniaxial tension coupon tests. 

The finite element models are three-dimensional, considering a segment of the lined 

pipe under appropriate boundary conditions. Particularly, in the 0z   plane (see Figure 

77), z  symmetry is assumed, i.e. only in-plane motion of the corresponding nodes on the 

x y  plane is allowed. In the z L  plane (where L  is the length of the strip in z 

direction), uniform bending is applied considering a reference point coupled with the nodes 

of that plane, so that motion of the corresponding nodes is allowed on the rotated plane. 

Based on experimental observations, symmetry of deformation with respect to the plane of 
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bending is assumed so that half of the pipe cross-section is analyzed, applying appropriate 

symmetry conditions on the 0   plane. 

 

Figure 77: Lined pipe model; outer pipe is modelled with solid elements and liner pipe is 

modelled with shell elements. 

 

Four-node reduced-integration shell elements (S4R) are employed for the modeling of 

the thin-walled liner pipe, whereas 20-node brick elements (C3D20R) are used to simulate 

the thick-walled outer pipe. A typical finite element mesh for the outer and liner pipe used 

in the present analyses is shown in Figure 77. Following a short parametric study, it has 

been concluded that consideration of a finer finite element mesh have a negligible effect on 

the numerical results. Furthermore, a total of 100 shell elements around the half 

circumference of the cylinder have been found to be adequate to achieve good accuracy of 

the numerical results.  

For conducting an ovalization analysis of the lined pipe, a pipe segment with a small 

value of L  is assumed with no variation of loading and deformation in the longitudinal 

direction of the pipe, as shown in Figure 77. This is practically a two-dimensional finite 

element model, with periodic boundary conditions at 0z   and z L . In this model, pipe 

wall wrinkling phenomena are excluded. To model wrinkling of the liner pipe, this quasi 

two-dimensional analysis is not adequate; beyond buckling, cross-sectional deformation is 

no longer constant along the pipe (due to the development of wavy wrinkles), and therefore, 

a three-dimensional analysis is necessary. In a wavy-type post-buckling configuration 

(formation of wrinkles) of an infinitely long pipe, shown schematically in Figure 78, cross-
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sections    and    do not exhibit warping deformation for symmetry reasons. 

Therefore, for the purposes of the three-dimensional analysis, it is sufficient to analyze only 

a pipe segment of half-wavelength with appropriate “periodic” boundary conditions at the 

end-sections    and   . 

The buckling wavelength is not known a priori and, therefore, a sequence of analyses 

should be conducted for several assumed wavelength values. The actual wavelength is the 

one that corresponds to the “earliest” bifurcation point on the primary path. Karamanos & 

Houliara [20],[21] used a similar methodology to analyze single-wall pipes under bending. 

Regarding the number of elements in the longitudinal direction, 20 elements per half-

wavelength are employed in the liner pipe. A contact algorithm is considered to simulate 

the interface between the liner and the outer pipe. Unless otherwise specified, frictionless 

contact is assumed in the results. A few analyses have been performed to examine the 

effects of friction, which is considered through an appropriate the friction coefficient  . 

 

Figure 78: Schematic representation of uniformly wrinkled pipe and the corresponding 

half-wavelength between cross-sections α-α and β-β. 
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3.3 Buckling of lined elastic pipes 

In the present section, the response of lined elastic pipes under bending loading is 

examined. The two pipes (liner and outer pipe) are initially in contact and stress-free. Using 

the numerical tools described in the previous section, an ovalization analysis is conducted 

first, followed by an investigation of liner pipe wrinkling. A simplified bifurcation solution 

is also developed, which provides fairly good predictions for the buckling curvature and the 

corresponding wavelength. Lined pipes with nominal diameter equal to 12.75 inch are 

considered, following the dimensions of pipes tested in [11] and [13]. The outside diameter 

of the liner pipe lD  is 296.4 mm, the mean diameter ld  and the thickness lt  of the liner 

pipe are equal to 293.4 mm and 3 mm respectively, corresponding to a diameter-to-

thickness ratio for the liner pipe  l ld t  equal to 97.8, whereas the thickness of the outer 

pipe ranges between 4 and 60 mm. For normalization purposes, the dimensionless thickness 

parameter   is introduced  o lt t  , where ot  is the thickness of the outer pipe. The 

elastic materials of the two pipes have Young’s moduli equal to lE 193 GPa for the liner 

pipe and oE  210 GPa for the outer pipe, and Poisson’s ratio   equal to 0.3 for both pipes. 

In this section, the values of bending moment M  and curvature k  are normalized 

using the expressions 
2
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 respectively, and will be referred 

to as “normalized elastic moment” and “normalized elastic curvature” respectively, so that 

e em M M  and e Nk k  , where lr  is the mean radius of the liner pipe. Ovalization is 

expressed through the dimensional parameter  , , 2h l v l ld d d   , where 
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(deformed) mean diameter in the horizontal direction of the liner, ,v ld  is the current mean 

diameter in the vertical direction, and ld  is the initial mean diameter of the liner. Finally, 
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3.3.1 Ovalization analysis 

The ovalization response of lined pipes made of elastic material is examined first, 

considering a small length of the pipe (3% of the diameter), so that buckling phenomena 

associated with pipe wall wrinkling are excluded. Furthermore, unless otherwise specified, 

the interface between the liner and the outer pipe is considered frictionless. The moment–

curvature curve is shown in normalized (non-dimensional) form in Figure 79 ( em  versus 

)e  for different thicknesses of the outer pipe. Furthermore, Figure 80 depicts the 

normalized ovalization–curvature diagram (  versus e ) for the liner pipe. It is concluded 

that the increase of the outer pipe thickness increases the moment capacity of the lined 

pipes, whereas conversely decreases the development of the ovalization parameter. 

Consideration of friction in the interface between the liner and the outer pipe has no 

influence in both moment and ovalization response. 

 
Figure 79: Normalized moment of lined elastic pipe for different thicknesses of the outer 

pipe, obtained from ovalization (2D) analysis. 
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Figure 80: Normalized ovalization of lined elastic pipe for different thicknesses of the outer 

pipe, obtained from ovalization (2D) analysis. 

 

An important observation from this analysis is that, from the early stages of bending, 

the liner separates from the outer pipe. The relative distance between liner and outer pipe is 

expressed as the difference between the corresponding radial displacements of the liner lu  

and the outer pipe ou , at the 0   plane, referred to as “detachment”. In Figure 81, the 

value of detachment is plotted in a normalized form   l o lu u t    in terms of bending 

curvature for different thicknesses of the outer pipe. The numerical results indicate that the 

value of   is an increasing function of bending curvature. In addition, it is concluded that 

the increase of the outer pipe thickness results in a decrease of the detachment magnitude. 

Also, it should be stated that for lined pipes with values of relative thickness   less than 

1.67, no detachment occurs between the liner and outer pipe during bending. 

The effect of friction on the detachment of the liner from the outer pipe has considered 

through the friction coefficient   and is shown in Figure 82 for a   value equal to 4.77. It 

is concluded that the friction in the interface between the liner and the outer pipe has a 

relatively small effect on the response of elastic lined pipes. 
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Figure 81: Detachment of liner from outer pipe for different thicknesses of the outer pipe. 

 

 

Figure 82: Effect of friction on the detachment of liner from outer pipe. 
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The local hoop curvature at the 0   plane of the liner pipe, denoted as 01/ r , is of 

particular interest for predicting liner wrinkling in elastic pipes. The change of hoop 

curvature due to bending at this location is shown schematically in Figure 83. In Figure 84, 

the value of 01/ r , normalized by the initial curvature of the circular pipe in the hoop 

direction 1/ lr , is plotted for different values of  . The decrease of local curvature at this 

location with increasing bending curvature indicates liner flattening at the compression 

zone due to cross-sectional ovalization. At this location  0  , significant axial 

compressive stress 0x  is developed as a result of bending, as shown in Figure 85 in non-

dimensional form. The numerical results indicate a quasi-linear increase of 0x  in terms of 

bending curvature, for values of   larger than 4, due to very small cross-sectional 

ovalization. An important observation of this figure is that the increase of the outer pipe 

thickness leads to increase of the axial compressive stresses at 0   location. The presence 

of friction in the interface between the liner and the outer pipe does not affect the 

aforementioned results of local curvature and axial stress. 

 

 

Figure 83: Schematic representation of local hoop curvature during ovalization of the liner 

pipe. 
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Figure 84: Normalized local hoop curvature at the critical location of compressive side of 

the liner  0   for different values of thickness of the outer pipe. 

 

Figure 85: Normalized value of stress in the longitudinal direction at the critical location 

of compressive side of the liner  0   for different thicknesses of the outer pipe. 
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3.3.2 Simplified analytical bifurcation solution 

Based on the previous results of ovalization analysis, it is possible to develop a 

simplified formulation for predicting wrinkling of the liner pipe. This simplified bifurcation 

formulation has been proposed elsewhere for predicting shell buckling [22], based on the 

assumption that buckling is fully determined by the stress and deformation inside the zone 

of the initial buckle. This assumption has also been referred to as “local buckling 

hypothesis”. According to the above hypothesis, in the case of a long cylindrical shell under 

longitudinal bending, buckling will occur at the critical location  0   when the stress 

0x  and deformation 01/ r  satisfy the following equation: 

 
0

2
03 1

l l
x

E t

r






,        (65) 

also written in terms of the stress-like parameter e  as follows: 

 0

0

x l

e

r

r




 .         (66) 

Equation (65) is the classical Donnell’s equation for a uniformly compressed elastic 

circular cylinder with radius 0r  in the meridional direction. Recently, Houliara & 

Karamanos [20] demonstrated numerically that bifurcation predictions from this hypothesis 

for the case of elongated unconfined cylindrical elastic shells subjected to bending are in 

very good agreement with finite element results. 

In the case of lined pipes, the ovalization analysis presented in the previous subsection 

has demonstrated that during bending, the liner pipe detaches from the outer pipe at the 

vicinity of 0  , so that the liner pipe around this location behaves as a cylindrical panel 

under axial compression (see the sketch in Figure 86). Therefore, it would be reasonable to 

apply equation (65) based on the results for the axial stress 0x  and the local curvature 

01 r , both obtained from the ovalization analysis (Figure 84 and Figure 85). The buckling 

curvature predicted from equation (65) is shown in Figure 87 with the solid line, for 

different values of outer pipe thickness. 
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Figure 86: Schematic representation of the compression zone of the liner, similar to a 

laterally-supported “cylindrical shell panel”. 

 
Figure 87: Variation of the normalized critical curvature for different thicknesses of the 

outer pipe. 
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According to this simplified formulation, the corresponding buckling wavelength can 

also be estimated. Assuming that the state of stress is constant within the buckling zone, 

axi-symmetric conditions can be considered so that the value of the buckling half-

wavelength hwL  can be estimated by the following equation, which stems from axi-

symmetric buckling analysis of elastic cylindrical shells under uniform meridional 

compression [23]: 

 

1/ 4
4

0212 1
hw lL r t





 
 

  

.       (67) 

For convenience, the normalized half-wavelength hwl  is introduced using the following 

normalization: 

 hw hw l ll L d t .        (68) 

Combining equations (67) and (68), and assuming a value of Poisson’s ratio equal to 

0.3, the value of hwl  obtained from this simplified solution methodology can be written 

01.22hw ll r r . The variation of hwl  in terms of outer pipe thickness is presented in 

Figure 88 with the solid line. The results in Figure 88 indicate that the value of hwl  is a 

decreasing function of the value of  . Finally, the detachment magnitude   and the size of 

the detachment zone C lL r  around the buckling location ( 0  ) at the stage of bifurcation 

predicted above, are shown in Figure 89 and Figure 90, with respect to the relative 

thickness parameter  . 
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Figure 88: Variation of the normalized half-wavelength for different thicknesses of the 

outer pipe. 

 

 

Figure 89: Normalized detachment magnitude at buckling for different thicknesses of the 

outer pipe. 
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Figure 90: Variation of normalized detachment zone at buckling. 
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3.3.3 Uniform wrinkling 

In this subsection, wrinkling of lined elastic pipes under bending is simulated in a 

rigorous manner. Bifurcation of liner pipe from a uniform ovalization stage to a uniform 

(periodic) wrinkling pattern is examined first, using the finite element tools presented in 

section 3.2. Three values are considered for the thickness of the outer pipe, 10 mm, 14.3 

mm and 20 mm, corresponding to values of thickness parameter   equal to 3.33, 4.77 and 

6.67 respectively. To simulate this bifurcation, a three-dimensional analysis is conducted, 

considering a pipe segment equal to one half-wavelength  hwL L . The value of hwL  is 

not known a priori and therefore, for each value of  , a series of analyses is necessary to 

obtain the critical half-wavelength, as described in section 3.2. The numerical results for 

pipes without initial imperfections (perfect pipes) are summarized in Figure 91; the value of 

critical half-wavelength for   3.33, 4.77 and 6.67 is computed equal to 1.4, 1.35 and 1.33 

respectively. 

The results shown in Figure 91 indicate that for a certain value of  , the value of the 

critical curvature 
,e cr  is not very sensitive to variations in the assumed value of hwl ; the 

numerical results show that variation of the hwl  value between 1.2 and 1.5 results in a 

variation of only 3% for the 
,e cr value. The values of critical curvature 

,e cr  obtained from 

three-dimensional numerical analysis for the three values of outer pipe thickness are also 

shown in Figure 91 with an arrow (↓). Those results for the critical curvature and the 

corresponding half-wavelength are depicted in Figure 87 and Figure 88, which indicate that 

predictions from the simplified methodology, based on the results of ovalization analysis, 

are quite close to and consistent with the finite element results. The main conclusion from 

the above analysis is that the thickness of the outer pipe has a beneficial effect on the 

critical curvature of the liner pipe; the bigger the outer pipe thickness, the higher the critical 

curvature. This conclusion is associated with Figure 80 and Figure 81 which demonstrate 

that with increasing the thickness of the outer pipe, the smaller is the ovalization and the 

detachment of the liner pipe. In other words, the above conclusion means that the thickness 

of the outer pipe plays the role of the confinement of the liner pipe and, as a consequence, 

the increase of the outer pipe thickness increases the stiffness of the confinement. 
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Figure 91: Variation of the normalized critical elastic curvature (
,e cr ) of the liner pipe for 

three different thicknesses of the outer pipe. 
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numerical noise, but this can be associated with convergence problems. Despite those 

convergence problems, the results in Figure 91 have been obtained employing an 

adequately small analysis step, without imposing any imperfection on the liner pipe. Those 

numerical problems are alleviated using a small-amplitude imperfection in the form of the 

buckled shape of Figures 92, but this has a certain effect on the response due to 

imperfection sensitivity as described in the next paragraphs. 

 

Figures 92: Lined pipe configurations; (a) undeformed configuration; (b), (c) and (d) 

ovalized and buckled liner. 

 

Figure 93: Development of liner pipe detachment for a perfect lined elastic pipe. 
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Non-perfect pipes are considered next, where the initial imperfection is assumed in the 

form of the buckling shape obtained from the analysis of the perfect pipe shown in Figures 

92. The numerical results for imperfect pipes with very small imperfection amplitudes 

0 lw t  ( 0w  is the initial value of w  in Figures 92c), and with thickness ratio   equal to 

4.77, are shown in Figure 94. The results indicate a smooth transition to the wavy pattern 

without numerical convergence problems, whereas detachment displacements of points (1) 

and (2) on the symmetry planes grow rapidly when the bending curvature approaches the 

value of 
,e cr . Note that the presence of very small imperfection amplitudes (less than 1% 

of the liner thickness) has a considerable effect on the liner response and indicate severe 

imperfection sensitivity. 

 

 

Figure 94: Variation of the relative distance between liner and outer pipe for different 

imperfection amplitudes  0 lw t . 
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3.3.4 Second bifurcation 

Experimental observations [11] have indicated that a long lined pipe, after the 

occurrence of uniform wrinkling of the liner pipe (“wrinkling area 1” in Figure 75), exhibits 

a second bifurcation in the form shown in “wrinkling area 2” of Figure 75. More 

specifically, one of the wrinkles grows rapidly, forming one main buckle, symmetric about 

the plane of bending (denoted as (A) in Figure 75), and four minor buckles (denoted as (B) 

in Figure 75) from either side of the main buckle. In such a way, the wavelength of this 

secondary buckling pattern is equal to twice the wavelength hwL  of the first buckling 

pattern. Based on this experimental observation, a series of three-dimensional analyses have 

conducted, considering the length of the lined elastic pipe equal to twice the half-

wavelength computed in the previous uniform wrinkling analysis (i.e. 2 hwL L  as shown in 

Figures 95). The pipes are imperfect with an imperfection pattern in the shape of the 

uniform wrinkling mode, as shown in Figures 95a which is actually the shape of Figures 

92. The analysis shows that when the applied curvature reaches a certain value 
,e cr , liner 

deformation bifurcates to the shape shown in Figures 95b,c, which is similar to the buckling 

pattern observed experimentally (Figure 75). A similar methodology for analyzing 

imperfect cylindrical shells under axial compression has been employed in the early work 

of Koiter [24]. In Figures 95d, several wavelengths of the wavy pattern have been 

reproduced for visualization purposes. In Figure 96, the value of secondary bifurcation 

curvature ,e cr  is plotted with solid line in terms of the imperfection amplitude, for the three 

values of thickness ratio   3.33, 4.77 and 6.67. Note that the values of ,e cr  for zero 

(negligible) imperfection amplitude are 0.549, 0.576 and 0.588; these values represent the 

curvature of perfect lined elastic pipes at which secondary bifurcation occurs and are 

somewhat larger than the corresponding values of 
,e cr  corresponding to first bifurcation, 

equal to 0.535, 0.554 and 0.564 respectively. The sensitivity of response on the presence of 

initial imperfections assumed in the form of the secondary buckling mode, shown in 

Figures 95b,c, is also examined. The corresponding numerical results are plotted in Figure 

96, with dotted line, and indicate a somewhat more severe sensitivity to this type of 

imperfection. It is also noted that, numerically, it has not been possible to simulate 

secondary buckling in elastic lined pipes with imperfection amplitude 0w  less than 0.1% of 

the liner thickness lt . 
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Figures 95: (a) Initial configuration with liner wavy imperfection and (b),(c),(d) Deformed 

(buckled) configuration of lined pipe after secondary bifurcation. 
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Figure 96: Normalized critical elastic curvature with respect to the imperfection 

amplitudes for different values of  ; imperfections are assumed in the form of first and 

second buckling mode. 
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3.4 Buckling of lined steel pipes 

The mechanical behavior of lined steel pipes is examined extensively in the present 

section. The outer pipe is made of carbon steel (API 5L Grade X65), whereas stainless steel 

(AISI 316L) is used for the thin-walled liner. The nominal stress – engineering strain curve 

for the carbon steel X65 material of the outer pipe obtained from a uniaxial tensile test is 

shown in Figure 97, with elastic modulus oE  210,000 MPa, Poisson’s ratio  0.3, yield 

stress 
,Y o 566 MPa, a plastic plateau up to 2% engineering strain, and ultimate nominal 

stress 
,u o  614 MPa at 9% elongation. The corresponding stress-strain curve of the liner 

pipe 316L material is also shown in Figure 97, with parameters lE 193,000 MPa,  0.3, 

proportional limit 
pr  250 MPa at 0.13%, and yield stress 

,Y l  298 MPa, corresponding 

to a 0.2% residual (plastic) strain. In particular, after the proportional limit, the Young’s 

modulus of the liner pipe material is gradually decreased up to the value of 0.9% of the 

strain, while after that value, the post-yield modulus is equal to 1524 MPa. In Table 5, the 

material properties of the outer and liner pipe are summarized. 

 

Figure 97: Stress-strain curves of the outer pipe and liner pipe materials. 

 

 

 

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1

n
o

m
in

a
l 
s

tr
e

s
s

 [
M

P
a

]

engineering strain

Outer pipe X65

Liner pipe 316L



Chapter 3: Confined cylinders under longitudinal bending 

128 

 Outer pipe Liner pipe 

Material API 5L Grade X65 AISI 316L 

Yield stress ,Y o 566 MPa 
,Y l  298 MPa 

Young’s modulus oE  210000 MPa lE 193000 MPa 

Poisson’s ratio  0.3  0.3 

Table 5: Material properties of outer and liner pipe. 

 

The present analysis focuses on three pipes of 12-inch nominal diameter, which are 

candidates for deep offshore pipeline applications. The first lined pipe, referred to as Pipe 

A, has outside diameter equal to 325 mm, the thickness of the outer and the liner pipe are 

14.3 mm and 3 mm respectively, and has been tested experimentally under reel-bending 

conditions [11]. The outer diameter of the second pipe, denoted as Pipe B, is 335.4 mm, the 

thickness of the outer and the liner pipe equal to 19.5 mm and 3 mm respectively, and it has 

been tested experimentally under four-point bending [13]. Both pipes, A and B, have the 

same diameter and thickness for the liner pipe; 296.4 mm and 3 mm respectively. The third 

pipe considered in the present analysis, referred to as Pipe C, has outside diameter equal to 

325 mm and the thickness of the outer pipe is 14.3 mm (similar to Pipe A), while the 

thickness of the liner pipe is 2.5 mm. In Table 6, the geometrical properties of the used 

Lined Pipes are summarized. 

 

 Lined Pipe A Lined Pipe B Lined Pipe C 

External diameter of outer pipe oD  325 mm 335.4 mm 325 mm 

Thickness of outer pipe ot  14.3 mm 19.5 mm 14.3 mm 

External diameter of liner pipe lD  296.4 mm 296.4 mm 296.4 mm 

Thickness of liner pipe lt  3 mm 3 mm 2.5 mm 

Residual hoop stress of liner res  166 MPa 172 MPa 170 MPa 

Table 6: Geometrical properties of the used lined pipes. 

 

In each case, the liner and the outer pipe are initially in frictionless contact. The lined 

pipe is considered either stress-free (referred to as snug-fit pipe, SFP) or with an initial 

stress (referred to as tight-fit pipe, TFP). In the case of TF Pipes, an initial hoop stress of 
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magnitude of 200 MPa (67.1% of the liner material yield stress) is applied initially on the 

liner pipe followed by an unloading step, resulting in a final (residual) hoop stress for the 

liner pipe res , equal to 166 MPa, 172 MPa, and 170 MPa for TFP A, B, and C 

respectively. This level of prestress is equal to 55.7%, 57.7%, and 57% of the liner material 

yield stress for TFP A, B, and C respectively. Residual stress measurements of the pipes 

tested in [11] and [13] indicated that the residual compressive hoop stress in the liner can 

vary from 50 MPa to 200 MPa, depending on the parameters of the manufacturing process, 

as discussed in Appendix B. In the followings, using the numerical tools described 

previously in the section 3.2, an ovalization analysis is conducted first, followed by an 

investigation of liner pipe wrinkling and comparison with test results. 

In the following results for lined steel pipes, the values of curvature are normalized by 

2

I o ok t d  (also adopted in [2]) where ,o ot d  are the thickness and the mean diameter of the 

outer pipe, so that Ik k  . The detachment is normalized by the liner thickness lt  and the 

ovalization   of the liner is defined as  , , 2h l v l ld d d  where 
,h ld  is the current 

(deformed) mean diameter in the horizontal direction of the liner, 
,v ld  is the current mean 

diameter in the vertical direction, and ld  is the initial mean diameter of the liner. The value 

of bending moment M  is normalized by 
2

0 ,Y o o oM d t , so that 0m M M , where ,Y o  is 

the yield stress of the outer pipe. The local hoop curvature ( 01 r ), and the axial stress ( 0x

) or hoop stress ( 0 ) of the liner, both measured at 0   (maximum compression point), 

are normalized by the initial hoop curvature of the liner 1 l
r  and the yield stress ,Y l  of the 

liner material respectively. 

 

3.4.1 Ovalization analysis 

To understand the mechanical response of the lined steel pipe, an ovalization analysis 

is conducted first and the results are shown in Figures 98, Figures 99, and Figures 100, in 

terms of the normalized values of detachment    between the liner and the outer pipe at 

0  , liner ovalization   , and bending moment  m  respectively, plotted against the 

normalized value of applied bending curvature   . Furthermore, in Figures 101, Figures 

102, and Figures 103, local hoop curvature  01 r , axial stress  0x , and hoop 
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(circumferential) stress  0  at 0   (maximum compression point) are plotted in terms 

of  . An important observation from the ovalization analysis in Figures 98 is the 

detachment growth between the liner and the outer pipe. In the case of SF Pipes, the 

detachment occurs as soon as bending is applied, whereas for the TF Pipes, the detachment 

initiates at a later stage due to the effect of prestressing. On the other hand, Figures 99, 

Figures 101, and Figures 102, indicate that liner prestressing has a rather negligible effect 

on liner ovalization, local hoop curvature, and longitudinal stress. Furthermore, the 

development of hoop stress at the critical location  0   indicates that after the first 

stages of deformation, hoop prestressing is practically lost, so that the hoop stress values 

from SFP and TFP are very similar, as shown in Figures 103. In addition, it is observed that 

the liner detachment of TFP (Figures 98) occurs at the bending curvature that hoop 

prestressing is practically lost (Figures 103). Finally, it is interesting to note that the 

normalized curves   , m  , 01 r  , 0x  , and 0   for TF Pipes A, B, and C 

are quite similar. 
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Figures 98: (a),(b),(c) Detachment between liner and outer pipe in terms of bending 

curvature for Lined Pipes A, B and C, (d),(e) Comparison of detachment in Lined Pipes A, 

B and C for Snug-Fit Pipes and Tight-Fit Pipes; ovalization (2D) analysis. 
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Figures 99: (a) Ovalization of liner pipe in terms of bending curvature for Pipe A, (b) 

Comparison of ovalization in Tight-Fit Pipes A, B and C; ovalization (2D) analysis. 
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Figures 100: (a) Bending moment in terms of bending curvature for Pipe A, (b) 

Comparison of applied bending moment in Tight-Fit Pipes A, B and C; ovalization (2D) 

analysis. 
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Figures 101: (a) Local hoop curvature at 0   in terms of bending curvature for Pipe A, 

(b) Comparison of local hoop curvature at 0   in Tight-Fit Pipes A, B and C; ovalization 

(2D) analysis. 
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Figures 102: (a) Axial (Longitudinal) stress at 0   in terms of bending curvature for 

Pipe A, (b) Comparison of axial stress at 0   in Tight-Fit Pipes A, B and C; ovalization 

(2D) analysis. 
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Figures 103: (a) Hoop (Circumferential) stress at 0   in terms of bending curvature for 

Pipe A, (b) Comparison of hoop stress at 0   in Tight-Fit Pipes A, B and C; ovalization 

(2D) analysis. 
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For the better understanding of the behavior in terms of the detachment   , the 

Figures 98d is presented in Figure 104 without normalization of the detachment    and 

the curvature   . It is observed that the bigger the thickness of the outer pipe, the lower 

and slower the increase of the detachment during bending. Conversely, with decreasing the 

thickness of the liner pipe, the higher is the increase of the detachment. 

 

Figure 104: Detachment between liner and outer pipe in terms of bending curvature for 

Snug-Fit Pipes A, B and C. 
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smaller than the ovalization parameter of the other two pipes. 

Furthermore, the Figures 100b which concerns the bending moment is presented in 
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bending moment. 
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Figure 105: Ovalization in terms of bending curvature for Snug-Fit Pipes A, B and C. 

 

Figure 106: Bending moment in terms of bending curvature for Snug-Fit Pipes A, B and C. 
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The results presented in this subsection verify the conclusion derived from section 3.3 

for elastic pipes that the thickness of the outer pipe has a prominent effect on the structural 

behavior of lined pipe. In particular, that the outer pipe thickness determines the stiffness of 

the confinement. However, unlike the case of elastic pipes, in case of steel pipes, the 

increase of axial and hoop stresses (Figures 102 and Figures 103) after the first stages of 

bending loading results in the development of plastic deformations at the critical location 

 0  . Figure 107 depicts the development of the equivalent plastic strain at this location 

in terms of bending curvature for the Snug-Fit Pipes A, B, and C. It is concluded that the 

Pipe B, which has bigger outer pipe thickness than Pipes A and C, presents higher increase 

of plastic strains during bending deformation. This conclusion is expected to affect the 

buckling behavior of the lined steel pipes. 

 

Figure 107: Equivalent plastic strain of the liner pipe at the critical location  0   in 

terms of bending curvature for Snug-Fit Pipes A, B and C. 
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3.4.2 Uniform wrinkling 

The possibility of transition from a uniform ovalization state along the pipe to a 

wrinkling pattern of periodic shape is investigated in the present subsection for both SF 

Pipes and TF Pipes. To simulate this bifurcation in a rigorous manner, a three-dimensional 

analysis of a pipe segment of length equal to one half-wavelength hwL  is considered. As 

noted in the previous section, the value of hwL  is unknown and, therefore, a series of 

analyses are conducted. The correct (critical) value of hwL  is the one that corresponds to the 

smallest value of buckling curvature cr . The results for those series of analyses are shown 

in Figures 108 with an arrow (↑), where the critical values of normalized half-wavelength 

hw hw l ll L d t  are equal to 1.45 for Pipes A and B, and 1.47 for Pipe C in the absence of 

initial imperfections. It is interesting to note that initial stresses (prestress) in the liner do 

not affect the value of normalized half-wavelength hwl . 
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Figures 108: Variation of buckling curvature cr  with respect to the assumed value of half-

wavelength hwl  in Pipes A, B and C. 
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In Figures 109, the detachment of points (1) and (2) are plotted in terms of the applied 

bending curvature for the lined pipes A, B, and C. The numerical results also indicate that, 

in contrast with the case of lined elastic pipes, the development of this wavy pattern is not 

sudden, in the sense that the two curves separate gradually implying a “tangential” type of 

bifurcation with no distinct point. The smooth transition from pre-buckling to post-buckling 

in lined steel pipes facilitates its numerical simulation, so that the introduction of a 

negligible imperfection may not be necessary. The numerical results in Figures 108 and 

Figures 109 have been obtained without imposing any initial imperfection on the liner pipe 

and convergence problems have not been observed. Nevertheless, because of this 

“tangential” bifurcation, the definition of buckling curvature cr  based on the deviation of 

the two curves may be rather ambiguous. In the present work, to overcome this ambiguity, 

the buckling (critical) curvature cr  is defined as the curvature at which the detachment of 

point (2) in Figures 109 reaches a maximum value and begins to decrease. Using this 

definition, the values of cr  are equal to 0.898 and 1.19 for the SFP and TFP of Pipe A 

respectively, as shown in Figures 109a. For the Pipe B, the values of critical curvature cr  

are equal to 0.612 and 0.854 for the SFP and TFP respectively (Figures 109b), whereas for 

the Pipe C, the corresponding cr  values are equal to 0.495 and 0.870 for the SFP and TFP 

respectively (Figures 109c). The critical curvature corresponds to a value of detachment 

( )  equal to 4% and 3.4% of the liner wall thickness lt  for SFP A and TFP A respectively. 

The corresponding values of detachment ( )  are for SFP B and TFP B equal to 3.1% and 

2.4% of lt  respectively and to a value of detachment ( )  equal to 1.65% and 1.13% of lt  

for SFP C and TFP C respectively. These values of detachment are less than 5% of the liner 

pipe thickness lt , implying that the wave height corresponding to first bifurcation is quite 

small, and therefore, it is rather difficult to be detected experimentally. The above values of 

critical curvature cr  and normalized detachment ( )  are summarized following in Table 

7. The corresponding buckling shape is a uniformly-wave pattern, which is very similar to 

the shape presented in the previous section for elastic pipes, shown in Figures 92. 
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Figures 109: Detachment development of points (1) and (2) in terms of bending curvature 

for Pipes A, B and C. 

 

 Lined Pipe A Lined Pipe B Lined Pipe C 

critical curvature cr  for SFP 0.898 0.612 0.495 

normalized detachment    for SFP 4% 3.1% 1.65% 

critical curvature cr  for TFP 1.19 0.854 0.870 

normalized detachment    for TFP 3.4% 2.4% 1.13% 

Table 7: Critical curvature cr  and normalized detachment ( )  for lined pipes A, B and C. 
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detachment than the Pipe B, wrinkling of liner pipe B appears earlier than the one of pipe 

A. This is justified by the fact that the stresses at the critical location (Figures 102 and 

Figures 103) for Pipe B are increased in a higher tempo than the ones of Pipe A, resulting 

in higher plastic strains (Figure 107) which lead to uniform wrinkling of the liner pipe. 

 
Figures 110: Detachment development of points (1) and (2) in terms of bending curvature 

for SFP and TFP. Comparison between Lined Pipes A, B and C. 
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The effect of friction in the interface between the liner and the outer pipe on the 

structural response of lined steel pipes is investigated in this stage for the case of lined pipe 

A without prestressing (SFP A). The numerical results of the detachment development in 

terms of bending curvature for different values of the friction coefficient   are shown in 

Figure 111. The results demonstrate that the bigger the friction coefficient, the smaller and 

slower the development of the detachment, which as a consequence results in a higher 

critical bending curvature cr . In other words, the presence of friction in the interface 

between the liner and the outer pipe has a beneficial effect on the wrinkling response of 

lined pipes. 

 

Figure 111: Detachment development of points (1) and (2) in terms of bending curvature 

for SFP A for different values of the friction coefficient  . 
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3.4.3 Simplified analytical bifurcation solution 

Based on the previous results of ovalization analysis, an attempt is made to develop a 

simplified formulation for predicting wrinkling of the liner pipe similar to the one proposed 

in the previous section for elastic pipes. According to the “local buckling hypothesis”, 

buckling will occur at the critical location  0   when the axial stress 0x  and hoop 

curvature 01/ r  satisfy the following equation, which is similar to equation (65): 
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,       (69) 

where 
ijC  are the material moduli for elastic-plastic behavior [25]. Assuming J2–flow 

theory of plasticity for the 
ijC  moduli and considering uniaxial uniform compression of the 

liner at the buckling zone, 
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where TE  is the tangent modulus, and the local hoop curvature 01/ r  at the critical point is 

a function of the axial stress 0x  obtained by the combination of results depicted in Figures 

101 and Figures 102. Correspondingly, assuming J2–deformation theory of plasticity for the 

ijC  moduli, the equation (69) takes the following form: 
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where SE  is the secant modulus. Equations (70) and (72) are solved using a standard 

iterative numerical scheme. 
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Furthermore, the corresponding buckling half-wavelength hwL  is estimated by the 

following equation, which is similar to equation (67), and refers to axisymmetric buckling 

of a uniformly compressed cylinder with radius 0r  [25]:  
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Assuming J2–flow theory of plasticity for the 
ijC  moduli, one can write: 
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whereas, assuming the J2–deformation theory moduli, the corresponding half-wavelength 

can be computed as follows:  
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The buckling curvature of SF Pipes A, B, and C predicted by equation (70) for J2–flow 

theory are equal to 0.3, 0.23, and 0.26 for SF Pipes A, B, and C respectively. 

Correspondingly, the buckling curvature predicted by equation (72) for J2–deformation 

theory, are equal to 0.22, 0.17, and 0.20 for SF Pipes A, B, and C respectively, indicating a 

rather poor prediction of wrinkling initiation. On the other hand, the half-wavelength ,hw fL  

predicted from equation (76) for J2–flow theory is equal to 49 mm for both SF Pipe A and 

SF Pipe B, and corresponds to a normalized value of 
,hw fl  equal to 1.65, which is in fairly 

good agreement with the one obtained by the three-dimensional numerical analysis ( hwl 

1.45) for both pipes. For SF Pipe C, the predicted value of ,hw fl  is equal to 1.55 ( ,hw fL 

41.9 mm), which also compares fairly well with the three-dimensional analysis prediction 

( hwl  1.47). Correspondingly, the half-wavelength ,hw dL  predicted from equation (77) for 

J2–deformation moduli is equal to 37.2 mm for both SF Pipe A and SF Pipe B, 

corresponding to a normalized value of ,hw dl  equal to 1.25, whereas for SF Pipe C, the 

predicted value of ,hw dl  is equal to 1.24 ( ,hw dL  33.5 mm). The J2–flow theory predictions 

for the half-wavelength value ,hw fL  are higher than the corresponding numerical values 

,hwL  whereas the J2–deformation theory predictions ,hw dL  are lower than the numerical 

results. In general, assuming either J2–flow moduli or J2–deformation moduli, the analytical 
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equations (76) and (77) provide reasonable estimates for the buckling wavelength. The 

above analytical values for buckling curvature and half-wavelength are summarized and 

compared with the numerical results in Table 8. 

 

 SFP A SFP B SFP C 

buckling curvature cr  for J2–flow 0.30 0.23 0.26 

buckling curvature cr  for J2–deformation 0.22 0.17 0.20 

numerical value for buckling curvature  0.898 0.612 0.495 

half-wavelength 
,hw fL  for J2–flow 

normalized half-wavelength 
,hw fl  

49 mm  

1.65 

49 mm  

1.65 

41.9 mm 

1.55 

half-wavelength 
,hw dL  for J2–deformation 

normalized half-wavelength 
,hw dl  

37.2 mm 

1.25 

37.2 mm 

1.25 

33.5 mm 

1.24 

numerical value for half-wavelength hwL  

normalized half-wavelength hwl  

43.02 mm 

1.45 

43.02 mm 

1.45 

40.05 mm 

1.47 

Table 8: Buckling curvature and half-wavelength for snug-fit pipes A, B and C. 

 

 

3.4.4 Second bifurcation 

Upon first wrinkling, the height of the wrinkled pattern increases rapidly, as shown in 

Figures 109, due to the inward displacement of point (1), whereas point (2) is in contact 

with the outer pipe. Similar to the case of lined elastic pipes, the possibility of this wavy 

pattern to exhibit a second bifurcation is also examined, considering a pipe segment of 

length equal to 2 hwL , where hwL  is the half-wavelength determined above. This 

consideration stems from experimental observations [11], where upon formation of uniform 

wrinkling (“wrinkling area 1” in Figure 75), one wrinkle is further developed to form the 

central (main) buckle, which is symmetric with respect to the plane of bending and denoted 

as A in Figure 75, and the adjacent wrinkles for the four lateral (minor) buckles, denoted as 

B (“wrinkling area 2”). The liner response is shown in Figures 112, Figures 113, and 

Figures 114, for Pipes A, B, and C respectively, in terms of the detachment of points (1), 

(2) and (3). In those Figures, the numerical results have been obtained without imposing 

any initial imperfections on the liner pipe. Initially, the response follows exactly the path 

obtained for uniform wrinkling, as shown in Figures 109, and the curves for points (1) and 

(3) coincide. After a certain level of bending curvature, the curves for points (1) and (3) 
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deviate, and transition from a uniform wavy pattern of Figures 92 to a new wavy shape is 

obtained, similar to the one shown in Figures 95 for elastic pipes, which is also similar to 

the experimental shape of Figure 75. 

 

 

Figures 112: Detachment of points (1), (2) and (3) in terms of bending curvature; (a) SF 

Pipe A and (b) TF Pipe A. 
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Figures 113: Detachment of points (1), (2) and (3) in terms of bending curvature; (a) SF 

Pipe B and (b) TF Pipe B. 
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Figures 114: Detachment of points (1), (2) and (3) in terms of bending curvature; (a) SF 

Pipe C and (b) TF Pipe C. 
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Similar to the first bifurcation, this second bifurcation is quite gradual, also indicating a 

“tangential” bifurcation, with no distinct point at which the two curves for points (1) and 

(3) begin to deviate in Figures 112, Figures 113 and Figures 114, and implying ambiguity 

in the determination of the corresponding buckling curvature cr . Similar to the first 

bifurcation, the buckling curvature cr  is defined as the curvature at which the detachment 

of point (3) reaches a maximum value and begins to decrease. The cr  values are equal to 

1.424 for SFP A and 1.625 for TFP A. Furthermore, for Pipe B, the values of cr  are equal 

to 0.983 and 1.216 for SFP B and TFP B respectively, whereas for Pipe C, the values of cr  

are equal to 0.904 and 1.197 for SFP C and TFP C respectively. These numerical values for 

the buckling curvature cr  are summarized in Table 9. The numerical results demonstrate 

clearly the beneficial effects of prestressing on the value of buckling curvature; the 

prestressing level considered in the present analysis results in a 14.1%, 23.7%, and 32.4% 

increase of the cr  value for Pipe A, Pipe B, and Pipe C respectively. Also note that cr  is 

associated with wrinkle heights which are significantly higher than those corresponding to 

uniform wrinkling bifurcation ( cr ). Therefore, it is reasonable to consider liner failure to 

occur when the second bifurcation takes place (i.e. when cr  ). 

 

 Lined Pipe A Lined Pipe B Lined Pipe C 

buckling curvature cr  for SFP 1.424 0.983 0.904 

buckling curvature cr  for TFP 1.625 1.216 1.197 

Table 9: Buckling curvature cr  for lined pipes A, B and C. 

 

For the better understanding of the behavior in terms of the detachment   , Figures 

112, Figures 113 and Figures 114 are presented in Figures 115 without normalization of the 

detachment and the curvature. It is observed that the critical curvature of Pipe C is 

significantly lower than the one of Pipe A. This means that the lower is thickness of the 

liner pipe, the lower the critical curvature is. Correspondingly, the critical curvature of Pipe 

B is a little lower than the one of Pipe A. This happens due to the bigger outer pipe 

thickness of Pipe B, that causes higher stress concentration and as a consequence faster 

collapse. 
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Figures 115: Detachment of points (1), (2) and (3) in terms of bending curvature; (a) SF 

Pipes and (b) TF Pipes. Comparison between Lined Pipes A, B and C. 
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The liner failure has a non significant effect on the bending strength of the lined pipe as 

shown in Figure 116. This figure verifies also the small contribution (about 10%) of the 

liner pipe on the total bending moment of the lined pipe. 

 
Figure 116: Bending moment in terms of bending curvature for outer pipe and lined pipe. 

Effect of liner failure on the bending strength of lined pipe. 
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Figure 117 depicts the equivalent plastic strain of the liner pipe at the critical location 

 0   in terms of the bending curvature for the ovalization analysis (2D) and the 

secondary buckling analysis (3D). This figure demonstrates that the plastification of the 

liner pipe at the critical location initiates at a quite low curvature and that after the liner 

uniform wrinkling, the liner pipe sustains a significant increase of the plastic strain. 

 
Figure 117: Equivalent plastic strain of the liner pipe at the critical location  0   in 

terms of bending curvature; Effect of liner failure. 
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 0x  for the liner pipe of TFP A at the critical location  0   during bending in terms of 

the bending curvature is depicted in Figure 118 and Figure 119 respectively for the inner, 

middle and outer surface of the liner pipe. It is observed the increase of the stresses after the 

uniform wrinkling  1.19cr   as well as the abrupt change of the slope after the secondary 

bifurcation  1.625cr  . Furthermore, in Figure 120, it is shown the variation of hoop and 

axial strain at the middle surface of the liner pipe. It is noted that the axial stresses and 

strains at the critical location are always compressive. 
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Figure 118: Variation of hoop stress of the liner pipe at the critical location  0   in 

terms of bending curvature for the inner, middle and outer surface of the liner pipe. 

 

Figure 119: Variation of axial stress of the liner pipe at the critical location  0   in 

terms of bending curvature for the inner, middle and outer surface of the liner pipe. 
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Figure 120: Variation of axial (compressive) and hoop strain of the liner pipe at the 

critical location in terms of bending curvature for the middle surface of the liner pipe. 

 

The above numerical results for obtaining the value of cr  refer to imperfection-free 

(perfect) pipes. The effects of an initial uniformly-wrinkled configuration of the liner over 

the length of 2 hwL  (Figures 95a or equivalently Figures 92d) are presented in Figures 121 

for SF Pipe A and TF Pipe A, where the detachment magnitude is plotted in terms of 

normalized applied curvature. In the case of Tight-Fit Pipes, the reported imperfection 

amplitude 0w  is imposed geometrically before initial prestressing is applied. Upon 

application of prestress and completion of the unloading step, the residual imperfection 

amplitude 0w  is quite smaller than the one considered initially. In Figures 122, the effects 

of initial wrinkling imperfection on the value of secondary bifurcation curvature cr  for 

Pipes A, B and C are plotted with solid lines, where the cr  value is plotted with respect to 

initial wrinkling amplitude 0w , normalized by the liner wall thickness lt . The results show 

that the response of lined pipes under bending is sensitive to initial imperfections. For both 

SF and TF Pipes, the reduction of cr  is very abrupt for values of normalized imperfection 

amplitude at the order of 10
-3

. Furthermore, for imperfection amplitude equal to 10% of the 

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2

s
tr

a
in

normalized curvature (κ)

axial

hoop

dl/tl=97.8

τ=4.77

3D analysis

L=2Lhw

TFP A



Chapter 3: Confined cylinders under longitudinal bending 

160 

liner thickness (i.e. about 0.3 mm), the value of critical curvature cr  may be reduced by an 

amount of about 50% with respect to the critical curvature of the corresponding 

imperfection-free pipe. 

In addition, the sensitivity of response on the presence of initial imperfections in the 

form of the secondary buckling mode is shown in Figures 123 for SFP and TFP, and in 

Figures 122a with dotted lines, where the value of cr  is plotted against the imperfection 

amplitude. The results indicate that this shape of imperfection has a somewhat more 

pronounced effect on the value of cr  than the effect of an imperfection in the form of the 

first mode. The results are compatible with those obtained for elastic cylinders in Figure 96. 
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Figures 121: Detachment development of SF Pipe A and TF Pipe A for different values of 

the first mode imperfection amplitude. 
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Figures 122: Effects of initial wrinkling imperfections on the value of secondary 

bifurcation curvature for Pipes A, B and C. In Pipes B, C, imperfections are assumed in the 

form of the first bifurcation mode. 
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Figures 123: Detachment development of SF Pipe A and TF Pipe A for different values of 

secondary mode imperfection amplitude. 
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3.5 Comparison with experimental data 

In the present section, numerical results for TFP A are compared with experimental 

data of lined pipes tested under pure bending, as reported by Focke [11] and Hilberink [13]. 

The material and geometric characteristics of Lined Pipe A are similar with lined pipes OR-

2, GR-1, GR-2, WT-1, and WT-2 tested in [11] and P01KA pipe in [13]. The residual liner 

pipe hoop stresses res  for the tested pipes has been measured equal to 178 MPa for OR-2 

pipe, 199 MPa for both GR-1 and GR-2 pipes, and 185 MPa for the P01KA pipe, which are 

comparable with the residual stress of the TFP A (166 MPa) considered in the present 

analysis. Furthermore, the residual stress for tested pipes WT-1 and WT-2 has been 

measured equal to 53 MPa. 

 

3.5.1 Buckling shape 

In Figure 124, the photo of the wrinkled specimen is depicted at the plane of bending 

together with an image from numerical simulation, demonstrating that the wrinkled shape 

from experimental data is very similar to the one from the numerical analysis. 

 

 

Figure 124: Photo of wrinkled specimen after experimental testing with image from finite 

element simulation. 
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3.5.2 Wrinkle wavelength 

Experimental measurements [11],[13] obtained for the wrinkle wavelength  wL , 

shown in Figure 124, are depicted in Figure 125, normalized by the value of l ld t  and 

indicate a significant scatter. Similar scatter has also been reported in buckling wavelength 

measurements of single-walled pipes subjected to bending [26],[27],[28]. The wavelength 

wL  of Figure 124 corresponds to the secondary buckling mode (shown in Figures 95) where 

A denotes the main buckle and B denote the two minor buckles, also depicted in Figure 75. 

In the same Figure, the experimental measurements for the wrinkle wavelength are 

compared with the corresponding numerical prediction, where the numerical value of wL  is 

taken equal to 4 hwL , where hwL  is the half-wave length value of the first bifurcation mode, 

shown in Figures 92. The relationship between hwL  and wL  is also shown in Figures 95d. 

The comparison in Figure 125 shows that the measured values of wL  are in fairly good 

agreement with the numerical prediction. It is interesting to note that based on the 

experimental results, the level of the prestressing does not affect significantly the buckling 

wavelength, verifying the corresponding numerical results in Figure 91 and Figures 108.  

 

 

Figure 125: Comparison between numerical and experimental values of the wavelength. 

2

2.2

2.4

2.6

2.8

3

3.2

OR-2 GR-1 GR-2 WT-1 WT-2 P01KA

n
o

rm
a
li

z
e
d

 l
e
n

g
th

 o
f 

w
ri

n
k
le

tested lined pipes

dl/tl=97.8

τ=4.77

numerical 

prediction



Chapter 3: Confined cylinders under longitudinal bending 

166 

3.5.3 Wrinkle height 

In Figure 126, numerical results for the evolution of liner pipe wrinkle height wh , 

normalized by the liner thickness lt , are plotted for different values of residual imperfection 

amplitude  0 lw t  and compared with relevant experimental data [11],[13]. The values of 

residual imperfection amplitude  0 lw t  used in the analyses of Figure 126 are consistent 

with the range of initial wrinkling measurements reported in specimen locations OR-2 W4, 

OR-2 W5, GR-2 W4, and GR-2 W5. The comparison indicates that the numerical results 

for the gradual increase of wrinkling height are in very good agreement with the 

experimental measurements. 

 

 

Figure 126: Evolution of liner pipe wrinkle height for TF Pipe A for different values of 

initial imperfection; comparison between numerical and experimental results. 
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3.6 Effects of external pressure on lined pipe bending behavior 

An important issue regarding the structural integrity of offshore pipelines during the 

installation procedure is the determination of maximum (ultimate) bending curvature max  

beyond which pipeline failure occurs [1]. Extensive experimental and numerical work on 

pressurized bending of single-wall steel pipes has demonstrated that for thick-walled pipes 

with diameter-to-thickness ratio less than 30, which are candidates for deep offshore 

pipeline applications, ovalization instability governs the bending response of the pipe, in 

the sense that the pipe exhibits a limit (maximum) moment due to excessive cross-sectional 

ovalization before local wrinkling of the pipe wall occurs [2],[3]. The dominance of 

ovalization instability over pipe wall local buckling becomes more pronounced when the 

pipe is bent in the presence of external pressure due to the significant contribution of 

external pressure on the ovalization process and the curvature max  decreases substantially 

with increasing external pressure. Therefore, the curvature corresponding to the maximum 

moment ( max ), calculated from an ovalization (two-dimensional) analysis, as described in 

sections 3.3.1 and 3.4.1, considering pressurized bending conditions, is representative for 

the deformation capacity of thick walled pipes [2],[3]. 

In the case of lined pipes, a similar ovalization analysis can used to obtain max  which 

is considered as the maximum allowable bending curvature. The max  value depends 

mainly on the load-bearing outer pipe, whereas the contribution of the liner is rather small. 

In Figures 127, the response of lined pipes under pressurized bending conditions is shown 

in terms of the moment-curvature equilibrium paths for different levels of external pressure 

p  for the SF and the TF Pipe A. The values of pressure p  are normalized by the yield 

pressure of the outer pipe , ,2Y o Y o o op t d , so that oYppq , . The curves with 0q  

(zero pressure) are identical to those presented in Figures 100 for pipe A. In all those 

analyses, external pressure is first raised and, subsequently, keeping the pressure constant, 

bending is applied until a limit (maximum) moment is reached. 
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Figures 127: Moment-curvature diagrams for pressurized bending response of lined pipes; 

(a) SF Pipe A and (b) TF Pipe A. 
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In Figure 128, the corresponding pressure-curvature interaction diagram is plotted 

depicting the values of max  for different values of pressure level. The solid lines in Figure 

128 represent the curvature max  for different values of normalized pressure q  

corresponding this limit moment for the SF and TF pipes. In the same figure, an empirical 

interaction equation [1] proposed by Shell Oil Company for pressure-curvature interaction 

is also plotted, considering only the strength of the outer pipe (dashed line). Shell 

interaction equation is given by the following formula: 
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Figure 128: Pressure-curvature interaction diagram for pressurized bending response of 

lined pipes; numerical results. 
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The previous numerical results for pressurized pipes referred to the entire lined pipe 

system. The behavior of liner pipe during pressurized bending of SF and TF Pipes is shown 

in Figures 129 and in Figures 130 in terms of their ovalization and their detachment from 

the outer pipe respectively. The results indicate that, for both SFP and TFP, external 

pressure has a prominent effect on the liner response; detachment is significantly delayed, 

even for very low levels of pressure. Furthermore, for higher values of pressure, the liner is 

always in contact with the outer pipe, until the value of max  is reached. Three-dimensional 

analyses of lined pipes under pressurized bending for levels q  greater than 0.05 indicated 

no wrinkling up to the bending curvature max . Upon reaching the value of max , the 

system becomes very unstable and rapidly collapses due to excessive ovalization. 

Therefore, liner wrinkling does not occur for bent lined pipes in the presence of external 

pressure that exceeds 5% of the yield pressure of the outer pipe 
,Y op . 
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Figures 129: Liner ovalization during pressurized bending response of lined pipes; (a) SF 

Pipe A and (b) TF Pipe A. 
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Figures 130: Liner detachment from outer pipe during pressurized bending response of 

lined pipes; (a) SF Pipe A and (b) TF Pipe A. 
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3.7 Conclusions 

The mechanical behavior of lined elastic and steel pipes under bending loading and 

external pressure has been investigated. The investigation is computational using nonlinear 

two- and three-dimensional models through the employment of the general-purpose finite 

element program ABAQUS. 

Numerical results indicate that separation (detachment) between the liner and the outer 

pipe occurs at the compression zone, and a cylindrical panel is formed, leading to liner 

buckling in the form of wrinkling. Results from three-dimensional analysis in both elastic 

and steel lined pipes indicate that a first bifurcation occurs at curvature cr  that leads to a 

uniform wrinkling pattern, associated with small values of detachment and of buckle wave-

height. Subsequently, a second bifurcation occurs at a bending curvature cr , which is 

higher than the value of cr . This secondary bifurcation is associated with larger values of 

wrinkling amplitude and more visible deformations with respect to the first bifurcation and 

therefore can be considered as the wrinkling limit state of liner failure due to bending. The 

numerical results from lined steel pipes show that liner prestressing due to the 

manufacturing process has a beneficial effect on the values of critical curvature cr  and 

,cr  whereas both cr  and cr  are sensitive to the presence of initial wrinkling 

imperfections. Furthermore, the numerical results indicate that the lateral confinement of 

the liner pipe due to the deformable outer pipe and its interaction with the outer pipe has a 

decisive influence on the wrinkling behaviour of the lined pipe. 

In contrast with the case of lined elastic pipes, the development of the wavy pattern in 

case of lined steel pipes is not sudden, indicating a “tangential” type of bifurcation with no 

distinct point. The smooth transition from pre-buckling to post-buckling in lined steel pipes 

facilitates its numerical simulation, so that the introduction of a negligible imperfection 

may not be necessary. Because of this “tangential” bifurcation, the definition of buckling 

curvature cr  may be rather ambiguous. In the present work, to overcome this ambiguity, 

the buckling (critical) curvature cr  is defined as the curvature at which the detachment of 

the end cross-section (point (2) in the equilibrium paths of detachment-curvature figures) 

reaches a maximum value and begins to decrease. 

Two types of lined steel pipes are considered; stress-free lined pipes (referred to as 

snug-fit pipes, SFP) and lined pipes with an initial prestress (referred to as tight-fit pipes, 

TFP). In the case of SF Pipes, the detachment occurs as soon as bending is applied, whereas 
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for the TF Pipes, the detachment initiates at a later stage due to prestressing. On the other 

hand, numerical results indicate that liner prestressing has a rather negligible effect on liner 

ovalization, local hoop curvature, and longitudinal stress. Furthermore, the development of 

hoop stress at the critical location  0   indicates that after the first stages of 

deformation, hoop prestressing is practically lost. Moreover, from the series of analyses 

that conducted to define the critical value of half-wavelength  hwL , it is concluded that 

prestressing do not affect the half-wavelength value. Similar effect on the wrinkling 

response of lined pipes has the presence of friction in the interface between the liner and the 

outer pipe. In particular, friction delays the initiation of detachment, so that wrinkling 

occurs in a higher bending curvature. 

Regarding the influence of liner and outer pipe thickness, numerical results indicate 

that the bigger is the thickness of the outer pipe, the lower and slower is the increase of the 

detachment and ovalization during bending. On the other hand, with decreasing the 

thickness of the liner pipe, the higher is the increase of the detachment. In general, the 

thickness of the outer pipe determines the confinement stiffness. Therefore, a thicker outer 

pipe results in higher stresses at the critical location, leading to plastic strains (for a steel 

pipe) and finally to wrinkling of the liner pipe. Furthermore, with increasing the thickness 

of the outer pipe, the higher is the bending strength, and the curvature that corresponds to 

the maximum bending moment. 

Comparison of the present numerical results with available experimental data has 

demonstrated that the buckled shapes obtained numerically are very similar to the shapes 

observed experimentally. In addition, the numerical values of wavelength and evolution of 

wrinkling height are compared very well with relevant test measurements. 

Finally, the effects of external pressure on the bending response of lined pipes have 

been investigated and numerical results from ovalization analysis indicate that the external 

pressure affects the liner response at rather low pressure levels. In particular, when the level 

of external pressure exceeds a rather low value, the liner pipe does not detach from the 

outer pipe, while the entire lined pipe collapses due to excessive ovalization, and liner 

wrinkling does not occurs. 
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44..  SSuummmmaarryy  aanndd  ccoonncclluussiioonnss  ooff  tthhee  ssttuuddyy  

 

4.1 Summary 

The main objective of this study is the investigation of the mechanical behavior of thin-

walled elastic and steel cylindrical shells confined within a surrounding medium or another 

shell in terms of their structural stability under two principal types of loading, namely 

external pressure and longitudinal bending. The work has been motivated by practical 

engineering applications, as well as by the need for better understanding and accurate 

predictions of bifurcation, and post-buckling response of confined thin-walled cylindrical 

shells. The first issue, examined in Chapter 2 of the present dissertation, refers to the 

structural behavior and stability of confined cylinders under external pressure with direct 

reference to thin-walled buried pipelines. The second problem is examined in Chapter 3 and 

concerns the mechanical behavior and wrinkling of confined cylindrical shells, motivated 

by the need of investigating the response of lined pipes under bending and external 

pressure. The investigation is computational using advanced finite element tools through 

the employment of a general-purpose finite element program. The numerical simulation 

methodology is similar for the two problems, where the shell under consideration and the 

corresponding confinement are simulated with nonlinear finite elements that account for 

both geometric nonlinearity and inelastic material behavior. The numerical simulation is 

verified by comparison of the numerical results with available analytical solutions and 

experimental data. Special emphasis is given on structural stability in terms of post-

buckling and imperfection sensitivity. 

For the case of externally-pressurized confined cylinders, the numerical results are 

presented in the form of pressure-deformation equilibrium paths, and show an unstable 

post-buckling response beyond the point of ultimate pressure capacity. The sensitivity of 

response on the presence of initial imperfections, in the form of both initial out-of-

roundness of the cylinder cross-section and the presence of initial gap between the cylinder 

and the surrounding medium, is examined. The effects of the ratio D/t, the yield stress, the 

friction, the medium deformability, and the vertical preloading on the ultimate pressure are 

investigated. Based on the numerical results, a simplified and efficient methodology is 

developed, which is compatible with the recent general provisions of European design 

recommendations for shell buckling, and could be used for design purposes. Finally, a 

comparison with the similar problem of “shrink buckling” is attempted and the differences 
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between those two problems are pin-pointed, emphasizing the significantly different 

response with respect to the presence of initial imperfections. 

For the case of lined pipes under longitudinal bending, the stresses and deformations in 

the compression zone are monitored, with emphasis on possible detachment of the liner 

from the outer pipe. The possibility of bifurcation in a wrinkling pattern, including the 

possibility for a secondary bifurcation is examined. Furthermore, the liner ovalization, 

bending moment, local hoop curvature, axial stress, and hoop stress are investigated. The 

effects of liner pipe thickness, outer pipe thickness, friction, and liner prestressing due to 

manufacturing process on the buckling curvature and wavelength are examined. The 

sensitivity of response on the presence of initial wrinkling imperfections is investigated. 

Finally, the effect of external pressure on the mechanical response is discussed. 

 

4.2 Conclusions 

A detailed description of conclusions on each of the two subjects has been presented 

separately at the end of the corresponding chapter, and the reader is referred to sections 2.7 

and 3.7 for the two problems respectively. An attempt to summarize those conclusions is 

offered below. 

For the case of externally-pressurized confined cylinders, the numerical results of 

elastic and steel cylinders compared successfully with available closed-form analytical 

predictions and supported by available experimental data. The numerical results showed an 

unstable post-buckling response beyond the point of maximum capacity due to 

development of a plastic collapse mechanism, indicating significant imperfection 

sensitivity. A three-hinge plastic collapse mechanism with one stationary and two moving 

plastic hinges was developed that results in a closed-form expression and illustrates the 

post-buckling response of the cylinder in an approximate yet very representative manner. 

The numerical results showed a significant sensitivity of the ultimate pressure in terms of 

initial imperfections, in the form of both initial out-of-roundness of the cylinder cross-

section and initial gap between the cylinder and the surrounding medium, on the value of 

the maximum pressure. Reduction of the medium modulus results in a substantial reduction 

of the pressure capacity of the cylinder. The simplified and efficient methodology that was 

developed, is compatible with the recent general provisions of European design 

recommendations for shell buckling, quite close to and on the conservative side of the 

present numerical results, and could be used for the prediction of buckling pressure of 
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buried pipelines and other rigidly encased steel cylinders. Experimental results are 

compared very well with the numerical results, as well as with the predictions of the 

proposed design methodology. The main differences of the shrink buckling problem with 

the hydrostatic buckling problem were pin-pointed, emphasizing the significantly different 

response of the two problems with respect to the presence of initial imperfections. 

For the case of lined pipes under longitudinal bending, the numerical results indicate 

that separation (detachment) between the liner and the outer pipe occurs at the compression 

zone, leading to liner buckling in the form of wrinkling. A first bifurcation occurs at 

curvature cr  that leads to a uniform wrinkling pattern, associated with small values of 

detachment and of buckle wave-height. Subsequently, a second bifurcation occurs at a 

bending curvature cr , which is higher than the value of cr . This secondary bifurcation is 

associated with larger values of wrinkling amplitude and more visible deformations with 

respect to the first bifurcation and therefore can be considered as the wrinkling limit state of 

liner failure due to bending. The liner prestressing due to the manufacturing process has a 

beneficial effect on the value of critical curvature, whereas the critical curvature is sensitive 

to the presence of initial wrinkling imperfections. Comparison of the present numerical 

results with available experimental data has demonstrated that the buckled shapes obtained 

numerically are very similar to the shapes observed experimentally. In addition, the 

numerical values of wavelength and evolution of wrinkling height are compared very well 

with relevant test measurements. The external pressure affects the liner response at rather 

low pressure levels; when the level of external pressure exceeds a rather low value, the liner 

pipe does not detach from the outer pipe, while the entire lined pipe collapses due to 

excessive ovalization, and liner wrinkling does not occurs. 

It can be generally concluded that the lateral confinement of the shell, either is a 

surrounding medium or another shell, characterizes the structural behavior of the shell-

confinement system. In particular, the lateral confinement has a positive influence on the 

maximum (pressure or bending) capacity of the shell. Furthermore, the interaction of the 

steel shell with the lateral confinement results in the development of a plastic collapse 

mechanism which accelerates the failure of the shell. The stiffness of the confinement is 

controlled either through the elastic modulus of the surrounding medium or through the 

thickness of the confining shell (in the case of double-wall pipes). Particularly, the increase 

of the confinement stiffness decreases the ovalization and the detachment of the shell and 

as a consequence increases resistance to buckling. 
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The above problems of structural mechanics often occur to numerous 

technological/engineering applications. The dissertation contributes to the numerical 

investigation of the buckling of cylindrical shells within a confinement medium and its 

sensitivity on imperfections, as well as to the better understanding of their mechanical 

behavior. Up to date, it constitutes the most rigorous numerical simulation of confined 

cylindrical shells under structural loading and pressure. For the problem of externally-

pressurized cylinders, with direct application to buried steel pipelines, it was demonstrated 

that buckling occurs well below the plastic pressure level, improving existing design 

practice. Furthermore, a new design methodology is proposed, compatible with the recent 

general provisions of European design recommendations for shell buckling. In addition, 

results of this research have been already adopted in two ASCE Manual of Practice for 

buried steel pipeline design; MoP No.79 for steel penstocks and Mop No. 119 for buried 

flexible steel pipes. Finally, the structural behavior of an innovative steel pipeline product, 

referred to as “lined pipe”, is numerically investigated and the mechanism of liner 

wrinkling is examined in detail, allowing for its efficient use in practical applications for 

hydrocarbon transportation. This offers the theoretical background for the safer application 

of lined pipes in offshore pipeline construction, an issue of significant technological 

interest. 

 

4.3 Recommendations for further study 

Based on the present results for the mechanical and structural behavior of confined 

cylindrical steel shells, several engineering problems, relevant with the present 

investigation, are recommended for further study. 

For the case of externally-pressurized confined cylinders, the buckling and post-

buckling behavior of a three-dimensional problem is an open issue with particular emphasis 

on possible occurrence of buckle propagation of the steel cylinders in confined conditions, 

considering the effect of deformable medium. 

In addition, several issues related to the bending buckling of confined cylinders could 

be proposed for further study, given the fact that lined pipes constitute a promising 

technological application. The research could be continued towards defining a wrinkle 

acceptability criterion. In addition, the present study could be extended investigating the 

cyclic loading response, including fatigue/ratcheting phenomena at the wrinkled area, 

motivated by the offshore installation of such pipes with the reeling installation method. 
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Furthermore, the design, set-up and implementation of experimental testing on structural 

behavior of lined pipes under various types of loading (e.g. longitudinal bending with or 

without internal/external pressure, cyclic loading), constitutes a challenge, and will give 

significant value to the numerical simulations towards progress on understanding better the 

problem. Finally, an ultimate goal of the above research issues could be the development of 

relevant design guidelines for lined pipes concerning both their manufacturing and their 

construction. 

Finally, the structural stability of cylindrical shells with lateral confinement under 

primarily bending loading conditions may be of interest to nano-composite tubes reinforced 

by an inner single-walled carbon nanotube. The simulation of the mechanical behavior of 

carbon nanotubes using structural (shell) models, as an alternative to molecular dynamics 

models, has gained quite some attention lately. In particular, the structural stability and the 

definition of the buckling load for such confined cylindrical shells are of particular interest 

and remain an open issue for further investigation. 
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AAppppeennddiixx  AA::  PPrrooppoossaall  ffoorr  EEDDRR  cchhaapptteerr  oonn  ccoonnffiinneedd  ccyylliinnddeerrss  uunnddeerr  

eexxtteerrnnaall  pprreessssuurree  

 

A proposed chapter for the design of confined steel cylinders, within the framework of 

the European Design Recommendations (EDR), is developed and presented in this 

Appendix, for possible inclusion of the present work in future editions of the EDR. 
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A  Confined steel cylinders under uniform 
external pressure 

Principal authors: D. Vasilikis, S. A. Karamanos 

A.1  General 

This chapter is concerned with the structural stability of long steel cylinders, surrounded by 

an elastic medium, subjected to uniform external pressure on the steel cylinder directly. 

 

The rules of this chapter are based on extensive numerical parametric studies using GNA, 

GMNA and GMNIA analyses (Vasilikis & Karamanos, 2009, 2011). Special emphasis is 

given on the effects of initial imperfections; those are considered in the form of initial out-

of-roundness of the cylinder and as an initial gap between the cylinder and the medium. 

Furthermore, the effects of the deformability of the surrounding medium are discussed. A 

simple and efficient design methodology, which is compatible with the recent general 

provisions of European Design Recommendations for shell buckling is developed. These 

provisions differ from those for steel cylinders under hoop compression described in 

Chapter 10.2.3 of these Recommendations, which focus on unconfined lateral conditions 

only. The results indicate significant imperfection sensitivity and a strong dependency on 

the medium stiffness. 

 

In numerous applications, externally-pressurized steel cylinders are confined within a rigid 

or deformable cavity. Typical examples are buried steel pipelines in various soil conditions 

or encased in concrete, steel liners for the rehabilitation of damaged buried pipelines, steel 

tunnels and ducts used in power plants, and steel casing employed in oil and gas production 

wells. In those applications, hydrostatic pressure conditions may develop because of the 

presence of ground water and the permeability of the surrounding medium, and may cause 

significant hoop stresses in the cylinder, which may cause cylinder buckling. Due to the 

confining effect of the cavity, the steel cylinder usually does not ovalize, and buckling 

occurs in the form of an “inward lobe”, as shown in Figure A.1. 

 

The design rules of the present chapter refer mainly to steel cylinders surrounded by a stiff 

(undeformable) medium. The geometrical properties and imperfections are stated in section 

A.2, whereas buckling design rules are stated in section A.3. In section A.4, the design 

methodology is illustrated in a design example. 

Equation Section  1 

A.2  Geometrical properties, boundary conditions and 
imperfections 

A.2.1  Geometrical properties 

(1) Description of system: The following 

rules are applicable to steel cylinders 

confined by a rigid (non-deformable) 

medium with diameter-to-thickness ratio 

ranging between 100 and 300.  

 

The cylinders are relatively thin-walled with 

diameter-to-thickness D t  ratio that ranges 

between 100 and 300, which is typical for 

water transmission pipelines or 

rehabilitation liners. 
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Figure A.131. Schematic 
representation of the buckling 

problem of an externally-pressurized 
cylinder confined by the permeable 

surrounding medium. (a) lobe on the 
top and (b) buckling lobe at the 

bottom due to buoyancy 

 

 

D  diameter of the cylinder 

r  radius of the cylinder 

t  thickness of the cylinder 

  hoop coordinate 

  vertical displacement 

p  uniform external pressure 

 

(2) Loading: The rules only apply to 

uniform external pressure loading p  

around the cylinder, see Figure A.131. 
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A.2.2  Boundary and symmetry 
conditions 

(1) Boundary conditions: For the structural 

system considered in this problem, no variation of 

loading and deformation is assumed along the 

cylinder axis. In consequence, plane-strain 

conditions are considered. Furthermore, 

symmetry is considered with respect to the 0   

plane. 

 

 

A.2.3  Imperfections 

(1) Imperfections: Two types of initial 

imperfections are considered in the present study.  

 

(2) The first type of imperfection is an initial gap 

between the confining medium and the cylinder. 

The gap is introduced assuming that the circular 

cavity of the medium has a radius slightly larger 

than the circular cylinder radius, and that the 

cylinder and the cavity are initially in contact at 

one location (e.g.   ), so that the maximum 

gap between the cylinder and the medium occurs 

at 0  . The amplitude of the gap is denoted as 

g  (see Figure A.132a ). 

 

Figure A.132. Schematic representation of 
a confined ring with (a) gap-type initial 

imperfection and (b) “out-of-roundness” 
initial imperfection 

 

(3) The second type of imperfection is a small 

initial “out-of-roundness” imperfection on the 

steel cylinder in the form of a small localized 

(“single-lobe”) inward displacement pattern at the 

vicinity of the 0   location (see Figure 

A.132b). The size of the out-of-roundness is 

denoted by 0 . 
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A.2.4  Range of applicability 

 (1) The rules of this chapter are applicable 

for cylindrical shells within the ranges 

given by 

100 300
D

t
     (A.1) 

Equation (A.1) represents the range of D t  

values used in the numerical parametric 

studies for determining the buckling 

parameters given in paragraph A.3 (see 

also Vasilikis & Karamanos, 2009, 2011). 

 

A.3  Buckling Design 

The rules refer to cylinders confined by a 

stiff (undeformable) medium. 

 

 

A.3.1  Elastic critical buckling resistance 

(1) The elastic critical buckling pressure 

Rcrp  is given by 
2.2

21
Rcr

E t
p

D

 
  

  
   (A.2) 

 

The equation for the elastic critical 

buckling resistance is taken from the paper 

by Glock (1977). 

 

A.3.2  Plastic reference resistance 

(1) The plastic reference resistance may be 

taken as 

2
2

1

y

Rpl

t
p

D



 

 
  

  
  (A.3) 

 

where   is Poisson’s ratio ( 0.3   for 

metals) 

Equation A.3 is the fully plastic limit load 

of a ring based on small displacement 

theory and ideal plastic behaviour obtained 

by simple statics and considering plane 

strain conditions of the ring in the out-of-

plane direction. 

 

 

A.3.3  Characteristic buckling resistance 

(1) The characteristic buckling pressure Rkp  

should be determined as 

Rk Rplp p     (A.4) 

 

in which  

Rplp  = plastic reference resistance (Eq. 

(A.3)) 

  = buckling reduction factor for 

elastic- plastic buckling (see below) 

The determination of the characteristic 

buckling resistance follows procedure of EN 

1993-1-6 (see Section 8.2) and uses the 

parameters set out in A.3.4. 

 

 

(2) The buckling reduction factor should be 

determined from 

( )f      (A.5) 

 

where   is the relative slenderness 

The parameter   is taken from Chapter 9 of 

these Recommendations, where ( )f   is 

presented in the form of Eqs 9.3 to 9.5, is 

identical to section 8.5.2 of EN 1993-1-6. 

The three ranges of   refer to the following 
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parameter 
1.222.26 (1 )Rpl y

Rcr

p D

p E t

 


  
   

 
(A.6) 

 

and where the function ( )f   is to be 

taken from EN 1993-1-6 or Chapter 9 of 

these Recommendations, using the buckling 

parameters which are given below. 

values of Rkp  

 

0  : 
Rk Rplp p (plastic) 

0 p    : elastic-plastic interaction 

  0

0

1Rk

Rpl p

p

p



 


 

 
     

 

p  : Rk Rcrp p  (elastic) 

 

A.3.4  Buckling parameters 

(1) The squash limit relative slenderness 0  

should be taken as 

0 0.25      (A.7) 

 

(2) The plastic limit relative slenderness 
p  

should be determined as  

2.2p      (A.8) 

 

(3) The elastic imperfection reduction factor 

should be obtained from 

0.7

0.15
 


    (A.9) 

 

where   is the characteristic imperfection 

amplitude  

0 3g D

r t

    
    

  
 (A.10) 

 

(4) The interaction exponent   should be 

taken as  

0.6 3      (A.11) 

but always 0.3   

 

(5) The plastic range factor   should be 

determined as  

2
1

p





   (A.12) 

The two reference slenderness parameters 

0  and 
p  define the three parts of the 

buckling curve: 

a) plastic plateau to 0  

b) elastic-plastic interaction between 0  

and 
p , 

c) elastic buckling beyond 
p . 

The buckling parameters are repeated 

here to simplify the usage of the equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The plastic range factor governs the load 

level at which plasticity first begins to 

affect the buckling strength significantly. 
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A.3.5  Buckling strength verification 

(1) The design buckling resistance Rdp  

should be obtained from 

Rk
Rd

M

p
p


     (A.13) 

 

where the safety factor M  should be taken 

from the other relevant application 

standard. If none exists, the default value 

(EN 1993-1-1) is  

1,1M      (A.14) 

 

(2) It should be verified that 

Ed Rdp p     (A.15) 

 

 

A.4  Design example 

Design of a steel pipe under a dam encased in concrete. 

 

A steel pipe under a dam with diameter-to-thickness (ring flexibility parameter) 180D t   

is encased in concrete. The steel material has yield stress 300y MPa  . Over time, 

pressure builds up on the pipe. Assuming a gap equal to 0.1% of the pipe radius (and 

neglecting localized out-of-roundness 0 ), is the pipe safe against wall buckling? 

 

 

Figure A.133 Encased pipe in dam 

 

Technical data 

1530D mm , 8.5t mm  

 

Material: 300y MPa  , 210,000E MPa , 0.3v   

Pressure on the pipe: 0.979p MPa  
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Design values of loads 

The partial factor on loads is 1.35F   

Design pressure on the pipe: 0.979 1.35 1.322Edp MPa    

 

Range of applicability 

180D t   

The buckling resistance is within our range (100 300D t  ) and can be checked with the 

present provisions. 

 

Elastic critical buckling resistance 
2.2 2.2

2 2

210,000 8.5
2.52

1 1 0.3 1530
Rcr

E t
p MPa

D

   
     

    
     (Eq. A.2) 

 

Plastic reference resistance 

2 2

300 8.5
2 2 3.75

15301 1 0.3 0.3

y

Rpl

t
p MPa

D



 

   
     

      
    (Eq. A.3) 

 

Buckling parameters 

The characteristic imperfection amplitude   is 

 0 3
0 3 0.001 180 0.04

g D

r t

    
       

  
     (Eq. A.10) 

Thus, the elastic imperfection reduction factor a  is 

0.7 0.7

0.15 0.15
1.43

0.04
   


        (Eq. A.9) 

 

The squash limit relative slenderness 0  is 

0 0.25            (Eq. A.7) 

 

The plastic limit relative slenderness p  is  

2.2p            (Eq. A.8) 

 

The interaction exponent   is 

0.6 3 0.6 3 0.04 0.48                (Eq. A.11) 

 

The plastic range factor   is  

2 2

1.43
1 1 0.704

2.2p





             (Eq. A.12) 

 

Characteristic buckling resistance is calculating as follows: 

The shell slenderness is 

 
1.22 2

1.22.26 (1 ) 2.26 300(1 0.3 )
180 1.22

210000

Rpl y

Rcr

p D

p E t

 


   
    

 
 (Eq. A.6) 

or 
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3.75
1.22

2.52

Rpl

Rcr

p

p
            (Eq. A.6) 

 

Therefore, 
0 p     and the design is controlled by elastic-plastic interaction buckling. 

Consequently,  

0.48

0

0

1.22 0.25
1 3.75 1 0.704 1.862

2.2 0.25

Rk
Rk

Rpl p

p
p MPa

p



 


 

    
                

 

 

Design buckling resistance 

1.862
1.693

1.1

Rk
Rd

M

p
p MPa


          (Eq. A.13) 

1.322 1.693Ed Rdp MPa MPa p       
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AAppppeennddiixx  BB::  NNuummeerriiccaall  ssiimmuullaattiioonn  ooff  lliinneedd  ppiippee  mmaannuuffaaccttuurriinngg  pprroocceessss  

In the present chapter, the manufacturing process of lined pipes is simulated in order to 

determine the liner residual hoop stress at the end of the process. This residual stress is 

inserted in the steel liner as initial condition (prestressing) before the application of the 

bending curvature. 

In general, pipe producers provide two types of clad (or lined) pipes: metallurgical clad 

pipes and mechanical clad pipes. In manufacturing metallurgical clad pipes, the bonding 

process for joining the corrosion-resistant internal sleeve to the strong external carbon steel 

can be performed by weld cladding, centrifugal casting, extrusion, or rolling laminated 

plates. However, during this metallurgical process a single heat treatment is used for both 

the ferritic external layer and the austenitic internal layer, and some material combinations 

may not be technically feasible. In any case, regardless of the manufacturing process, the 

main characteristic of metallurgically clad pipes is that the two materials become a single 

mass. On the other hand, mechanically clad (or lined) pipe consists of a corrosion-resistant 

liner inserted into an external carbon steel pipe. The nature of the mechanical bond depends 

on the manufacturing process, but regardless of the method, the bond is purely mechanical, 

in the sense that the materials of the outer pipe and the liner pipe remain two distinct 

materials in the sense that they do not fuse together to become a single mass as 

metallurgically bonded pipes do. 

Two types of mechanical lined pipes are considered in the section of lined steel pipes; 

the Snug-Fit Pipe (SFP) in which the liner is stress-free, and the Tight-Fit Pipe (TFP) where 

the liner has an initial hoop compressive stress due to the manufacturing process. More 

specifically, in TF Pipes, the liner is fitted inside the carbon steel outer pipe through a 

thermo-hydraulic manufacturing process, resulting in a tightly-bonded lined pipe, where the 

outer pipe “compresses” the liner pipe, introducing a significant hoop compressive stress in 

the liner, which is often called “residual stress” or “prestressing” and the two pipes are 

mechanically bonded together. During this process (Figure 134), the outer pipe is heated 

first. Subsequently, the liner pipe is inserted inside the outer pipe and pressurized internally 

so that it is expands and it is in good contact with the outer pipe. Finally, the outer pipe is 

cooled and the internal pressure of the liner pipe is removed, so that the two pipes are 

mechanically bonded together. The heating temperature of the outer pipe and the level of 

internal pressure are important parameters of the above manufacturing process. In addition, 

when the two pipes are in contact, there is an amount of heat transferred from the outer pipe 
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to the liner, depending on the duration of contact. Furthermore, the sequence of outer pipe 

cooling and depressurization could influence the final amount of residual stress. The 

manufacturing process follows the following steps: 

Step 1: the outer pipe is heated up to a prescribed temperature. 

Step 2: the liner is internally pressurized until it is in contact with the outer pipe, and 

further pressurized, expanding the double-wall pipe system, until the maximum prescribed 

pressure is reached. 

Step 3: the temperature of the liner pipe is increased up a certain level, as a result of 

liner-outer pipe contact and heat transfer from the outer pipe to the liner (it depends on the 

time duration of liner-outer pipe contact during manufacturing). 

Step 4: the liner is depressurized. 

Step 5: the outer pipe is cooled. 

 

Figure 134: Schematic representation of the manufacturing process [1],[2]. 

 

There are several parameters determining the final value of the residual stress, namely 

(a) the heating temperature of the outer pipe T , (b) the level of pressure applied for liner 

expansion intP , (c) the heating temperature T   of the liner pipe due to partial or complete 

heating, (d) whether step 5 (cooling) occurs simultaneously or after step 4 

(depressurization). 

The above described manufacturing process is simulated through the finite element 

modeling procedure presented in section 3.2 and the parameters that influence the 

manufacturing process of TFP are investigated. Specifically, an ovalization analysis is 

conducted using a two-dimensional finite element model with appropriate symmetry 

conditions. In the present numerical simulation, the two pipes are assumed initially stress-
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free and an initial very small gap of 0.2 mm is assumed between the two pipes [1],[2]. 

Following the dimensions of pipes examined in chapter 3, the considered external diameter 

oD  and thickness ot  of the outer pipe is 325 mm and 14.3 mm respectively. The outside 

diameter of the liner pipe lD  is considered equal to 296 mm, whereas the thickness lt  of 

the liner pipe is equal to 3 mm. The material properties of the two pipes are described in 

detail in the section 3.4 of the dissertation. The thermal expansion coefficient for both liner 

and outer pipe is 51.16 10 / oC   , whereas the reference temperature is considered equal 

to 25
o
C. 

The variation of the external radius of the liner and the internal radius of the outer pipe 

during the manufacturing process is depicted in Figure 135. The outer pipe temperature 

increase T  is 350
o
C and the internal pressure intP  of the liner is 15 MPa. The temperature 

increase T   of the liner due to the contact with the heat outer pipe is 175
o
C (i.e. the half of 

the outer pipe temperature increase). In the first step, it is observed the increase of the outer 

pipe radius r  due to the heating of the pipe. The amount of the radius increase can be 

calculated, assuming plain strain conditions, by the following formula: r 

 1T v r    . During the second step of internal pressure, it is shown that the liner radius 

increases due to expansion until it touches the outer pipe in order to expand together as a 

single pipe. It is noted that the full plastification pressure yP  of the liner cross-section, 

given by equation 2y y

t
P

D
  is equal to 6 MPa, quite lower than internal pressure intP . 

Therefore, at that pressure level (i.e. 
yP P ), the increase of the liner radius loses the 

linearity as shown in Figure 135, and the contact of the liner with the outer pipe occurs a 

little later in a pressure level equal to 7.42 MPa. In the third step, the system continues to 

expand due to liner pipe heating. Next, during the two final steps of unloading 

(depressurization and cooling), it is observed that the two pipes remain in contact. 
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Figure 135: Variation of the external radius of the liner and the internal radius of the outer 

pipe during the manufacturing process. 

 

One of the parameter that affects the manufacturing procedure is the amount of heat 

that transferred from the outer pipe to the liner, which depends on the duration of contact of 

the liner with the heat outer pipe in the third step. In most cases, partial heating  T T    

of the liner is considered, but if the two pipes are in contact for a long time, complete 

heating  T T    of the liner should be taking into account. In Figure 136, the 

displacement of the liner radius is depicted in terms of manufacturing steps for partial and 

complete heating. 

Another parameter that also affects the manufacturing procedure concerns the two final 

steps of the procedure, and specifically whether the step 4 (depressurization) and step 5 

(cooling) applied simultaneously in one unloading step or step 5 occurs after the step 4. In 

Figure 137, the displacement of the liner radius is depicted in terms of manufacturing steps 

for these two cases (i.e. two unloading steps or simultaneous unloading). 
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Figure 136: Effect of the partial and complete heating of the liner on the variation of the 

external radius of the liner pipe. 

 

 
Figure 137: Effect of the simultaneous application of step 4 and 5 on the variation of the 

external radius of the liner and the internal radius of the outer pipe. 
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The variation of mises, hoop and axial stresses for liner and outer pipe during the 

manufacturing process is shown in Figure 138. It is shown that the compression of the liner 

from the outer pipe in the two final steps of unloading, results in a residual hoop 

compressive stress of the liner pipe. 

 

Figure 138: Variation of mises, hoop and axial stresses for liner and outer pipe during 

the manufacturing process. 

 

Figures 139 depict the variation of hoop stress of the liner pipe during the 

manufacturing process for different values of the liner temperature increase T  , (a) for 

two separate unloading steps (firstly depressurization and then cooling) and (b) for one 

unloading step (simultaneous cooling/depressurization). It is concluded that for both cases, 

the higher temperature increase for the liner pipe (i.e. long time contact with the hot outer 

pipe), the smaller the residual hoop compressive stress of the liner pipe. 
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Figures 139: Variation of liner hoop stress during the manufacturing process for 

different values of liner temperature increase; (a) two unloading steps, (b) one 

unloading step. 
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Figure 140 shows the effect of simultaneous cooling/depressurization in terms of the 

liner pipe temperature increase on the residual hoop stress of the liner. The sequence of 

cooling/depressurization is important only when the liner pipe is significantly heated. 

Finally, one can readily notice that one specific value of residual stress may correspond 

to several combinations of the manufacturing parameters. 

 

Figure 140: Variation of residual liner hoop stress in terms of heating temperature of 

liner pipe. 
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Figure 141 shows the variation of residual hoop stress of the liner with respect to the 

heating temperature T   of the liner pipe, when the internal pressure intP  in the second step 

is either 15 or 25 MPa. The numerical results show that the level of internal pressure does 

not have significant effect on the final value of residual stress. 

 
Figure 141: Variation of residual hoop stress in terms of liner pipe temperature increase. 
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